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3Z2Z. A Variational Analysis of Flow-reversa
Condition in a Turbulent Swirling Pipe
Flow Using the Bulk-helicity Concept
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The magnitude of axial-flow retardation near the center of
a turbulent swirling flow is estimated from the results of
the variational analysis with the aid of the helicity
concept. It is analytically shown that the axial-flow
reversal in a swirl occurs if the bulk helicity imparted to
the mean flow exceeds the critical value, which is
proportional to the square of the flux. It is suggested that
the bulk helicity in the center region plays an important
role in determining the flow-reversal condition. Through
the comparison with the experimental observations in a
turbulent swirling pipe flow, the reliability of the
theoretically-derived reversal condition is confirmed [1].
One of the prominent features of the mean-
velocity distributions in a turbulent swirling pipe flow, as
compared with the counterparts in a usual turbulent (non-
swirling) pipe flow, is a dip or dent of the axial velocity
near the center of pipe. This is a persistent flow structure
accompanied by a finite mean axial-velocity gradient. In
order to investigate this feature of the swirling flow, we
introduce two functionals that characterize the mean-flow
structure in a turbulent swirling flow. Namely, the total

amount of the mean-flow enstrophy ®  defined by

o= j W2 dy= f (VxU)* av
Vv v

and the total amount of the mean-flow helicity ¥ defined
by

W= f U-W dV= f U(VxU)dv
14 14

where U is the mean velocity, W(=V>< U ) is the mean

vorticity, and ¥ is the volume of the whole fluid region.

The mean-flow helicity ' characterizes a swirling flow

which is constituted by both the circumferential or
azimuthal velocity and the axial or longitudinal velocity.
This functional serves as a measure for the intensity of
swirl.

We examine what velocity profiles are realized
under a given intensity of swirl in the aggregate. To put it
in terms of an extremalization problem, we seek a

function U  that extremalizes the functional @ subject

to a constraint that the total amount of the mean-flow
helicity is constant: Following the usual procedure for a
variation problem with a constraint, our conditioned
variation problem is transformed into a free variation

problem ®+AW=extremum | where A is the Lagrange

undetermined multiplier. We seek a flow distribution that
satisfies a condition
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O D+AW)=0 (1)

with respect to the velocity variation U . This treatment
is directly related to our considering the strong turbulence
limit, where the transport coefficients such as A are to be

uniform in the whole region of the flow considered.
Equation (1) is solved, and the critical condition
for the flow reversal is plotted on the plane of the flow

helicity 2 per unit volume and total flux £ is shown in

Fig.1. Figures 2 shows the observation in experiments
(by crossed-circle or by crossed-square) that all the
swirling flows with reversal lie at the right of the

corresponding H . curve and that all those without
reversal are at the left of the corresponding H,. curve.

This comparison shows that this model explains essential
clement for the reversal in the swirling flow.
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Fig.1 Critical condition for the reversal.
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Fig.2 Experimentally observed data in swirling flows
with an axial-flow reversal (circle) and that without
(cross). The curves denote the critical bulk helicity.
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