§33. An Automatic Roots Finding Method for
Systems of Nonlinear Equations

Watanabe, T., and Akao, H., (NEC)

We have developed an algorithm for all solutions to

nonlinear systems of equations
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within a given compact domain D € R" based on the nu-
merical integration of the § function (4 function method).
The ¢ function method is proved to include the numerical
algorithm for root finding problem based on the Cauchy
integration theorem of an analytic function of 1 complex
variable, and the bisection scheme of 1 real variable.
When we can guess approximate solutions, it is rela-
tively easy to get highly accurate solutions for the non-
linear systems of equations (1) by the Newton iteration
scheme. The delta function method is used to get all
approximate solutions for eq.(1) with specified accuracy.

The delta function 6[hy, ha, - - -, hy,] has the nature

I

[ it e
Q

:{;

The § function method is developed by the numerical in-

if Q2 contains an solution for eq.(1).
if Q2 contains no solution for eq.(1).

tegration of eq.(2) with following expressions for ¢ func-
tions.

1
0(z1,z0) = E—;VQ Inr, case for n = 2

(n—2)Q,

where the distance 7, the surface are §2,, and differential
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operator V? are defined as follows.

Q) i (iw_;)/j if n is even. 3
. % if n is odd.
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The § function method is successfully applied for various
types of equations and various number of n(< 7).
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Fig.1
top (|z| < 1) distribution function F(x) by superposition

(a) The § function method is applied to get flat

of 4 Gaussian distributions.
F(z) = ) Niexp(—(z — V;)’T3).
i=0,3
7 parameters N;, V; (i = 0,1,2,3) are obtained numeri-
cally (Vo = 0). The synthesized function F(z) and Gaus-
sian function elements are expressed by solid and thin

lines. Total 7 sets of solutions are obtained numerically
including solutions (a) ,(b) and (c).
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