
§60. Conversion of OpenMP Benchmark 
Programs into HPF and Evaluation of 
Parallel Performance 

Sakagami. H., Morii, H. (Dept. Computer Eng., Univ. 
of Hyogo) 

Most of computational scientists cannot accept to 
parallelize their codes using a low-level programmi~g 
interface such as MPI, which is now a de facto standard m 
this field, and computational scientists have not received 
actual benefits and potential ability of parallel computers 
for high performance computing yet. In order to adapt the 
parallel computer from a special kind of machine for 
computer scientists to a general convenient tool for 
computational scientists, the high-level language that can 
easily describe parallelization in programs is indispensable. 
On shared memory parallel computers, OpenMP reduces 
the difficulty of parallel programming, but it cannot be 
used on distributed memory parallel computers. Data 
parallel language HPF (High Performance Fortran), which 
enables parallel execution on distributed memory 
computers only by embedding minimum directive lines 
into the original sequential program, has been proposed. 
Since a program is described with a pure data-paraliel 
paradigm (single control thread and data treated in global 
name space) in HPF, it has high affinity with the 
programming style using traditional Fortran. Relatively low 
performance of parallel execution had barred the spread of 
HPF until now, but the recent progress of HPF compIlers 
has changed the situation. HPF is now ready to be used for 
rcal-world applications. 

Since both OpenMP and HPF are directive-based 
systems, we are very interesting in comparing their parallel 
performance and programming applicability. Thus in this 
research project, we have convertcd somc SPEC OMP 
2001 benchmark programs,') which arc writtcn in OpenMP 
and designed to evaluate performance of shared memory 
parallel computers, into HPF. We have also pointed out 
problems that we have faced on during conversion, and 
discussed about solutions for them.') 

As a policy, HPF directives are inserted to execute DO 
loops, which are specified for parallel processing by 
OpenMP, in parallel. SWIM, which solves the . system of 
shallow water equations using finite difference 
approximations on a two dimensional grid, is our first 
target. In SWIM, the parallel DO loop contains different 
subscripts that are used to store data in different arrays, and 
it causes contradiction to Owner Computes Rule (OCR) of 
HPF for parallel execution. In such a case, HPF compiler 
tries to resolve the contradiction using dynamic allocation 
of temporary array and copying data to/from it. This 
compiler's technique leads to less efficiency due to 
overheads of extra actions. Thus we resolve the 
contradiction with dividing the DO loop into two DO loops 
in which all of subscripts are identical and adapted to OCR. 
We execute both codes on the shared memory 
vector-parallel computer, one node of NEC SX-7 at NIFS, 

384 

and can get good performance with HPF quite similar to 
OpenMP with this rewriting the source code of SWIM. We 
emphasize that the HPF code can be executed on more than 
one node of SX-7 even the OpenMP code is confined 
within one node. MGRlD, which demonstrates the 
capabilities of a very simple multi grid solver in computing 
a three dimensional potential field, is the second target. In 
MGRID, very large one-dimensional array is declared in 
the main program and it is passed to subroutines as an 
actual argument with different start addresses while a 
dummy argument corresponding to this one-dimensional 
aTTay is declared as three-dimensional array in subroutines. 
This technique is frequently used to make a large code with 
Fortran77, but HPF does not support this feature for 
distributed arrays'. Thus we have to rewrite subroutines as 
follows: (l) declarc dummy arguments as one-dimensional 
array, (2) allocate temporary thrcc-dimensional arrays on 
the fly, (3) copy from the one-dimensional dummy 
arguments to the temporary three-dimensional arrays, (4) 
parallelize with the temporary three-dimensional arrays by 
HPF, (5) copy back to the dummy arguments, and (6) 
deallocate the temporary arrays. The dynamic 
allocation/deallocation of the array and copying data 
to/from it are performed each time the subroutine is called, 
and cause large performance degradation as compared with 
OpenMP. APSI, which solves for the mesoscalc and 
synoptic variations of potential temperature, horizontal 
wind components, and the mesoscale vertical velocity 
pressure and distribution of pollutants, is the third target. 
APSI also used above technique about arguments, but 
assignments of the large one-dimensional array to 
three-dimensional one are static unlike MGRlD, and we 
can declare individual three-dimensional arrays instead of 
the unique one-dimensional array in the main program and 
pass them to subroutines. We use remapping to a 
distributed array at calling subroutine to change dimension 
of the three-dimcnsional array for appropriate parallel 
execution. We also rewrite actual arguments as array 
sections of distributed arrays to call the subroutine in 
parallel, and finally we can get moderate. Execution time in 
seconds of each code with HPF and OpenMP is 
summarized in Table 1. Codes are executed with one to 32 
processors. 

Table I. Execution time fsecl with HPF and OpenMP. 
SWIM MGRID APSI 

#Proc. OMP HPF OMP HPF OMP HPF 
1 232.8 247.9 197.2 284.1 624.2 766.5 
2 122.1 126.4 99.4 158.5 315.7 394.1 
4 65.1 65.3 50.7 92.9 165.3 203.7 
8 36.9 35.1 26.9 59.1 88.3 111.3 

16 22.8 21.1 19.5 43.9 52.8 75.0 
32 17.3 18.1 12.1 41.3 44.7 77.4 

References 
1) http://www.specbench.orgl. 
2) Morii, H. et aI., Tech. Report of Himeji Inst. Tech., S6 
(2003) 43. 




