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§7. Use of DKES Code I: Accuracy Estimate
Yamagishi, O.

The DKES code [1,2] can solve the linearized
drift kinetic equation and give the mono-energy
transport coefficients, without approximations on the
collisionality. The mono-energy transport coefficients
can be parameterized by v/v and E¢/v, where v is the
energy-dependent collision frequency, E; is radial
electric field and v is the velocity. By taking vy, as the
typical velocity, the normalized frequency v(vin)/(Ven
/qR) can be used to decompose the neoclassical
transport into the different collisionality regimes. For
example, the GSRAKE code [3] is valid for the 1/v
regime. However, different species are possibly in the
different regime, and also energy integral includes all
the velocity (v>>vy, v<<vy). Thus how a code with
approximations on the collisionality like the GSRAKE
is good is practically unknown, until it is compared with
a formal code on the collisionality like the DKES.

Thus I added service routines to the core
sources of the DKES. Since it is needed to scan the
electric field to impose the ambipolar condition, the
interpolation of mono-energy transport coefficients will
be practically needed on the parameters v/v and Eg/v.
Now only two species (e,i) are considered. The ratio of
v/v for the two species is at best of the order of 2 while
the ratio of E¢/v is of the order of (mass ratio)l/z. Thus
the mono-energy coefficients are calculated on 2 (not 4)
planes with axes v/v and Eyv; (j=e,i), and 2D
interpolation is done on them for electron and ion
separately.

As an example, the LHD magnetic field on a
surface is considered (R=3.75m, p=0.6, V/Vth~0.658eff3/2
thus in the 1/v regime). In Fig.(a), the interpolated
mono-energy coefficients D;=(D;;++Dy;.)/2 (which is
normalized by (V/2)(BV/Q)2) are plotted as a function of
v/v for some fixed Eyv;. Here D., D, are two
approximated solutions corresponding to the extrema
(minimum,max) for the mini-max variational principle
[2]. For every points, the numbers of the Fourier and
Legendre modes are (Max,Nmax,lmax)=(12,8,100) for the
decomposition of the distribution function. The relative
error defined by E=2(D -D.)/(D;+D.) is also plotted in
Fig.(b). It seems that the error is too large (E~1) to use
the DKES code for the small values of v(v)/v.

However, we can see that this bad convergence
is not as bad as it seems. The small v(v)/v needed for
the energy integral is mainly due to the large v in the
denominator (v(v) also has v* dependence), i.e., the bad

convergence comes from minority particles much faster
than the vy,. For the Maxwellian equilibrium, the energy
integral is weighted by the exp[-(v/vth)z]. Thus, to see
the effective error, the error is multiplied by exp[-
(v/vg)’] in Fig.(c). It can be seen that maximum of the
relative error is effectively reduced to less than 5% in
this case.

The convergence will be improved by the
increase of the mode numbers used. In Fig.(d), the
relative error is plotted as a function of the total Fourier
mode numbers (~2*My*Niax), for the fixed maximum
Legendre order (14,x=50,100,300) and fixed values of
(vIv, Egv)=(10", -2%107). It can be seen that less than
100 of the Legendre order is enough for the
convergence. On the other hand, the increase of the
Fourier mode number will further improve the
convergence. However the calculation time increases
with the square of the Fourier mode number, while it is
linear on the Legendre order. Thus it is important to use
the Fourier modes by which the numerical accuracy is
enough for the physical consideration and reasonable
cpu time. An efficient matrix solver or simple
parallelization will also be useful.
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Figure: In (a)-(c), dashed and solid lines mean (i,e) respectively.
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