
§62. Improvement of Calculation Efficiency of
Simulation Code on Open System

Ohtani, H., Ishiguro, S., Horiuchi, R.

In the previous paper, we report how to distribute
the array and free boundary condition for particles in
the distributed parallel algorithm. In this paper, the
efficient calculation of gather process are explained and
the performance of calculation is shown.

It is difficult to calculate the charge density and
current density in the vector algorithm because several
particles exist in the same cell in some cases (Fig. l(a)).
In order to avoid tbis difficulty and to assign the particle
information to different array from one another, we make
working array in this calculation as follows (Fig. l(b)):

!hpf$ independent
do k=l,l
do i=l ,n(k) ,m
do j=l,min(m,n(k)-i)

ix=int(x(i,k)/dx+0.5)
xx=x(i,k)/dx-ix
sl=(0.5-xx)**2/2
s2=(0.75-xx**2)
s3=(0.5+xx)**2/2
w(j,ix-l,k)=w(j,ix-l,k)+q*sl/dx
w(j,ix, k)=w(j,ix, k)+q*s2/dx
w(j,ix+l,k)=w(j,ix+l,k)+q*s3/dx

enddo
enddo

enddo

However, this working array needs a lot of memory
in large scale simulation. When we use the compile­
directive listvee, we can decrease the memory of the
working array and perform the vector calculation [1].

!hpf$ independent
do k=l,l

do m=-i,l
!cdir listvec

do i=l,n(k)
ix=int(x(i,k)/dx+0.5)
xx=x(i,k)/dx-ix
if(m.eq.-l) sl=(0.5-xx).*2/2
if(m.eq. 0) sl=(0.75-xx"2)
if(m.eq.+l) sl=(0.5+xx)'*2/2
ix=ix+m
w(ix,k)=w(ix,k)+q*sl/dx

enddo
enddo

enddo

Note that if the particles whose numbers are close to one
another exit in the same cell (2 and 3 in Fig. 1 (a)), the
vector calculation is not performed but the scalar calcu­
lation is. So we should randomize the particle's number

386

j = 4 (b) Qll I <D! I 19

j = , ····:·~··~·[;··:··].: ... ~~:.:::r.:~:©~::.
j= \AI I ! 1<4)

---.-.···-------------i··----··--·· .. ----··.-I··.···--. ___••..•. i _ _ ···

av ' i !G» ®, ,
i '

j=1

Fig. 1. Schematic illustration of gather process (a) with­
out.and (b) with working array.

sufficiently when we make the initial particle distribu­
tion.

We show the calculation performance of (a) work­
ing array case and (b) listvec case in Table 1. Calcula­
tion parameters are as follows; the number of particles
is 240 million, the number of active particles is 96 mil­
lion, the grid size is 256 x 128 x 128 and the time step
is 1000. The number of distributed parallel calculation
(HPF processes) is 5, andlhe number of common parallel
calculation is 32.

The vector operation ratio (v.o.r,) of the case (a)
is about 0.1 point larger than that of the case (b),
However the calculation performance becomes extremely
good when v,o,r is larger than 99%. The vector length
of case (a) becomes also longer compared with case (b).
The value of floating-point arithmetic per second (FP) of
case (a) is smaller than that of case (b), because the ad­
dition of working array along vector direction (j) is need
in case (b) and not in case (a), and the essential calcula­
tion quantity reduces. The memory of working array of
case (a) is much smaller than that of case (b), and the
total memory dramatically decreases: As a consequence,

, the calculation time decreases in case (a) and it becomes
possible to perform larger scale simulation due to using
the compile-directive listvee.

The future works are the improvement of physics
model and the modification of Poisson solver which needs
a lot of memory for array long preliminary calculation,

V.D.r. v.1. FP mem time(s)
(a) 99.34 224,91 103,78 952,5 4574.6
(b) 99.43 240,15 77.17 277,2 3343.5

Table 1. Calculation performance of (a) working array
case and (b) listvee case. V.o.r., v.I., FP and mem show
vector operation ratio (%), vector length, floating-point
arithmetic per second (GFlops) and memory (Gbytes),
respectively.

Reference
1) Sugiyama, T. et aL: IPSJ 45, 171 (2004),

