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A new connection formula for the geometrical factor 
associated to bootstrap currents is derived based on the drift 
kinetic equation divided into two parts: "equivalent 
symmetric" part and remaining "asymmetric" part. We 
consider at first the drift kinetic equation defined in Ref.[\] 
to derive the parallel viscosity driven by radial gradient 
forces 

, L 
VI/GXa-Ca (G1:,a)=aXa (I), 

where VII and Ca are the linearized Vlasov and linearized 
Coulomb collision operators, respectively. By applying a 
method used in the analytical theory for the banana regime 
[2-3], the source term aXa corresponding to the radial 
gradient forces can be written in the form divided into 
"equivalent symmetric" and "asymmetric" contributions as 

O'Xa=O'Xa (sym) +O'Xa (asym) (2) 

a(sym)=_a c {VlBe-X'B o +LH} 
Xa - u"2eaX'''' (H2) 4,,2 2 (3) 

Here, H2 is a constant on the magnetic flux surface and is 
defined in Ref.[2]. Definitions of the other quantities in 
Eq.(2)-(3) are those in Ref.[1]. The source term aUa'" 

-rna VI/(v';B) is that for the other drift kinetic equation 
VI/GUa-CaL(GUa)=aUa to derive the flow-driven part of the 
perturbation. Then the solution of Eq.(l) is given by the 
linear combination of the solution of V'PXa (asym)_ 

Ca L( GXa ("ym» = aXa ("ym) and GUa. The off-diagonal 
transport coefficient Na(K), which expresses the parallel 
viscosity due to the radial gradient forces, defined in Ref.[1] 
is obtained from the solutions. The analytical expression of 
the "asymmetric" part N*(asym) in the banana regime can be 
obtained by the procedure in Ref.[2]. The solving methods 
for the plateau and Pfirsch-Schlueter regimes are simple 
conventional ones. The remaining part of the coefficient 
N*(sym) due to the "symmetric" part of the perturbation GUa 

can be obtained direct1y from the analytical expressions for 
parallel viscosity coefficient M* shown in Ref.[l]. Two 
individual connecting functions are used for these 
"symmetric" and "asymmetric" contributions in N*· The 
most complicated part in these results is the banana regime 
term, which is already included in the mono-energetic 
geometrical factor in Ref.[ 4], in the asymmetric parto The 
other remaining parts are simple and thus the total 
computational effort for the formulas derived here is 
scarcely increased than that for the conventional formula. 

Here, we assumed the magnetic configurations to be 
B=Bo[l-qcos/ls+Et.cos(l/ls-n'B)], 1=2, n=lO, Bo=lT, 
X'=0.15To m, VI=O.4To m, Bo=O, B,=4To m. Figure I 
shows the results of the connection fonnula in a quasi­
helical symmetric like configuration with q=O.OI and Et. 
=0.05. By adding the "equivalent symmetric" component 
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(i.e. contribution of the helical ripple in this case) and the 
"asymmetric" component (that of the residual toroidicity) 
N* having the polarity reversal at vlv _10-4m- 1 is obtained. 
Figure 2 shows comparisons of geometrical factors C(BS) == 
-<.B2>N*IM* obtained by the connection formula derived 
here, with those obtained numerically by combining the 
DKES(Drift Kinetic E~uation Solver) code[5] with our 
conversion formula d S) = -<.B2>D*Il/(D*"vlv)[I]. For 
various non-symmetric configurations, the connection 
formula shows good agreements with the numerical results, 
especially in predicting the dependence of the polarity on 
the collision frequency. 
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Fig.1 The connection formulas for the "symmetric"(squares) 
and "asymmetric"(circles) components of the mono­
energetic coefficient N*. The closed and open symbols 
indicate minus and plus values, respectively. 
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Fig.2 The geometrical factor dBS). The connection formula 
(solid curves), and the numerical results for the cases with 
E!v=1 x 1O.3T(open circles) and 3xlO-3T (closed circles). 
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