§24. Bifurcation of Equilibria with and without a Large Island in the LHD

Ohyabu, N., Narushima, Y., Nagayama, Y., Narihara, K.

Figure1 shows how the island width (n/m=1/1) changes when externally imposed resonant field and hence w_{ex} (the width of the vacuum island in terms of ρ) increase. When w_{ex} is below 0.17, an island structure is undetectably small in the observed Te-profile. Uncertainty in the profile measurement means that the width must be below 0.04. Plasma dynamics suppresses the island width from 0.17 down to below 0.04, proving existence of a surprisingly strong suppression mechanism. When w_{ex} exceeds a critical value (w_{ex}) of 0.17, plasma suddenly can not suppress the island any more and the island grows and becomes 0.22, even larger than the vacuum island. It is a rapid bifurcation of the equilibrium with and without a large magnetic island.

Figure 2 shows density dependence of the island suppression with fixed input power (P). The widths are taken in the discharges with gradual increasing phase of the density (dn/dt ~ 2×10^{19} m⁻³s⁻¹). The external perturbation field (and hence w_{ex}) is fixed during each discharge. When the perturbation field is high ($\mathbf{v}: w_{ex}=0.158$), no suppression of the island is seen at any density. For the case with w_{ex} = 0.144 (O), strong island suppression occurs suddenly when the density exceeds a critical value of 2×10^{19} m⁻³, exhibiting a sharp transition from an equilibrium with a large island to non-island equilibrium. This critical value of the density decreases when the external perturbation field becomes weak (see the cases with $\oplus: w_{ex}=0.132$, $\oplus: 0.118$).

The other dependences of the width are : (1) When P is increased with fixed n, island suppression becomes stronger and hence w_{ex}^{*} increases, (2) For fixed P and n, w_{ex}^{*} increases with decreasing B. For physics understanding of the mechanism, it may be more appropriate to use dimensionless parameters such as β , v_{*}^{*} , ρ^{*} at the surface with $\iota/2\pi = 1$. In the standard LHD operational regime, the shape of the temperature profile is nearly independent of plasma conditions and the temperature (T) at any location $\propto n^{-0.35}P^{0.43}B$ and thus the dimensionless parameters approximately scales as: $\beta \propto n^{0.65}P^{0.43}B^{-1}$, $v^{*} \propto n^{1.7}P^{-0.86}B^{-2}$, $\rho^{*} \propto n^{-0.17}P^{0.22}B^{-0.5}$.

We find that higher power, higher density and lower magnetic field leads to stronger island suppression. This dependence means that higher β leads to stronger suppression and hence larger w_{ex}^* .

In Fig.3, we combine data with various magnetic field (B) and plot w_{ex}^{*2} as a function of beta. The critical width (w_{ex}^{*}) is found to almost proportional to $\sqrt{\beta}$. The β -value is that of the bulk plasma. For low density regime (n<1.5×10¹⁹m⁻³), w_{ex}^{*} tends to become higher than predicted value by the above $\sqrt{\beta}$ scaling. In this regime, however, the beam beta is not small, probably contributing island suppression.

Fig. 1 When w_{ex} (vacuum island width) is increased by increasing external resonant field, the island width is nearly zero and suddenly increases for $w_{ex} > 0.17$.

