§17. Development of a Single-mode, High Power Far Infrared Laser System for Ion Thomson Scattering

Nagatsu, M., Sasaki, K. (Dept. Electr. Eng. Nagoya Univ.) Tsukishima, T. (Aichi Inst. Tech.) Okada, T. (Dept. Electr. Eng. Kyushu Univ.) Tsunawaki, Y. (Dept. Electr. Eng. Osaka Sangyo Univ.) Okajima, S. (Dept. Appl. Phys. Chubu Univ.) Kondo, K. (Plasma Phys. Lab. Kyoto Univ.) Arimoto, H., Sato, K.I. (Plasma Sci. Center Nagoya Univ.) Sudo, S., Sato, K.N.

So far, we have developed the far-infrared laser system including the detection system¹) for the ion Thomson scattering. As we have shown previously, the D₂O laser operated with a multiple spectral structure consisting of several narrowband longitudinal components.²⁾ And we have shown that it was possible to determine the ion temperature accurately via a collective Thomson scattering using the multimode D_2O laser.³⁾ In spite of this fact, it will be important to achieve a single mode operation of a high power, pulsed far infrared laser for the future application to plasma Thus, we have constructed a diagnostics. compact single mode D₂O laser with a cavity length of 80 cm. Using a high frequency resolved heterodyne detection system, we observed the spectral structure of far-infrared laser emission and found that it consisted of a single longitudinal mode.⁴⁾ Application of the compact D₂O laser as a master oscillator in the oscillatoramplifier system is a promising method for obtaining a single mode, high power D₂O laser emission.

In the present research, we have focused upon obtaining a single-mode operation of D_2O laser using an oscillator-amplifier system. Figure 1 shows one example of emission spectra of D_2O laser, measured using the frequency-resolved heterodyne detection system. By tuning a frequency of the injecting compact D_2O laser beam around the center of ASE spectrum of the 4.3 m long D_2O amplifier, we obtained a narrow spectral emission, as shown in Fig. 1(a), where D_2O gas pressure was 4 Torr. At present, output energy of 50 mJ has been achieved in the present oscillator-amplifier system. For comparison, we also showed a typical emission spectrum of the previous D_2O laser in Fig. 1(b). Frequency resolution was 1.3 MHz for both cases.

Fig.1 Emission spectra of (a) the present D₂O oscillator-amplifier and (b) the previous D₂O laser obtained at gas pressure of 4 Torr.

References

- 1) Nagatsu, M., et al., Rev. Sci. Instrum. 69(1993) 1021.
- 2) Nagatsu, M., et al., Jpn. J. Appl. Phys. <u>31(1992)</u> 3873.
- 3) Tsukishima, T., et al., Plasma Physics & Contr. Fusion <u>35</u> (1993) 1229.
- 4) Takada, N., et al., pressed in IEICE Trans. Electron (in Japanese) (1994)