§17. On the Two Weighting Scheme for δf Collisional Transport Simulation

Okamoto, M., Nakajima, N., Wang, W. (UC Irvine)

The validity is given to the newly proposed two weighting δf scheme in Ref.[1] for neoclassical transport calculations, which can solve the drift kinetic equation taking account of effects of steep plasma gradients, finite banana width, and the non-standard orbit topology near the axis.

Extending the phase space (\vec{x}, \vec{v}) to (\vec{x}, \vec{v}, w) including the weight w, Chen and White obtained the weight equation as²

$$\dot{w} = \frac{1}{g} \left[-\int w S_M dw - \vec{v}_d \cdot \nabla f_0 + C(f_0, f_1) \right],$$
(1)
$$\frac{D}{Dt}g = \int S_M dw,$$
(2)

where S_M is the particle source, \vec{v}_d is the drift velocity, and $C(f_0, f_1)$ is the collision operator for the background palsma. It is the key point to determine the marker distribution function gaccurately. We apply the idea of δf method to solving equation (2) for g. The new weight equation for g contains another marker distribution function. We employ the δf method successively and obtain a hierarchy of weight equations, for $k = 1, 2, 3, \cdots$,

$$\dot{w}_{k} = \frac{1}{h^{(k)}} \left[-\vec{v}_{d} \cdot \nabla f_{0} + \int \Omega_{M}^{(k-1)} dw_{k-1} \right], \quad (3)$$

$$\frac{D}{Dt}h^{(k)} = \int \Omega_M^{(k)} dw_k.$$
(4)

Since the source $\Omega_M^{(k)}$'s are arbitrary, we have taken

$$\int w_k \Omega_M^{(k)} dw_k = 0.$$
 (5)

The marker density g_j for the j-th marker can be written as $g_j = g_{0j} + w_{1j}h_j^{(1)}$. Likewise, $h_j^{(k)} = h_{0j}^{(k)} + w_{k+1,j}h_j^{(k+1)}$. Under the assumption that

$$g_{0j} = h_{0j}^{(k)} = f_{0j} \text{ for all } k, g_j \text{ can be written as}$$

$$g_j = f_{0j} + w_{1j}(f_{0j} + w_{2j}h_j^{(2)})$$

$$= (1 + w_{1j})f_{0j} + w_{1j}w_{2j}(f_{0j} + w_{3j}h_j^{(3)})$$

$$= \cdots$$

$$= (1 + w_{1j} + w_{1j}w_{2j} + w_{1j}w_{2j}w_{3j} + \cdots)f_{0j}$$

$$+ w_{1j}w_{2j}w_{3j}\cdots h_j^{(\infty)}.$$
(6)

We choose $\Omega_M^{(k)}$'s as, for $k = 1, 2, \cdots$,

$$\int \Omega_M^{(k)} dw_k = (1 + \epsilon_k) \int S_M dw.$$
 (7)

Here, we will assume that $\epsilon_1 \neq \epsilon_2 \neq \cdots$ and $|\epsilon_k| \ll 1$ for all k. Then we can show that $w_k = w_1 + O(\epsilon_k)$ for $k = 2, 3, \cdots$.

The second term with $h_j^{(\infty)}$ on the right hand side in equation (6) vanishes because $|w_{kj}| < 1$ for all k. If we take an appropriate series for ϵ_k , equation (6) can converge to yield

$$g_{j} = (1 + w_{1j} + w_{1j}^{2} + w_{1j}^{3} \cdots) f_{0j} + O(\varepsilon) = \frac{f_{0j}}{1 - w_{1j}} + O(\varepsilon)$$
(8)

In the same way,

$$h_j^{(k)} = \frac{f_{0j}}{1 - w_{1j}} + O(\varepsilon).$$
 (9)

In the lowest order (we can choose ε_k as small as possible), we recover the previous two weighting equations¹;

$$\dot{w}_{j} = \frac{1 - w_{1j}}{f_{0j}} \left[-\int w S_{M} dw - \vec{v}_{d} \cdot \nabla f_{0} + C(f_{0}, f_{1}) \right]_{j},$$
(10)
$$\dot{w}_{1j} = \frac{1 - w_{1j}}{f_{0j}} \left[-\vec{v}_{d} \cdot \nabla f_{0} + \int S_{M} dw \right]_{j}.$$
(11)

Thus, the validity of the two weighting δf scheme proposed in Ref. [1] has been proved.

References

- Wang, W., Nakajima, N., Okamoto, M., Murakami, S., Plasma Phys. Contr. Fusion 41, (1999) 1091
- [2] Chen, Y., White, R. B., Phys. Plasmas 4, (1997) 3591