§22. Three Dimensional Particle Simulation on Collisionless Driven Reconnection

Ohtani, H., Horiuchi, R., Ishizawa, A.

Magnetic reconection plays an important role in plasmas, and leads to the fast energy release from magnetic field to plasmas and the change of magnetic field topology [1]. To clarify the relationship between particle kinetic effects and anomalous resistivity due to plasma instabilities, we develop a three-dimensional particle simulation code for an open system [2,3]. From last year on, we develop the simulation code in a distributed parallel algorithm for a distributed memory and multi-processor computer system [4]. In this paper, we show simulation results of collisionless driven reconnection.

The number of initial particles is 72 million at the initial time, the simulation box size is $252\lambda_D \times 63\lambda_D \times 192\lambda_D$, the scale length of current layer is $25.2\lambda_D$ at the initial time, the thermal velocities of electron and ion are 0.25c and 0.025c, respectively. λ_D is Debye length. The mass ratio m_i/m_e is 100 and the driving field E_{z0} is $-0.04B_0$.

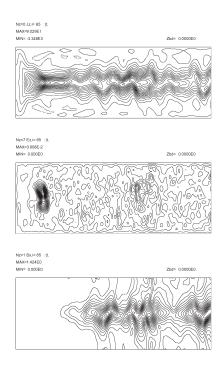
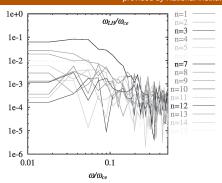
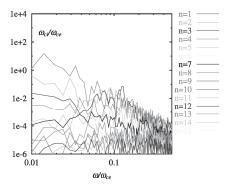




Fig. 1. Contour plot of spatiotemporal evolution (y-t) of Fourier mode of the current density $J_z(n=0)$ (top), the electric field $E_z(n=7)$ (middle) and the magnetic field $B_x(n=1)$ (bottom).

Figure 1 shows the contour plot of spatiotemporal evolution (y-t) of Fourier mode of the out-of-plane current density $J_z(n=0)$ (top), the electric field $E_z(n=7)$ (middle), and the magnetic field $B_x(n=1)$ (bottom), where n is the Fourier mode number in the z-direction

(a) E_z at the periphery of current layer.

(b) B_x at the center of current layer.

Fig. 2. Spectrum.

and the neutral sheet is located at the mid-point of y-axis. Figure 2 shows the spectrum of (a) E_z at the periphery of current layer and (b) B_x at the central region.

In the early period, the mode $E_z(n=7)$ grows in the periphery of the current layer, where the gradient of the current density is large. This mode $E_z(n=7)$ is identified as the lower hybrid drift mode (LHD mode) from the spectrum analysis (Fig. 2(a)). As LHD mode grows, the current density in the central region becomes peaked and then a low-frequency electromagnetic instability is excited near the central region (See the bottom figure of Fig. 1). This low-frequency instability, which has a frequency comparable to the ion gyration frequency (Fig. 2(b)), is considered to be the drift kink instability (DKI) and be a possible candidate for anomalous resistivity in the neutral sheet [2,3].

Reference

- 1) D. Biskamp: *Magnetic Reconnection in Plasmas* (Cambridge University Press, Cambridge, 2000).
- 2) R. Horiuchi et al: Phys. Plasmas 6 4565 (1999).
- 3) R. Horiuchi *et al*: J. Plasma Fusion Res. SERIES, **6** 614 (2004).
- 4) H. Ohtani et al: submitted to LNCL (2005).