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    A numerical calculation of the equilibrium magnetic 

field is usually the first step in analyzing plasma behavior. 

This is a comparatively simple task for a perfectly 

axisymmetric tokamak or any system with a continuous 

symmetry, as the symmetry guarantees that a nested, 

continuous family of flux surfaces exists, i.e., the magnetic 

field is integrable. This is a result of the fact that a toroidal 

magnetic field is analogous to a time-dependent, one 

degree of freedom Hamiltonian system and by Noether’s 

theorem, which states that a Hamiltonian with an ignorable 

coordinate possess an invariant of the motion. By 

exploiting axisymmetry, the ideal equilibrium equation can 

be reduced to the Grad–Shafranov equation, and 

equilibrium solutions can generally be found numerically. 

     Perturbations to an axisymmetric system, either from 

internal plasma motions or coil alignment errors, lead to the 

formation of magnetic islands, chaotic field-lines, and the 

destruction of flux surfaces. However, from the 

Kolmogorov–Arnold–Moser (KAM) theorem, we know 

that under certain conditions for a Hamiltonian system 

slightly perturbed from an integrable case, the strongly 

irrational flux surfaces are likely to survive. We can expect 

that a realistic tokamak, therefore, will possess a finite-

measure of KAM surfaces in addition to the islands and 

chaotic volumes. This is fortunate, as it is primarily the 

existence of flux surfaces that results in plasma 

confinement. 

     On the other hand, under some conditions, applied 

resonant magnetic perturbations (RMPs) can 

advantageously be used to suppress edge-localized-modes 

(ELMs). It is plausible to expect that such perturbations 

will result in the formation of magnetic islands at the 

rational surfaces, and the overlap of these islands will cause 

chaotic fields, particularly near the plasma edge. Some 

understanding of the impact of applied magnetic 

perturbations may be gleaned, at least in the low pressure 

case, by superimposing the equilibrium and error fields. 

The degree of magnetic chaos can then be determined by 

field-line tracing. Such an approach, however, cannot 

account for the self-consistent plasma response. To what 

extent the field becomes chaotic or whether ideal plasma 

flows will respond by shielding out the error fields remains 

unclear. The importance of computing non-axisymmetric 

equilibria with chaotic fields is emphasized by noting that 

it is likely that ITER will employ RMP methods to 

suppress ELMs. 

     Stellarators are intrinsically nonaxisymmetric and 

thus generally possess nonintegrable fields. Stellarators are 

designed to have “good-flux-surfaces” as much as possible, 

but despite one’s best efforts, without a continuous 

symmetry, perfectly integrable fields cannot be achieved. 

Also, computational evidence suggests that as the plasma 

pressure increases, stellarator fields become increasingly 

chaotic. To understand the impact magnetic islands and 

chaotic fields have on plasma confinement, for both 

realistic tokamaks and stellarators, a computational 

algorithm that solves for the plasma equilibrium in the 

presence of islands and chaotic fields, and a significant 

volume of robust KAM surfaces, is required. 

     A given magnetic field may be a continuous, smooth 

function of space, but it also may be “chaotic.” The term 

chaotic is really a description of the magnetic field-lines, 

i.e., the phase space of the magnetic field. The behavior of 

the field-lines of a chaotic field depends sensitively on 

position, not only in the sense that nearby trajectories may 

separate exponentially at a rate given by the Lyapunov 

exponent (butterfly-effect), but also in the sense that 

irregular, chaotic trajectories lie arbitrarily close to regular 

trajectories and invariant flux surfaces. 

     A chaotic magnetic field has a fractal phase space 

structure. The fractal structure arises when an integrable 

field is generally perturbed, as the rational flux surfaces 

and irrational flux surfaces break apart quite differently. 

Quoting Grad, “What is pathological is the question that is 

asked, viz., what is the position of a magnetic field-line 

after infinitely many circuits?” Some field-lines trace out 

structures that are infinitely complex, such as the unstable 

manifold and the irregular trajectories, which seem to come 

arbitrarily close to every point in a fractal volume. 

Interspersed between these irregular field-lines are periodic 

orbits; arbitrarily small, high-order island chains; and 

irrational field-lines, which may or may not trace out 

smooth flux surfaces. 

     Ideal force balance has the consequence that the 

pressure is constant along the infinite length of every field-

line. The structure of the pressure is exactly tied to the 

structure of the magnetic field.  

     In his work it is argued that for a chaotic magnetic 

field, a continuous, nontrivial pressure that satisfies B· p 

= 0 must also be fractal. Various objections to 

computational algorithms were discussed that seek 

solutions to ideal force balance, with continuous pressure 

and chaotic fields. The derivation of ideal force balance 

from a minimization principle was reviewed, but discard 

this as a practical numerical approach for treating chaotic 

fields, as ideal variations do not allow the topology of the 

field to change. The solubility conditions on magnetic 

differential equations are reviewed and applied to chaotic 

fields. Moreover, the fractal structure of the phase-space of 

chaotic fields is reviewed. Since the structure of the 

pressure is tied to the structure of the field, we conclude 

that a nontrivial, continuous pressure has an uncountable 

infinity of discontinuities in the pressure gradient and so 

therefore must the current. Thus, ideal force balance cannot 

serve as a coherent mathematical foundation for a 

computational algorithm. The problems caused by the 

pathological structure of the solution are not easy to 

remedy by ad hoc adjustments to an iterative algorithm and 

lead to convergence problems. Finally, we suggest that it is 

preferable instead to seek solutions to a well-posed 

nonideal equilibrium model, and we discuss various 

algorithmic approaches aimed at solving for such an 

equilibrium. Practical algorithmic approach will shown 

near future by using HINT code. 
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