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For the equilibrium and stability analysis including the
“self-consistent” bootstrap current under the self-consistent
ambipolar radial electric field £, [1], we had derived an
analytical expression for the boundary layer correction for
the neoclassical parallel viscosity [2]. In the 1/v regime
(E,/v=0) without the collisionless detrapping/entrapping by
the ExB drift suppressing the so-called ripple diffusion, this
effect is caused by the large perturbation in the ripple-
trapped pitch-angle range coupled with a collisional
detrapping/entrapping at the ripple-trapped/untrapped
boundary layer in the pitch-angle space [3]. The parallel
viscosity force as the driving force for the neoclassical
parallel flows such as the bootstrap current differs from a
prediction by Shaing, et al.[4] in this 1/v regime since their
theory was derived neglecting the ripple diffusion. It was
confirmed by our previous benchmark tests that we have to
interpret this previous theory as expressions for the
collisionless detrapping v regime (£,/v#0) where the ExB
drift suppresses the perturbation in the ripple-trapped pitch-
angle range. By adding our formula for the boundary layer
correction N*(boundary) to the viscosity coefficient given by
their theory N* SYm) e (asym) , correct 1/v regime values are
obtained [2]. Therefore there is a dependence of the total
viscosity coefficient N* = N*(Sym)+N*(asym)+N*(boundary).
This is another new mechanism to cause dependences of the
bootstrap current on the radial electric field.

One of interesting predictions given by our formula is that
the sign of this correction depends on the ripple spectra. A
previously reported benchmarking example [2] was that in a
case with single helical ripple mode. In this case the
boundary layer correction N*(poundary) enhanced the total
driving force for the flows. However our theory predicts that
the boundary layer correction sometimes may cancel the
viscosity force or reverse the direction of the force. Recent
devices without quasi-symmetry often apply an idea of so-
called o-optimization [5] to improve collisionless drift orbits
and the 1/v ripple diffusion. There are side-band helical
and/or bumpy ripple spectra. This kind of side-band ripple
gives significant change of the viscosity coefficient in the
1/v regime (E,/v=0). Here we show another benchmarking
example in which the boundary layer correction reverses the
direction of the bootstrap current in the 1/v regime. Figure 1
shows the magnetic field strength in a configuration with

B = By[1- 0.1cosOp + 0.2cos(63—5¢B)

—0.1cos(5¢B) — 0.1cos(263—5¢B)]
in the Boozer coordinates (6, ), and Bo=1T, ¥'=0.15T"m,
Y=04T'-m, B0, B, =4T-m. The Fourier modes of
(m,n)=(0,5) and (2,5) correspond to the side-band spectra.
Figure 2 shows a comparison of the analytical formulas for
the 1/v and v regimes with the numerical results given by
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the DKES (Drift Kinetic Equation Solver) code in this
configuration. Following Ref [2], we show here the
geometrical factor G = (B YN*/M* instead of the total
mono-energetic viscosity coefficient N* itself. Although the
G® in the vregime (E,/v#0) has a positive value indicating
a bootstrap current to the co-direction, it has a negative
value corresponding to the current in the counter direction in
the 1/v regime (E,/v=0). In viewpoint of practical
applications, the strong radial electric field limit N*=N*®Y™
+ N*@Y™ given by the previous analytical theory [4] may be
appropriate for ions although, the boundary layer correction
N*(boundary) should be added for electrons with a large
thermal velocity (E,/v=0). In the future integrated simulation
for LHD [1], this dependence of the electron viscosity
coefficients on the radial electric field will be important in
inward shifted configurations with improved collisionless
drift orbits.
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Fig.2 The geometrical factor expressing the parallel
viscosity as the driving force for the neoclassical flows.

The numerical results given by the DKES (open symbols)
and the analytical formulas (solid lines) are compared.
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