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Nonlinear behavior of magnetic field lines and drift 

orbits have been studies by a mapping method in helical 

systems. Nonlinear drift orbit mapping equation has been 

derived making use of the drift velocity: v 1. = v E + v d + 
v 0 where v E• v d and v 0 =-DeO +'t) \7 n/n are ExB drift, 

diamagnetic drift , and dissipation drift velocities, 

respectively. The parallel compoment is given by the flow 

velocity along the magnetic field lines: v 11 = v 11 B/B. The 

effect of the dissipation induced from the resistivity in 

generalized Ohm's law is changed to a spatial diffusion 

coefficient De in the mapping equation. Integrating the drift 

velocities for one period of system length in the cylindrical 

coordinate system (r,S,z), we obtain a mapping equation 

similar to the standard map: 

Xn+l = Xn (1 - Cd) + K sin( l 80) 

9n+ 1 = Sn + t(Xn+ 1) 

where Xn corresponds to the radial coordinate, cd represents 

the effect of dissipation proportional to De, K represents 

the helical effect proportional to the helical magnetic field 

amplitude, t is the rotational transform induced from the 

helmagnetic field, f is the helical winding number, the 

effects of v E and v d have been neglected, and the density 

profile was assumed to be parabolic for the sake of 

simplicity[ 1]. 

Although our model may not be self consistent, it may be 

considered as a renormalization model similar to the 

rotational transform t in a helical magnetic field, i.e., t is 

produced by averaging a helical field which can be used 

again for the investigation of field line orbits. 

The dissipation coefficient Cd is very small of the order 

of 10-6-10-3 in actual confinement systems. Even these 

small dissipations, particle orbits change significantly. 

When the dissipation tends to zero, the mapping equation 

reduces to the area preserving one which is applied for 

magnetic field line orbits when drift effects are neglected. 

By varying the dissipation, therefore, we can study how the 

orbit configuration may change from the non-dissipative 

area preserving system to the dissipative system. 

The dissipative orbit mapping points fill certain annular 

region with certain thickness almost ergodically, which 

looks stochastic, i.e. the orbit seems unstable. The 
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stability of such orbit has been carefully examined by 

evaluating Fourier spectra and also the Lyapunov exponent. 

The frequency power spectrum calculated by the fast 

Fourier transfonn technique indicates that only a few peaks 

are observed instead of the broad noise spectrum. The two 

. dimensional Lyapunov exponent is not positive. From 

these results we found that the dissipative orbit is not 

necessarily unstable even when the phase portrait of 

Poincare mapping looks stochastic. 

The global stability characteristics of the helical 

configuration has also been examined by evaluating the 

Lyapunov exponent for 280x280 orbit starting points, 

which has been presented by two dimensional graphics. It 

is found that the dissipation does not change very much the 

global stability characteristics even for a large dissipation. 

An example is shown in Fig. 1, for the case of f = 1 helical 

system, in which the dark region means the Lyapunov 

exponent is close to zero, i.e., stable region, while white 

region corresponds to largiest Lyapunov exponent or 

unstable region, and the gley region is intermediate 

unstable- region. One also see the chaotic white regions 

around the separatrix and also self similar fractal structure. 
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From these results, to examine the schocasticity of the 

dissipave orbits the Poincare mapping may not be suitable 

method. The Lyapunov exponent may be more reliable. 

Frequency spectra for various orbits are also examined 

both in the e =1 and l =2 helical systems. The 1/f-type 

frequency spectrum is commonly observed in the e = 1 

configuration. 
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