§12. Cyclic Reduction Method for Block
Pentagonal Matrix

Yamagishi, O.

Cyclic reduction method for trigonal matrix can
be found in the standard text book. Here we consider a
problem with block pentagonal matrix.

First a problem with pentagonal matrix of
dimension n=2"-1, Mx=f, is considered.

Taking the right hand side to be new f;, and defining
new coefficients a4, bis, ¢i, dito, and ej4 for X4, Xi2, X,
Xi+2, and X;+4, we have a half size matrix problem,
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with matrix dimension n’=2""-1. This process can be
repeated k times to obtain cx;=f; with j=2"". Then all
the x; with even j is determined by (1*) and (4*), and
then they are used again to obtain x; with odd j.

Next we consider a problem with block pentagonal
matrix,

For a fixed even i, we write

aioXi4thioXiztCioxXiotdioXi teiaxi=fi, ---(1)
ai X3 tbiXiotci X Hdixitei i =1, ---(2)
aiXio TbiXi. Teixitdixiteixin =f; --(3)

i1 X thin Xt XinHdi i Xintein Xis =ty --—-(4)
aiXitbiXiniHeinoXintdinXinateinXia=fin ----(5)

By multiplying ki,kj,ks,ky.ks to Eqgs.(1)-(5), the condition
to annihilate coefficients of x; with odd j are,

kibiotkoai =0 (for xi3) e (1%)
kid;otkoci g tksbitksa =0 (for xi4) ------—-- (2%)
koei 1 tksditkycir tksbi =0 (for Xj() -------- (3%)
kseiritksdin=0 (for xj3)  —m-mee- (4%)

From (1*) and (4*), we have

ki= -ka(ai.1/bin), ------- (17%%)

ks= -ka(eji1/disa), - (2%%)

and substituting these to (2*) and (3*) gives

ks= -ku[ei.1di2air 1 biat(ciridia-€is 1bin) (i1 dia-cin bin) )/
[ei-1di2biobitdidiia(aiidio-cibig)] - (3*%)

Choosing k,=b;, and ks=di» gives k= -a;.;, ks= -e,
and k= - [ei.diszainbia + (Ci+1di+2‘ei+lbi+2) (ai-ldi-z-ci-lbi-
2)] / [ei1biabitdi(aiidis-cibis)]. By using these kj-ks,
sum of egs.(1)-(5) becomes

[kiais]Xis + [Kiciot kobi it ksai]x in Hkjeiat kodi+ ks
Tkabisit ksaio]x i+ [kseit kadinit kscin]x iot[kseia]Xita
=k T ko fi ks fitka i ks,
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where again n is an odd number, n=2k-1, and each
a,b,c.d,e is a dense, m x m matrix, and x and fare
vector with m components. Then m x m matrix k; to ks
are multiplied to eqs.(1)-(5), to see that eqs.(1)-(5) are
only replaced by a matrix-vector product, for example,
a;0X;4 becomes a;, X;4. Then k; to Ks to annihilate the

odd x; are

k1: —kz A bi_z_l, ______ (1***)
R T [ R — (2545
to obtain ky=-ksp q"' - (3HH%)

. -1 - -1 -1

with p=a, r -se.; andq=b;r -d;e.; andr=c; -
-1 -1

a1 by, dipand s=c¢ji - €11 iy b

Choosing k; and k4 be unit matrix, k;,..,ks are obtained
by inversing matrixes in eqs.(1***)-(3***) five times.
Then we have a equation corresponding to eq.(4**) in
matrix-vector version, and the problem is reduced to be
half size. The same procedure will be repeated k times
to obtain a m X m matrix problem, ¢;x;=f; with jZZk'l.
Although number of matrix inversion ~ j:]k[S(Zk'J'])]
needed is not so different from the total block number
~[5(2k- 1)], the reduction method has independent loops
to be suitable for parallelization.
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