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Fig.1 The numerically obtained mono-energetic geometric
factor G(BS) for case with <%=0.05 in Ref.[l] as the function
of the collisionality( wv) an~th~l radial electric field (Er~~).
The banana regime (wv<10 m ) value for Erlv=3 X 10 T
corresponds to the analytical formula in Ref. [2].
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vBr/Bt ), corresponds to the banana regime formula given in
Ref.[2] where the 1/vcomponent of the distribution function
for the ripple trapped particles is neglected. Although this
1/v component, which is sensitive to the radial electric field
and suppressed under the strong radial electric field, does
not directly contribute to driving the parallel flow, it affects
the ripple-trapPrf¥untrapped boundary layer in the velocity
space(.6 P ex: V )[8]. The contribution of this boundary
layer to the parallel flow and its dependence on the radial
electric field cannot be negligible in the cases with relatively
weak radial electric fields and relatively large collision
frequencies. The dependence on the radial electric field and
the collisionality in the low collisionality regime shown in
Fig.1 suggests the importance of this boundary layer effect.
Therefore the derivation of an analytical formula for the
geometric factors including the boundary layer effect is a
future theme.

Including self-consistent bootstrap currents in the studies
of MHD equilibrium and stability becomes important also in
recent design activities for advanced stellarators . These
MHD calculations require the iteration of 3D equilibrium
codes with analytical calculations of the currents. For this
kind of MHD calculations and the comparison of the
experimentally measured parallel plasma flows with the
theoretical calculations, the derivation of reliable analytical
formulas and the benchmark tests to clarify their validity in
various magnetic configurations are required. A recently
developed neoclassical transport calculation method[1] is
applied to study the geometric factor for the bootstrap
currents in the banana collisionality regime in non
symmetric toroidal configurations. In past studies related to
the bootstrap currents using the neoclassical transport codes
based on the direct calculation of the linearized drift kinetic
equations or the Monte Carlo method, quantitative
discussions have not yet been done since these codes used
the pitch-angIe-scattering (or Lorentz) collision operator [2
5]. Due to breaking the collisional momentum conservation
by employing this simplified collision model, the obtained
"bootstrap current coefficient" D 13 does not give the exact
current value and it has been used only for some qualitative
discussions. In analytical derivations of the bootstrap
currents in non-symmetric configurations based on so-called
moment method in which the collisional momentum
conservation is already taken into account, the magnetic
configurations are characterized by two kinds of coefficients
expressing the parallel viscosity effect, the ~~~lel viscosity
coefficients Paj and the geometric factor G , in contrast
to axisymmetric tori where only the parallel viscosity
coefficients are required to the neoclassical transport
calculations. Although several analytical formulas for the
geometric factor have been proposed and applied to the
studies of MHD equilibrium and stability [2,6-7], the
benchmark tests of these formulas by using the numerical
calculation codes also have not yet been done by the same
reason mentioned above. Especially, the calculation of the
geometric factor for the banana regime is complicated, and
thus to investigate the geometric factor in the banana regime
using the new method which also follows the line of the
moment method[1] is an important task.

Figure 1 shows the numerically obtained mono-energetic
geometric factor in the configuration in Ref. [1] with the
helical ripple of <%=0.05. It is given as the function of wv
and Erlv where J{v), v, and Er are the pitch-angIe-scattering
collision frequency and the velocity of the test particle, and
the radial electr~~ ~rld strength, respectively. The banana
regime (wv<l 0 m ) ,::~lue for the radial electric field
strength of Erlv=3 X lOT, which is the largest value to
avoid the effect of the so-called toroidal resonance (EriB •
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