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We have developed a new phase space fluid simula
tion code for investigation of ion neoclassical transport. 
Separating f into f = fo + h according to small gyro
radius ordering, we can write the drift kinetic equation 
as 

and 
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afto + vII' V fo + a· V vfo - C (fo, fo) = 0 (1) 

+ (VII + Vd) . V h + a· V vh + Vd . V fo 

C (h, fo) - C (fo, fd - C (h, h) = O. (2) 

A steady state solution to Eq.(I) is a local Maxwellian 
distribution function 

(3) 

where no (r) is the zeroth order density, r minor radius, 

Vt = Iff the thermal velocity, T (r) the zeroth order 
temperature and x = ~. 

Vt 

In this work we calculate the collision as 

C ~ C (f{,fM) 

I27rVllfM ( 2x exp (-x 2
)) 

- (3 4) 2 er f (x) - Vi 
7r + nOVt 7r 

x / vIIC(f{,fM)d3 v 

_ ~ fM (er f (x) _ 4x exp (-x
2
)) 

nOVt x Vi 

x / v2C(f{,fM)d3 v, (4) 

where we neglected second order terms. Thus to calcu
late the collision term, we first calculate the flow veloc
ity and determine f{ which in turn is used in Eq.(4). 
Equation (4) conserves a shifted Maxwellian distribu
tion function almost completely with small numerical 
error in the calculation of the fluid velocity. 

In order to verify that our numerical scheme works 
well for ion neoclassical transport calculation, we test 
our code for the following case. If we neglect Vd . V h 
term in Eq.(2), which is of second order but might be 
important with present day tokamak discharge param
eters in order to take into account finite banana width 
effect, 

In the special case of zero ion temperature gradient 
VT = 0, this equation has the exact steady state so
lution of shifted Maxwellian[l) 

(6) 

with the parallel fluid velocity 

(7) 

In Fig.I, we present the results of numerical calcu
lation of Eq.(5) with zero temperature gradient. In 
Fig.I(a) and (b) we can confirm that the numerically 
calculated radial particle and energy fluxes indeed drop 
to zero at steady state. We also present the distribution 
function in Fig.I(c) and (d), where we can recognize 
that our numerical result agrees well with the analytical 
solution in Eq.(6) with slight difference in fluid velocity 
and thus, in the distribution function. 
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FIG. 1. Results of the numerical calculation of Eq.(6): 
(a) particle flux, (b) energy flux, (c) ion distribution 
function as a function of parallel velocity, and (d) ion 
distribution function as a function of squared perpen
dicular velocity. 

References 
[1] F.L. Hinton and R.D. Hazeltine, Rev. Modern Phys. 
48, 239(1976). 

313 


