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To study neoclassical(NC) transport with finite-orbit
width (FOW) effect of trapped particle orbits has at
tracted much attention recently. There appear non
standard guiding-center orbits ncar the magnetic axis of 
tokamak called "potato" orbits[lJ. Typical orbit width 
of potato particles is as large as (q2p2RO)1/3. The stan
dard NC transport theory constructed in the small-orbit
width (SOW) approximation is not applicable to such 
cases in which the orbit width is comparable to the back
ground ground gradient scale length or in the near-axis 
region. We have constructed "a new transport theory 
which can be applicable to the near-axis region of toka
mak[2J by using a Lagrangian description of the drift
kinetic equation. However, in that theory the effect of 
radial electric field Er has been neglected. Since the in
trinsic arnbipolarity of neoclassical particle fluxes breaks 
if the FOW effect is considered, NC transport calculation 
with consistent ambipolar Er is important in tokamaks 
as in non-axisymmetric cases. 

To study the evolution of Er and NC transport with 
the FOW effect, we have developed a Monte-Carlo trans
port simulation code using the Sf method.[3,4J In this 
method, the distribution function of plasma is separated 
into f = fM+sf, where fM is a local Maxwellian and Sf 
is considered as a small perturbation from f M. We solve 
the linearized drift-kinetic equation for 51 as follows 

(1 ) 

where IC = mv2 /2. G(sf, fM) = GTP is the test-particle 
collision term implemented by random kicks in the ve
loeity space, and GUM,S!) = PfM is the field-particle 
collision term defined so that the collision operator sat
isfies the conservation properties 

(2) 

In eq. (1), the term Vd . \lsf brings the FOW effect, 
which is neglected in standard formulation in the SOW 
limit. The radial electric field develops according to 

( 

C2 ) aEr(r, t) 
EO 1 + v~ at = -Zie(ri{r, Ero t)), (3) 

where r i is the ion radial flux and the electron one is 
neglected. 

In the time evolution of Erl a rapid oscillation called 
geodesic acoustic mode (GAM) occurs. It is known[5J 
that GAM shows a rapid Landau-like damping when 
q '" 1. But the calculation shown in [5J uses a SOW 
limit model. Our Sf simulation revealed [6J the global 
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evolution of GAM as shown in Fig. 1. In a reversed
shear configuration with qmin ~ 1 at 1" = 0.5, it can be 
seen that the fast GAM damping occurred at r = 0.5 also 
affects the time evolution of Er on both sides of the reso-
nance surface. The interference pattern of Er at T > 0.5 
is formed because GAM frequency WGAM ~ Vth/ RO is 
different on each flux surface. These features can be 
found only by the global simulation. 

Figure 2 shows the ion heat conductivity Xi compared 
with the SOW-limit NC theory. The reduction of Xi in 
the near-axis region haB been predicted in our analysis[2J 
for a collisionless plasma. By the 51 simulation, we also 
found that Xi also reduces even in the plateau regime[7J. 
The difference of Xi from the SOW-limit estimation be
comes larger as collisionality is getting lower since the 
FOW effect of potato particles is significant in banana 
regime. 
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Fig. 1 : GAM oscillation in a reversed-shear 
configuration 
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Fig. 2 : Ion heat conductivity in two collisionality 

regimes 
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