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The proton-hydrogen-atom collision system has been 
extensively studied within various theoretical models and 
in several experiments, but discrepancies among theoret
ical calculations and among experimental measurements 
are still quite large. At the order of ke V energies, the total 
ionization cross sections obtained by experimental studies 
of Pieksma et al. [2] are quite larger than the recent mea
surements of Shah et al. [3] (below 10 keVjamu), and to 
decrease much less rapidly with the energy decrease. At 
the lowest energy considered (1 ke V j amu), the cross sec
tions of Pieksma et al [2] exceed the values by Shah [3] by 
rv 4 times. Numbers from the precise experiments [4, 5] 
and the extensive theories [6, 7, 8] disagree by 20% at the 

conclude here that the upper levels are a "trap" on the 
way of electron going to ionization continuum, in contrast 
the general recognized "ladder". Using the ETF-modified 
MOCC method, we have a tool to examine the role of each 
molecular state in the ionization process in a systematic 
way. The present method is readily applicable to further 
physical systems of interest, such as H e++ j H, pj H e+ or 
pjLi. 
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peak of ionization cross section. Figure 1: Total ionization cross sections of proton-
In this note, we report new accurate single differen- hydrogen system: solid circles, measured cross sections 

tial and total ionization cross sections on proton-hydrogen of Shah et al. [3]; open squares, measured cross section of 
collision system at 0.1-10 keY jamu. We use the close- Pieksma et al. [2]; dash dotted lines, hidden crossing the
coupling expansion with electron translation factors (ETF's) ory with Sand T and radial decoupling promotion mech
modified Ht molecular states. It is the first calculation us- anisms [9]; dashed lines, hidden crossing theory with only 
ing this method for the ionization problem, based on the Sand T promotion mechanisms [2J; dotted lines, close
direct evaluation of all couplings between the bound and coupling triple-center calculations [3]; up triangles, two
continuum states. Figure 1 shows the comparison of our center close-coupling calculations [7]; short dash dotted 
total ionization cross sections and other theoretical cal- lines, two-center atomic orbitals plus pseudostates expan
culations as well as experimental values. Our results are sion [10]; solid lines, present calculation. 
in an excellent agreement with the recent experiments of 
Shah et al. [3], but differ from the other measurements by 

Pieksma et al. [2]. References 
From a methodological point of view, we show that 

the appropriate ETF's not only exactly cancel the spu
rious asymptotic behavior of nonadiabatic couplings, but 
also systematically reduce the size and effective range of 
most coupling matrix elements. With the ETF-corrected 
molecular basis, the accurate ionization cross sections can 
be obtained by a calculation in a small region of config
uration space and coordinate space. For Ht system in 
the range 0.1-10 kev jamu, a good convergence has been 
achieved with a basis including 10 bound states and 11 
continuum partial waves. 

In addition, we find that the upper levels playa com
pletely different role in gerade and ungerad components. 
In case of g components, an excitation sequence via up
per levels is the dominant mechanism for the ionization, 
which enhances the total ionization cross sections (as com
pared to the direct ionization process) by more than two 
times at the collision energy E =10 keY jamu. In case of 
u components, the excitation to upper levels reduces the 
total ionization cross section significantly, especially the 
excitation to 2p7ru molecular state. Since the total ioniza-
tion cross section is mainly decided by u components, we 
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