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§31. Multifractal Characterization of L- and
H-mode Plasma Edge Turbulence

Rajkovi¢, M. (Vinca, Serbia), Dendy, R.O. (UKAEA),
Skori¢, M.M.

Measurements of the edge plasma turbulence obtained by
the reciprocating Langmuir probe are analyzed and tested
for  self-similarity,  long-range  dependence  and
multifractality. We provide evidence for the multifractal
character present in both L- and dithering H-mode data and
also provide support for the local self-similarity in the case
of L-mode. Further, we claim that neither L-mode nor
H-mode data seem to exhibit self-similarity in the global
sense. Moreover, we use several fractal and multifractal
measures in addition to some non-standard statistical
techniques in order to characterize the L. and H-mode
fluctuations. Widely used methods [1] of characterization
of plasma turbulence time series include probability
distribution function (PDF), autocorrelation function (ACF)
and power spectrum (PS), while recently several papers
address the topic of possible long-range dependence in the
edge turbulence of toroidal magnetic confinement devices.
Upon getting a Hurst exponent in the range 0.5 <H < 1, the
authors often make conclusions concerning the global
self-similar properties, particularly in relationship with the
Self-organized criticality (SOC) models [1-2]. Still,
self-similarity is a strong statistical property and the
process X = {X(t), t € R} is self-similar with parameter H
> 0 (the so called H-ss process) if X(0) = 0 and X(at) = a"
X(t). We show that the datasets from two different
confinement regimes in MAST (Mega Amp Spherical
Tokamak, UKAEA, Culham are locally self- similar (i.e.
self-similar for sufficiently small time scales). We also
show that the L-mode data, in agreement with the previous
analysis [1], exhibit long range property in the sense that
the spectral density S(w) satisfies the following relationship
S(@) ~Cr|o*,as®w — 0, (0 <a<1, Cy#0). Again,
consistently with [1], the particular H-mode does not show
long range dependence property. However, we also give
evidence that the processes under study in two datasets do
not seem to be globally self-similar.

With the use of the wavelet analysis, we indicate that both
the L- and H-mode regimes seem multifractal so that no
single parameter (so called Holder exponents) might be
necessary to characterize the data [3-4], corresponding to
various confinement conditions. Diagrams presented in Fig.
1, clearly illustrate that the confinement regimes under
study are multifractal processes, and hence cannot be
characterized by a single Holder (Hurst) exponent.
Specifically, none of the Linear multiscale diagrams have
approximately constant hy for positive q (a sign of global
scaling). A Holder exponent between 0 and 1 indicates that
the signal is continuous but not differentiable at the
considered point, and the lower the exponent the more
irregular the signal is. Hence, all modes are characterized
by continuous but not differentiable signals. The meaning
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of the above mentioned analysis is as follows. Local
exponents h are evaluated through the modulus of the
maxima values of the wavelet transform at each point in the
time series. Then, the scaling partition function Zy(a) is
defined as the sum of the g-th powers of the local maxima
of the modulus of the wavelet transform coefficients at
scale a. For small scales, the following relationship is
expected Zy(a) ~ a *“. For certain values of q, the
exponents 1(q) have familiar meanings. In particular 1(2)
is related to the scaling exponent of power spectra, S(f ) ~
1/ P as p =2 — 1(2). For positive q, Z(a) reflects the
scaling of the large fluctuations and strong singularities,
while for negative q, Z,(a) reflects the scaling of the small
fluctuations and weak singularities [4]. Hence, the scaling
exponent 1(q) may reveal much about the underling
dynamics.
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Fig. 1 Multiscale and Linear multiscale diagram for 6861
L- mode. No flatness, due to lack of global self-similarity.

Monofractal signals display linear t(q) spectrum, t(q) = qH
— 1, where H is the global Hurst exponent. For multifractal
signals t(q) is a nonlinear function t(q) = qh(q) — D(h),
where h(q) = dt(q)/dq is not constant, D(h) is the fractal
dimension D(h) = gh — 1(q). In order to distinguish between
low and high confinement regimes we turn to the different
multifractal properties such as regularization dimension,
local Holder exponents, various multifractal spectra etc. A
typical example is pointwise Holder exponents, measuring
the scaling behavior at infinite resolution. The Large
Deviation Spectrum; coarse grained Holder exponents
measuring scaling at finite resolution, points to discernible
differences between the confinement regimes. Based on our
results, it seems that two studied signals are the product of
small-scale stochastic plasma turbulence, without
large-scale events; consistent with Dudson et al [1]. Finally,
we present a method based on the wavelet analysis which
may characterize the long-range property, simultaneously
with the intermittent property. In addition, it quantifies the
degree of intermittency, enabling an efficient way of
discerning between different intermittency regimes.
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