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Pellet injection, by its capacity to directly deposit
the fuel inside the last closed flux surface, is expected to
be a highly efficient fueling method for magnetic fusion
reactors. However, parameters of present day devices are
too different to those expected in a reactor for a simple
extrapolation to be reliable. It follows that an accurate
characterization of the ablation physics is essential for
constraining the pellet ablation-deposition models. In
particular, it is crucial to understand the over-ablation
associated to the high-energy ions and electrons gener-
ated by auxiliary heating.

To investigate the behavior of hydrogen pellet abla-
tion, a novel method of high-speed imaging spectroscopy
has been used in the Large Helical Device (LHD) for
identifying the internal distribution of the electron den-
sity and temperature of the plasma cloud surrounding
the pellet. This spectroscopic system consists in a five-
branch fiberscope and a fast camera, with each objective
lens equipped with a different narrow-band optical filter
for the hydrogen Balmer lines and the background con-
tinuum radiation [1].

For interpreting the measurements, a 3D model of
the cloudlet emission was built, under the assumption
of full LTE, as established in [2]. The temperature and
density distributions are assumed to be spherically sym-
metric close to the pellet - at the center of the cloudlet -
and to display a cylindrical symmetry in its partly ion-
ized outer part. Values can be either imposed a priori, or
taken from a HPI2 pellet ablation-deposition code sim-
ulation [3]. The cloudlet spectrum - taking into account
radiative transfer effects - is calculated in the 300 — 700
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Fig. 1: Measured and simulated spectra.

pm wavelength range, as well as emission maps corre-
sponding to the different filters of the imaging system de-
scribed above. Physical phenomena taken into account
are line emission (H,, Hg, H,), radiative attachment, ra-
diative recombination and the two bremsstrahlung com-
ponents (that intrinsic to the cloudlet and that due to
the slowing down of the plasma electrons impinging the
cloud).

A preliminary simulation result is displayed in Fig-
ures 1 and 2, where the measured and calculated spec-
trum and light emission profiles (in the parallel and
cross-field directions) are compared for the cloudlet. The
corresponding density and temperature distributions in-
side the cloudlet are displayed in Figure 3.
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Fig. 2: Measured and simulated radiation profiles in
the cross-field (left) and parallel directions (right).
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Fig. 3: Cloudlet density and temperature distributions
in the cross-field (left) and parallel directions (right).

29





