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Abstract. Direct numerical simulation of fully three-dimensional, compressible and
nonlinear magnetohydrodynamic equations in the Large Helical Device is car-
ried out in combination with the passive particle simulation. In the simulation,
strong vortical motions are excited by the pressure-driven instability and form the
mushroom-like structures of pressure. It is shown by the passive particles analysis
that the fluid volumes around the resonant magnetic surfaces experience finite
compressibility and toroidal deformation, which are both excited by the strong
vortical motions. The passive particles simulation helps us to investigate local
structures even for low Fourier wavenumber modes.

1. Introduction
The Large Helical Device (LHD) is the world’s largest heliotron/torsatron type
helical device. It has a set of L= 2/M =10 helical coils with a major radius of
3.9m (Motojima et al. 1999). Recent LHD experiments revealed that plasmas
can be confined relatively well even under the magnetic configuration with va-
cuum magnetic axis position Rax = 3.6m, which is considered unstable in the
sense of Magnetohydrodynamic (MHD) instability. In order to understand how
plasma survives MHD instabilities, direct numerical simulation (DNS) of fully
three-dimensional, compressible and nonlinear MHD equations is carried out by
our numerical code, the MHD In Non-Orthogonal System (MINOS). Details of the
MINOS code and conditions of the DNS are reported in Miura et al. (2004, 2007).
In traditional linear analysis and reduced MHD simulations, toroidal flow and

compressibility are often discarded. This is partly because the fluid remains in-
compressible if the perturbation is initially incompressible in the framework of the
reduced MHD equations. The toroidal velocity can also be omitted if the perturba-
tion is incompressible. However, we have shown that the toroidal component of the
velocity grows rapidly from a weakly perturbed state. (Miura et al. 2004, 2007).
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Figure 1. Full 3D views of MHD instabilities obtained by DNS. (a) Pressure isosurface with
two helical coils. (b) Stream lines, pressure isosurfaces and contours on a poloidal section.

Furthermore, the compressibility works to reduce the linear growth rate to 1/2–
1/5 of the growth rate obtained under the incompressible assumption. This implies
that the toroidal flow and compressibility should be included in numerical studies to
study the confinement mechanism of plasmas in LHD. Although we have shown the
significance of these effects, the detailed mechanism by which these effects influence
the nonlinear saturations of the growth still remains unclear. Aiming to clarify the
mechanism, we propose an analysis with the displacement vector by the combin-
ation with the passive scalar simulation. We show below that the new approach
works well and is worth incorporating into further research on this subject.

2. DNS with passive scalar simulations
Our simulation starts from an unstable initial equilibrium with the vacuum mag-
netic axis position 3.6m and β0 = 4%. As is reported in Miura et al. (2004), a
simulation starting from this equilibrium shows strong instability driven by the
pressure gradient. In the simulations, a rapid growth of unstable Fourier modes
m/n = 2/1 and 1/1 of the pressure are observed where m and n are the poloidal
and toroidal wavenumber in the Boozer coordinate. A typical view of them/n = 2/1
structure of the pressure is shown in Fig. 1(a). In Fig. 1(a), the isosurface of the
pressure is shown with two helical coils. We clearly observe that the isosurfaces are
deformed by the growth of them/n = 2/1 Fourier mode. In Fig. 1(b), stream lines,
pressure isosurfaces and contours on a poloidal section are shown. Spirals of stream
represent vortical motions associated with the m/n = 2/1 mode. The stream lines
are inclined to the toroidal direction due to the active toroidal flows. The strong
vortices, which consist of two anti-parallel vortex pairs, advect each other and form
the mushroom-like structures of the pressure, as are observed in the contours of
the pressure in a poloidal section.
The roles of the toroidal flow and compressibility are studied more closely with

the help of the passive particles simulation. In the passive particles simulation, the
position of the ith particle ξi(t) is tracked by solving the equation

dξi

dt
= v(ξi, t) (2.1)

where v(ξ, t) is the fluid velocity at the position ξ. Since the motions of particles
depend only on the fluid velocity, the vector δξ = ξ(t) − ξ(t = 0) represents the
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Figure 2. Deformations of passive surfaces. Poloidal cross-sections of the pressure contour
and the m/n = 2/1 passive surface coincide with each other at the initial time.

displacement vector which is often used to study the linear instability of torus
plasmas (Friedberg 1987). The particles are initially located on the rational surfaces
ι/2π = 1/2, 2/3, 3/4, 1 uniformly on the θ–ζ plane of the Boozer coordinate where θ
and ζ are the poloidal and toroidal angles, respectively, composing the passive sur-
faces. We also put particles on the neighboring surfaces to each rotational surfaces
for use later. The passive surfaces coincide with the resonant magnetic surfaces if
the magnetic fields are frozen into the fluid, as they are in ideal MHD. Although
the passive surfaces depart from the resonant magnetic surfaces because of the non-
ideal MHD effects, it is still worth studying the behavior of them because it serves
to study the roles of physical elements such as toroidal flows and compressibility.
First, we study the deformations of the passive surfaces. In Fig. 2, the passive

surfaces are shown with isosurfaces and contours on a poloidal plane of the pressure
at the saturation time of the energy growth. The white meshes represent the passive
surfaces. The vertexes of meshes are the position of passive particles. The inner-most
surface in Fig. 2 coincides initially with the rotational surface ι/2π = 0.5. In the
course of the time evolution, the surface is deformed into spirals by the roll-up of the
vortices. It can be verified by studying the toroidal displacement ξ · B/|B|, where
B is the magnetic field vector, that the surface is also elongated or compressed into
the toroidal direction by the toroidal flows, although it may not be clearly seen in
Fig. 2. The toroidal deformation is to the left-hand side of the paper in the inner side
of the torus and to the right-hand side in the outer side. The toroidal deformation
is likely anm/n = 1/1 structure. The observation is consistent with the analysis by
means of the Fourier power spectra of the parallel velocity, reported in Miura et al.
(2007). The m/n = 1/1 toroidal flow is excited by the couplings of the m/n = 2/1
primarily unstable mode and m/n = 1/0 perturbation added to the system due to
noise in the MHD equilibrium. While the directions of fluid motions and its time
history are not observed from the streamlines in Fig. 1(b), the passive surfaces in
Fig. 2 represent the history of the fluid motions. The passive surface representation
helps us to understand the evolutions of fluid motions, especially on the rational
surface, and helps us to understand the evolution of the MHD instability.
Next the significance of compressibility is investigated. Although it is possible to

estimate the local compressibility by studying the dilatational field ∇ · v, it becomes
easier by making use of the passive particles informations especially when we are
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Figure 3. Ratio of the volumes of small rectangular boxes to their initial volumes.

interested in the compressibility in the neighbourhood of the rational surfaces. The
six vertices of a rectangular box are composed of the passive particles neighboring-
each other. Suppose that a position of one vertex is identified by the sets of variables
(ι/2π, θ, ζ). Then the other five vertices are given by shifting the position to δι, δθ,
δζ in each direction, respectively. The volumes become larger or smaller in their
course of time evolutions if they experience some compressibility. In Fig. 3, time
evolutions of the volumes of the small rectangular boxes on some typical rotational
surfaces are shown. The time region is restricted to 160 � t/τA � 260, that is,
from the middle of the linear regime to the beginning of the nonlinear stage, so
that the separation between two neighboring particles does not become too large.
The volumes are all averaged over each rotational surface and normalized by the
initial volume. We find in Fig. 3 that the volume of the elements which are initially
located on the ι/2π = 1/2 surface grows rapidly. The volumes in the plasma cores
(that is, ι/2π = 1/2, 2/3 and 3/4 surfaces) experience expansion of the volume,
while the volumes in the outermost surface of the magnetic field line shrink. Note
that the compressibility is weak in the simulation. The root mean square of the
dilatation ∇ · v is roughly 1/10–1/100 of that of the vorticity ∇ × v. However, the
analysis in the above shows that the local contributions of compressibility around
the magnetic surfaces is never negligible.
We emphasize here again that all rectangular boxes distributed on the rational

surfaces experience finite expansion or compression of the volume. Since the passive
particles essentially represent the displacement vectors adopted in the linear MHD
analysis, the large change of the volumes shows that finite compressibility works
to the dynamics on the displacement vector. While the volume change could also
be studied by evaluating the dilatation of the velocity field, ∇ · v, the passive
vector information can further be used to study the parallel and perpendicular
displacement and so on. The passive particle information can provide us with rich
information about plasma motion.

3. Concluding remarks
We have studied the fluid motions associated with the growth of instability in
LHD. The pressure-driven instability excites the strong m/n = 2/1 vortex pairs,
which in turn generates considerable strength of toroidal flows. Analysis with
the passive particle simulations have revealed that the volumes which are put
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initially on rotational surfaces experience finite compressibility, even though the
mean compressibility is weak. Our study in this article shows that the passive
particle simulations can serve to explore various aspects of local plasma motions.
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