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In connection with the H-mode state, which is 

characterized by the confinement improvement and steep 

density gradient near the edge, the stability boundary of 

steep density gradient for the ion temperature gradient mode 

(ITGM) and the trapped electron mode (TEM) have been 

investigated by numerically calculating the local dispersion 

relations in a toroidal system. 

For the toroidicity induced ITGM, we assume that the 

perturbed electron distribution is adiabatic, the ion Larmor 

radius effect is negligible and the magnetic curvature drift 

frequency has the simple energy dependence: roD = ~ I)E, 

and calculated the local dispersion relation: 
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where ~0=2enro*, ro*=eTlqyeBLn, en=Ln/R, Ln-1= 

dlnN/dr, T1i=dlnT/dlnN and other notations are standard_ 

The discrete eigenvalue obtained by the dispersion relation 

depends on two parameters en and Tti- Since the inhomo­

geneities of plasma density N and temperature T are the 

source of the ITGM, it may be stabilized when en and Tti 

are reduced, which may give ordinary stability boundary. 

Our purpose here is to fmd the (second) stability boundary 

in the opposite steep density gradient regime. To find the 

second stability boundary, we carefully calculated the 

discrete complex eigenvalue ro 0 in small en region by a 

contour plotting method. As presented in Fig. 1, for a 
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fixed Tti· the ITGM becomes stable when en is smaller than 

certain critical value or the density gradient is larger than 

certain critical value. 

To find the steep critical density gradient for the trapped 

electron mode (TEM), we assume a simple model without 

transit ion and Larmor effect for ions, and use the same 

local dispersion relation as in a previous report[ I]: 
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where w has been normalized by the drift frequency w *. In 

this case too, en and Tie together with the toroidal effect R 

are the source of the TEM which may be stabilized when 

en and Tte are reduced. This may give the ordinary first 

stability boundary. From the dispersion relation with the 

marginal condition Imw=O, the first stability boundary has 

been obtained as en=(l-£ 112(1-3rtef2))/3.[1] 

To fmd the second stability boundary for ea. we 

numerically calculated the above dispersion relation by the 

same method as in the ITGM for small en regime. Result 

is presented in Fig. 2 for the toroidal effect e=0.3. There is 

a stable eu region below a lower critical boundary, i.e., the 

collisionless TEM becomes stable when the density 

gradient is steeper than certain critical value. 

The existence of the second stability boundary for the 

ideal ballooning mode (IBM) is well known. The 

anomalous diffusion induced by these ITGM, TEM and 

IBM may be eliminated when the density gradient becomes 

steeper than the critical value determined by these modes, 

althought anomalous transport due to plasma turbulence 

may still exist. 
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