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§20. Tests of Analytical Formulas for the
Parallel Viscosity in Drift-optimized
Helical Configurations

Nishimura, S.,
Toda, A., Nakamura, Y. (Kyoto Univ.)

As reported previously [1], we had proposed two minor
modifications for an analytical expression for the
neoclassical parallel viscosity in the banana regime written
in the Boozer coordinates [2]. One modification is reduction
of non-axsymmetric (n#0) Fourier components in the
circulating particle distribution, and the other one is the
elimination of a singularity in the Fourier expanded
functions. Although these modifications retain the
mathematical equivalence with the original formula before
the modification, they provide numerous improvements in
the approximation when using truncated Fourier series. The
effects of the former modification can be clearly seen in so-
called in drift-optimized configurations. Recent devices
without quasi-symmetry often apply an idea of so-called o-
optimization to improve collisionless drift orbits. There are
side-band helical and/or bumpy ripple spectra. Here we
show a calculation example in such a configuration.

Figure 1 shows the magnetic field strength in a
configuration with

B = By[1—- 0.1cosOp + 0.2cos(63—5¢B)

—0.1cos(5{p) — 0.1cos(26s—5¢B)]

in the Boozer coordinates (6, ), and Bo=1T, ¥'=0.15T"m,
Y=04T'-m, B0, B, =4T-m. The Fourier modes of
(m,n)=(0,5) and (2,5) correspond to the side-band spectra.
Figure 2 shows a comparison of three analytical formulas
for the banana-regime parallel viscosity in this
configuration. They are the Hamada coordinates version[3],
the original Boozer coordinates version[2], and our
improved formula for the Boozer coordinates[1]. Following
Ref.[1], we show here the geometrical factor G = —
(BZ)N*/M* instead of the mono-energetic viscosity
coefficient N* itself. All formulas are calculated using 88
Fourier modes for the circulating particle distribution
function, and the technique to eliminate the singularity is
applied for all of these formulas. As shown in the figure, the
Hamada coordinates version and the improved Boozer
coordinates version show good agreements with a numerical
calculation using DKES (Drift Kinetic Equation Solver)
code[1], but the original Boozer coordinates version
deviates from them.

As discussed in Ref.[1], a main reason of this difference
is that a original Boozer coordinates version derived by
Shaing, Carreras, et al.[2] has a conflict with a basic idea in
the previous theory developed in the Hamada coordinates
[3]. A separation of two types distribution functions was
used in the Hamada coordinates version. An important
purpose of this separation was to separate effects of the high
frequency modulation of the magnetic field strength
modulation dB/B (expressed by using notations A, and H, in
Refs.[2-3]), which can be calculated without the Fourier
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expansion for the distribution, from a part requiring
complicated calculations for the circulating particle
distribution (written as W(A) in Refs.[1-3]). In spite of this
original motivation, the coefficient (y’m+y’n)()y’m—y’n) in
Ref.[2] emphasizes the high frequency modulation in many
practical applications with | xrm [<<]| v'n | The formula in
Ref.[1] replacing this problemable coefficient by
(Bant+Bg)()’ m—y'n) with |B§m [ >> |Ben | does not
emphasize the high frequency modulation and contains them
in a least necessary and sufficient level. This improvement
of the numerical robustness will be important and useful in
the recent drift-optimized helical configurations such as the
inward shifted ones in the large helical device (LHD). The
mathematical equivalence of original and improved versions
of the formulas in the Boozer coordinates is discussed in
another page of this report [4].
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Fig.1 The model magnetic field used here.
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Fig.2 The geometrical factor expressing the parallel
viscosity as the driving force for the neoclassical flows. The
numerical results using the DKES (open symbols) and three
asymptotic expressions (solid lines) are compared.
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