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Unified linear response function for zonal flows with full finite orbit effects
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A new formulation of the linear response function of electrostatic potential to nonlinear drive �due
to turbulence� is presented in this paper; zonal flows play important roles in the self-regulation of
turbulence and their basic physics are contained in response functions. Two branches of zonal flows
�stationary zonal flow and geodesic acoustic mode �GAM�� are known to exist in the low and high
frequency ranges. However, they have been analyzed separately using different approximations due
the difference in their frequency ranges. This paper visits this problem and gives a unified
expression of the response function by taking full account of finite orbit effects. The drift kinetic
equation is integrated along particle orbits by expanding them in Fourier series. Thus, a separate
handling of passing and trapped particles is facilitated revealing some important aspects of zonal
flows: �1� neoclassical poloidal mode coupling due to finite orbit effects, �2� enhancement of the
nonuniform potential field due to reduced parallel transport, and �3� the presence of two propagation
bands of GAM as the quadratic dispersion relation is solved. © 2007 American Institute of Physics.
�DOI: 10.1063/1.2805441�

I. INTRODUCTION

The stationary zonal flow and geodesic acoustic mode
�GAM� have received much attention in recent research on
plasma energy confinement, for they have weak damping and
therefore may be excited to a high enough amplitude to regu-
late turbulence and anomalous transport.1–21

The stationary zonal flow is understood as a flow that
survives the shielding effect of neoclassical polarization19,20

and is expected to be the most effective flow in regulation of
turbulence. The possible presence of GAM was pointed out
by Winsor et al.22 based on the magnetohydrodynamic equa-
tion �MHD�, followed by several works improving this origi-
nal theory: �1� kinetic equations were used to facilitate the
evaluation of damping,23,24 �2� the theory of GAM oscillation
was extended to helical systems and the behavior of such
oscillation was studied in the lower frequency range,25,26 �3�
enhancement of damping was studied taking finite orbital
effects into account,27,28 and �4� an idea of “effective shear-
ing rate” was introduced18 regarding the mechanism sup-
pressing turbulence. A comprehensive review of zonal flows
is given in Ref. 21. Zonal flows gathered more attention as
their existence was confirmed in experimental data.29–38 One
of the most fundamental observations is that both kinds of
zonal flows are correlated only within a narrow radial do-
main, of the order of a few Larmor radii;29,30 this is a virtu-
ous property from the point of view of improving energy
confinement time, for large shearing rates are realized with
moderate amplitudes of zonal flows. However, the mecha-
nism determining correlation lengths has not been well in-
vestigated yet. Of the two zonal flows, GAM is more easily
detected in experiments for it is temporally oscillating. It is
reported that the experimental GAM frequency is of the or-
der of �exp=��Ti+Te� /mi, which is considerably smaller
than the MHD description.3 Some of the experiments include
data that suggest that the frequency of GAM oscillation is
not always single.29,30

Zonal flows are also observed in numerical simulations.
In Ref. 3 it is reported that GAM is propagating in the radial
direction. Experiments have not yet confirmed this feature,
only reporting the small radial coherency length of GAM.

Reflecting on such results in experiments and simula-
tions, we reformulate the electrostatic response function in
the zonal flow frequency range, taking variation in particle
�parallel� velocity into consideration. This effect has been
naturally included in the response function in low frequency
range19,20 �stationary zonal flow� but not in the higher fre-
quency range �GAM�.23–28 In the latter frequency range a
so-called “constant velocity approximation” has been used.

We assume the following form for the potential field
driven by external charge perturbation �ext�� ,kr�, as other
papers have assumed in the low frequency range:19,20

�l=0��,kr� = �
l�

R��,kr��ext��,kr�

= �
l�

1

D��,kr�
�ext��,kr� . �1�

Here, R�� ,kr��1 /D�� ,kr� is referred to as the response
function, and therefore solving for R�� ,kr� is identical to
solving for D�� ,kr�. It is expected that the dispersion func-
tion D�� ,kr� in the denominator approaches a constant value
at the low frequency limit giving the so-called neoclassical
shielding effect and that D�� ,kr�=0 is satisfied at a certain
frequency � in the higher frequency range; the former cor-
responds to stationary zonal flow and the latter corresponds
to GAM.

Thus, the present paper focuses on reformulating
R�� ,kr� �or D�� ,kr�� with full inclusion of finite orbit ef-
fects. In most of the works in the past, parabolic dispersion
functions were solved, which is second order in radial wave
number kr:
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D��,kr� � �a − b����kr
2. �2�

Though Eq. �2�, gives the local oscillation frequency of
GAM, it is not appropriate for discussion of the radial struc-
ture of the GAM. Therefore, we will derive a quadratic dis-
persion function, adding to it the fourth-order term in kr:

D��,kr� � �a − b����kr
2 + c���kr

4. �3�

This paper is organized as follows. The general formu-
lation of the response function is made in Secs. II A–II D
based on the drift kinetic equation; the distribution function
is obtained with full orbital effects in Sec. II A, where the
constant velocity approximation is eliminated so that sepa-
rate treatment of passing and trapped particles is facilitated.
The expression of density perturbation is obtained for pass-
ing particles in Sec. II B by integrating the distribution func-
tion. In Sec. II C, the same procedure of calculation is ap-
plied to trapped particles and the appropriate formulas are
obtained. Other classical terms, which are due to the finite
Larmor radius �FLR� effect, are derived in Sec. II D and
added to the neoclassical terms.

In Sec. III, the response function is formulated and it is
numerically examined applied to a simple tokamak: Charge
neutrality is applied in Sec. III A based on the density per-
turbation obtained in Sec. II to formulate the response func-
tion in the most general form. An approximation is applied to
parallel dynamics in Sec. III B so that good insights into the
physics are maintained in the numerical calculations that
follow.

In Secs. III C 1 and III C 2, second-order charges in-
duced by uniform and nonuniform potential fields are calcu-
lated and their differences are discussed. It is found there that
neoclassical poloidal mode generation ��coupling� is impor-
tant in zonal flow dynamics. In Sec. III D, the dispersion
relation is obtained including fourth-order terms facilitating
studies of radial structure in GAM. The presence of two
propagating frequency bands is found there. In Sec. III E,
properties of the response function in the low frequency
range are numerically examined confirming that the obtained
formula is a natural extension of “neoclassical polarization”
to all frequency ranges. Other supplemental considerations
related to the present model and its possible applications are
discussed in Sec. IV. Section V is the concluding section,
where the major findings in this paper are summarized.

II. FORMULATION

A. Perturbed distribution function with full orbital
effects

We start with the drift kinetic equation �DKE� with in-
dependent variables in velocity space �w ,� ,��, which are
kinetic energy, magnetic moment, and direction of parallel
motion, respectively.

� f

�t
+ ���� + ��D� · �f = �

l

e�ik	�l������ + ��D� · �� �
�

�w


exp�ik		 + il� − i�t� + S . �4�

Here, f , ��D, and ��� are the distribution function, drift velocity,

and parallel velocity of particles, respectively. We adopt a
�	 ,� ,�� coordinate system for configuration space with � the
poloidal angle, � the toroidal angle, and 	 the poloidal mag-
netic flux; 	 is used as the flux surface label. We consider
tokamaks of arbitrary plasma cross section in this paper and
therefore all metrics are functions of � �and 	�, and provided
up-down symmetry of the device, they are even in �. The
wave field has been assumed to be electrostatic, character-
ized by the frequency �, the radial wave number k	, the
poloidal mode number l, and the amplitude of the perturba-
tion �l, respectively.

S on the right-hand side is the nonlinear drive due to the
turbulence, which generally is a function of t, �� ,� ,	�, and
�w ,� ,��. However, we do not get into the details of this
term considering only resultant external charge �ext�� ,kr�.
The two terms on the right-hand side are thus regarded as the
external force and the two terms on the left-hand side com-
pose a propagator.

Previous work23–28 simplified the propagator by assum-
ing that velocities of particles are constant on their paths,
which implies that all particles are assumed to be passing. In
this paper, we eliminate this approximation and pursue the
integration along particle trajectories to obtain the correct
perturbed distribution function:

f = e�l	
−

t

dt�
�����t�� + ��D�t��� · �ik	�� 	 + il�� ���
� f0

�w


exp�− i�t� + ik		�t�� + il��t���

= �e�l�
� f

�w
exp�− i�t + ik		 + il��


�1 + i�	
0



exp�i��t�� − ik	��t,t�� − il��t,t���dt� ,

�5�

where ���t�� ,	�t��� is the particle orbit with the final condi-
tion �	�t� ,��t��= �	 ,��. For simplification, we have intro-
duced notations ��t , t������t�−��t− t��� and ��t , t��
��	�t�−	�t− t���,. Since ��t , t�� is simply periodic regard-
less of whether particles are passing or trapped, we write
��t , t��=�̃�t , t�� with wave indicating periodicity of the
quantity. However, ��t , t�� requires separate treatment, for it
has secular terms for passing particles, which it does not
have for trapped particles. We write

��t,t�� � �̃�t,t�� − ��b,�t�, �6�

separating the secular term �−��b,�t�� from the periodic term
��̃�t , t���. Here, �b,� is the frequency of circulation for pass-
ing particles and �b,�=0 for trapped particles. Using simpli-
fied notation, we continue the integration by punctuating
time t� and obtain
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f = �e�l�
� f

�w�1 + i�
1

1 − ei�Tb
	

0

Tb

exp
− i�k	�̃�t,t��

+ il�̃�t,t����exp�i�� + �l�b*�t��dt�� . �7�

Here, Tb= �g��� / ��� �d� and g���� ḡg̃����dl /d� is a kind of
metric for the given magnetic configuration. Tb=Tb�� ,�� is
the circulating time for passing particles and the bounce time
for trapped particles. �b=2� /Tb and ḡ= �1 /2���0

2�g���d�.
The periodic exponential factor in the integrand is expanded
in the power series

exp
− i�k	�̃�t,t�� + il�̃�t,t����

= �
n

1

n!

− i�k	�̃�t,t�� + il�̃�t,t����n. �8�

If l�̃�t , t�� is small with respect to k	�̃�t , t�� as it is reported
in experimental papers,29,30 we may ignore the former and
write

��
n,m

1

n!
�− i�n� k	I�T

�c,0
�n

xn�̃n,m��,��exp�im�b�t��� , �9�

where x=� /�T, �=�2w /m, �T=�2T /m, and ��=±1� desig-
nates the direction of the parallel motion. The Fourier com-
ponent �̃n,m�� ,�� is defined as follows:

�̃n,m��,�� =
1

Tb
	

0

Tb

��̃�t,t���nexp�− im�b�t���dt�, �10�

with

�̃�t,t�� = � �̃�����
�̃c����

−
�̃����
�̃c���

� , �11�

where �̃� =�� /� and �̃c=�c /�c,0.
In deriving the latter, the toroidal momentum conserva-

tion, 	���− I����� /�c���= P�, was used with conventional no-
tation I= I�	�=RBt. Equation �7� is divided into two terms,

f = f I + f II, �12�

f I = −
e�l

T
f0, �13�

and f II is integrated with an aid of Eq. �9�:

f II =
e�l

T
f0��

n

�− i�n��p
n

n!
�xn


�
m

�̃n,m��,��
�

� + ��l�b� + m�b��eil�

=
e�l

T
f0��

n

�− i�n��p
n

n!
�xn�

m

�̃n,m��,��
�+�l+m

�+�l+m + x�eil�,

�14�

where �p��k	I�T /�c,0� is regarded as the finite orbit effect
parameter representing the wavelength with respect to poloi-
dal Larmor radii. Thus, the finite orbit effect �FOE� is essen-

tial to zonal flow physics; from this point of view zonal flows
are neoclassical phenomena, similar in situation to classical
and neoclassical transports. In the last transformation in Eq.
�14�, we have defined ��l+m�� , �̃�� �̃ / ��l�̃b*+m�̃b� using
normalized quantities, �̃= ḡ� /�T, �̃b��̃�x� ḡ�b��̃ ,w� /�T,
�̃b���̃�x� ḡ�b���̃ ,w� /�T, and �̃=��Bmax /w�. Thus, solving
the distribution function f II is reduced to calculation of a set
of values for �̃n,m

passing�� ,��.
The Fourier integration �Eq. �10�� is performed �for

passing particles� taking advantage of the fact that parallel
directions of particles ��� are unchanged. We obtain

�̃n,m
passing��,�� = �n�

m1

Ĩm1,m
passing · Cn,m1

�− 1�n−m1� ��̃�����
�̃c���

�n−m1


exp�− i�m�̃bũ���� . �15�

Here,

Ĩm1,m
passing �

1

T̃b

	
−�

� g̃d�

��̃��
� ��̃�����

�̃c���
�m1

exp�im�̃bũ���� , �16�

with ũ���=�0
�g̃ / ��̃� �d�. �Ĩm1,m

passing are Fourier coefficients with
respect to time.� Since integrand in Eq. �16� is even in �, a
symmetry property Ĩm1,m

passing= Ĩm1,−m
passing holds and by inspection

Ĩm1,m
passing=�m,0 for m1=0.

B. Density perturbation and its symmetry

In this paper, we define “density perturbation” as fol-
lows, which is different from normal definition by the mul-
tiplication factor �g̃��� / B̃����:

�nind = �g̃/B̃� 	 d3�f ind. �17�

This is justified for the same factor is multiplied to external
density perturbations when charge neutrality is used.

The neoclassical density perturbation is obtained by in-
tegrating f II over velocity space or by applying the following
operator:

�g̃/B̃��
�

2�

m2 	 B

����
d�	

0



dw ·

= �g̃/B̃�
B0

Bmax
�
�

L�̃ · Lw ·
B̃

��̃��
· , �18�

where B̃=B��� /B0, Lw= ��−1/2�0
dxx2 · �, �̃=Bmax�� /w�,

L�̃
passing= �B0 /Bmax���0

1d�̃ · �, and L�̃
trapped= �B0 /Bmax�


��1
Bmax/Bmind�̃ · �.
By introducing spatial Fourier coefficients

�n,m1,�m,l�
passing =

1

2�
	

0

2� g̃

��̃��
� ��̃�����

�̃c���
�n−m1


exp�− il�� − i�m�̃bũ����e−il��d� , �19�

we write
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�̃n,m
passing��,�� = �n�

m1

Ĩm1,m
passing · Cn,m1

�− 1�n−m1


�
l�

�n,m1,�m,l�
passing eil��. �20�

Since the integrand in Eq. �19� is even in �, �n,m1,�m,l�
passing takes

real values and have symmetry properties �n,m1,−�m,−l�
passing

=�n,m1,�m,l�
passing .
By substituting Eqs. �15�, �16�, �19�, �20�, and �14� into

Eq. �17� and using symmetry properties �n,m1,−�m,−l�
passing

=�n,m1,�m,l�
passing , we obtain

�nind
passing =

e�l�

T
L�̃ · �

n

�− i�n��p
n

n!
�


�
l�

�
m

Cn,m1
�− 1�n−m1Ĩm1,m�n−m1,−m,l�

passing


Lw · �
l�

xn� �l�−m

�l�−m + x
+ �− 1�n

�−l�+m

�−l�+m + x
�ei�l�+l��

=
e�l�

T

1

2
L�̃ · �

n

�i�n��p
n

n!
�


�
m,l�

�
m1

Cn,m1
�− 1�n−m1Ĩm1,mBl�,−m

passing


��n−m1,−m,l�
passing �ei�l�+l���, �21�

where Bn,l�,−m
passing = �−�l�−mZn+2��l�−m��, with the dispersion func-

tion Zn+2��l�−m� defined as follows:

Zn+2��l�−m� � 2
1

��
	

−



dxxn+2e−x2� 1

x − �l�−m
� . �22�

C. Density perturbation of trapped particles

A similar procedure is applied to trapped particles in
obtaining the distribution function f II

trapped and density pertur-
bation �nII

trapped. However, it is taken into account that trapped
particle changes direction as particles pass through their turn-
ing points. We find Ĩm1,m

trapped can be written in a similar form to

Ĩm1,m
passing with a slight modification:

Ĩm1,m
trapped �

1

T̃b

�1 + �− 1�m1+m�	
−�max

�max g̃d�

��̃��
� �̃����

�̃c���
�m1


exp�im�̃bũ���� . �23�

Ĩm1,m
trapped takes real values and has the same symmetry proper-

ties as Ĩm1,m
passing does; i.e., Ĩm1,m

trapped= Ĩm1,−m
trapped. In correspondence to

Eq. �19�, we define

�n,m1,�m,l�
trapped =

1

2�
	

−�

� g̃

��̃��
� ��̃�����

�̃c���
�n−m1


exp�− il�� − i�m�̃bũ����d� . �24�

The formula �n,m1,�m,l�
trapped has the same form as that for passing

particles, though the integrand should be put zero, where

1− �̃B��� /Bmax�0. By using these expressions, the density
perturbation of trapped particles is cast into the same form as
that of passing particles:

�nII,ind
trapped =

e�l�

T

1

2
L�̃ · �

n

�i�n��p
n/n ! �


�
m,l�

�
m1

Cn,m1
�− 1�n−m1Ĩn,m

trapped�n−m1,−m,l�
trapped


Bn,l�,−m
trapped · ei�l�+l���. �25�

Here, Bn,l�,−m
trapped = �−�−mZn+2��−m�� is independent of l�; this dif-

ference from Bn,l�,−m
passing is due to the absence of the secular term

in Eq. �6�.

D. Adiabatic and classical polarization terms

So-called adiabatic density perturbation is obtained by
operating ��g̃ / B̃�L�̃ ·��LwB̃��� / ��̃���̃ ,�� � · � to the other part
of the perturbed distribution function f I=−�en0�l /T�f0. Us-
ing an equality ��Lw · f0= �1 /2�n0, we obtain

�nI
j = −

en0�l

T
�
l�

1

2
L�̃ · �l�

j ��̃�eil��, �26�

where

�l�
j ��̃� =

1

2�
	

−�max

�max g̃���
��̃��

e−il��d� , �27�

with superscript j designating the kinds of particle orbit:
For passing particles �max=� and for trapped particles
�max=�t��̃�, the poloidal angle at the upper turning point.

Finally, classical polarization terms are added to neoclas-
sical terms �nII

j obtained in subsection B and adiabatic term
�nI

j obtained above; the latter two are obtained from the drift
kinetic equation. The classical polarization term is given in
the following form in powers of finite Larmor radius �FLR�
parameter ��= �k��� /�c�:

�fclassical
j =

e�

T
f0�J0

2���� − 1� =
e�

T
f0 �

n=1,2
a2n����2n, �28�

where a2=−1 /2 and a4=3 /25. �� is expressed in terms of
FOE parameter �p as follows:

��
2 = � k���

�c
�2

= ��R�� 	�/I�2�p
2 1

B̃
�B0�̃/Bmax� . �29�

By operating �g̃ / B̃�L�̃ ·��Lw · B̃��� / ��̃���̃ ,��� to the perturbed
distribution function, we obtain

�nclassical
j ��� =

n0e�

T
L�̃ · �

n=1,2
a2n��

q
�2n

��p�2n�̃n�l�
j,2n��̃� ,

�30�

where
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�l�
j,n��̃� =

1

2�
	

−�max

+�max

wn�q

�
�n� g̃

��̃��B̃n−1
��R�� 	�/I�n�e−il��d�

�31�

with wn=��Lw ·xnf0; i.e., w2=3 /4 and w4=15 /8. �q /��2 and
�� /q�2 are only temporal measures of corresponding quanti-
ties as they cancel each other as Eq. �31� is substituted into
Eq. �30�; q is the safety factor and � is identified as the
inverse aspect ratio r /R in the simple case that we discuss in
Sec. III C. Thus, the present formulation is not dependent on
the choices of the coordinate system and is applicable to
arbitrary magnetic configurations of tokamak, as long as up-
down symmetry is provided. All the information about mag-
netic configuration for confinement are included in metrics
g���, B���, and �R�� 	 � ���.

III. RESPONSE FUNCTION
AND DISPERSION RELATION

A. Charge neutrality and general formulation

All terms derived in Sec. II are gathered and sum mul-
tiplied by 4�es to compose polarization �ind:

�ind = �
s
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Here, the summation index j denotes two kinds of trajecto-
ries: passing �j=1� and trapped �j=2�. kD,s

2 =4�nses
2 /Ts is the

Debye wave number, with s denoting the species of plasma:
�s= i� and �s=e�.

Due to the presence of the multiplying factor 4�, �ind is
referred to as polarization in the following discussions. We
employ hereafter normalizations �̃=�ind / �kD,i

2 �l=0� and
�̃l=�l /�l=0; by definition �̃l=0=1. Expanding �̃l�0 and �̃l in
powers of �p

n:
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we obtain the following expression of polarization:

�̃ = �
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i.e.,
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Here, the operator D̃ns,l�,l−l� is defined as follows:
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The subscript s is abbreviated in principle, for electrons con-
tribute only in the lowest order term �which describes paral-
lel dynamics� in FOB parameter �p and FLR parameter
�� /q��p; both are infinitesimally small.

The response function of potential �to external charge� is
obtained from charge neutrality

kD,i
2 �l=0�

n

�p
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l�,ns�n

�D̃ns,l�,l−l��̃l�
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+ �ext,l��,k	�eil�+ik		 = 0. �37�

Here, we assume the following form for external charge:

�ext�	,�� =
g̃���

B̃���
�

s

4�esns�	,��

� �
l

�ext,l��,k	�eik		+il�, �38�

and study the response of potential to the uniform charge
�ext�� ,k	���ext,l=0�� ,k	�.

From the l=0 component, we obtain

kD,i
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n

�p
�n� �

l�,ns�n

�D̃ns,l�,−l��̃l�
�n−ns�� + �ext��,k	� = 0,
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and from the l�0 component, we obtain

�
l�,ns�n

�D̃ns,l�,l−l��̃l�
�n−ns��eil� = 0. �40�

This set of linked simultaneous equations may be solved
by limiting numbers l and n within some values L and N.

The homogeneous equation �40� gives solutions �̃
l��0
�n��

=al�
n�����̃l=0=al�

n���� and, as they are substituted into Eq.
�39�, the uniform field relevant to zonal flow is obtained in
the following form:

�l=0 = −
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�41�

Thus, we have formally obtained the response function R and
dispersion function D in the form of Eq. �1�.
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B. An approximation in parallel dynamics

In order to keep insights into physics throughout numeri-
cal calculation, we look for an appropriate approximation
rather than directly solving Eqs. �39� and �40�. We write the
nth-order equation of Eq. �40� keeping the ns=0 term on
left-hand side �LHS� and all other terms �n�ns�1� on
right-hand side �RHS�:

�
l�

D̃ns=0,l�,l−l��̃l�
�n� = − �

l�
�

1�ns�n

D̃ns,l�,l−l��̃l�
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The terms on the LHS are subject to the following transfor-
mation:
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In the transformation, m1�ns=0 induced m1=0, m1=0 in-
duced Im1,m=�m,0, and m=0 induced

�ns−m1=0,−m=0,l−l�
j = �1/2��	

0

2�

�g̃/��̃���e−i�l−l���d�

= �l−l�
j ��̃� . �44�

In the last transformation, we have also used the identity
�1−Bns=0,l�,−m

j �=0 for trapped particles �j=2�; thus, trapped
particles cannot participate in the screening of charge along
magnetic lines of force. A numerical realization of this model
is made choosing a simple tokamak case, i.e., the metric
ḡ=qR, g̃���→1, and ��R�� 	 � / I��q /��→1 in Eqs. �31� and
�37�. The calculation is made for the safety factor q=3 and
the inverse aspect ratio �=0.2.

Since �l−l�
passing��̃���0

passing��̃��l,l� holds for passing par-
ticles in lowest order, we adopt the approximation for the
LHS of Eq. �42�

LHS = D̃�,l
approx�̃l

�n�eil�, �45�

where
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and
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1

2�
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Thus, the parallel dynamics is represented by the coefficient
D̃�,l

approx. Under this approximation, each �̃
l��0
�n� term is calcu-

lated using the following formula:

�̃l�0
�n� = −

�
l�

�
1�ns�n

D̃ns,l�,l−l�

D̃�,l
approx

�̃l�
�n−ns�. �48�

Calculations of the coefficients −D̃�,l
approx are shown in Fig. 1

as function of normalized frequency �̃=� / ��T,i /qR� for sev-
eral values of poloidal mode numbers l. Electron terms ap-
pear only in this term and we have assumed Te=Ti in this
calculation. In Fig. 1, we find that, in the limit of �→0 and
�→, −D̃�,l

approx approaches 1.1 and 0.55, respectively, which
are smaller than corresponding values 2 and 1, which would
be obtained under the constant velocity approximation.23–28

This is due to the fact that trapped particles cannot partici-
pate in parallel dynamics; in drift wave theories �1−�2�� is
quoted as a factor to indicate this reduction. This factor is
substantial in number when the inverse aspect ratio ��0.2,
and frequency dependence incorporated in −D̃�,l

approx is also
important in zonal flow problems.

The RHS of Eq. �42� consists of terms of D̃ns,l�,l−l� with
various number ns�1: The D̃ns,l�,l−l� is regarded as an as-
cending operators which, as applied to �̃

l�
�n−ns�, increases its

order by ns. Similarly, D̃ns,l�,l−l� is an operator that increases
poloidal mode number by l− l�. We refer to this process as
“neoclassical mode generation” or “neoclassical mode cou-
pling,” for it diminishes at the limit of �p→0.

In order to study the symmetry properties of the poten-
tial fields given by Eq. �48�, let ��=±1� designate the parity
of the potential field at order n−ns:

�̃l�
n−ns = �eil�� + �e−il����̃�l��

n−ns. �49�

Equation �48� is then rewritten as follows:

FIG. 1. D̃�,l
approx��� for various values of l, �l � �3: D̃�

approx��� given by Eq.
�54� is plotted vs �̃=��qR /�T�. It approaches 1.1 and 0.55 in the limits of
�̃→0 and �̃→, respectively. These two values are smaller than 2 and 1
that would be obtained in calculations with constant velocity approximation.
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Therefore, with even numbers of ns, the parity of the mode is
conserved and with odd numbers of ns, the parity of the
mode is reversed. By using this property and starting with
the lowest order potential, which is even ��̃l=0=1�, �̃l

�n� are
shown to be even �odd� in � for even �odd� values of n.
Therefore, we only have to calculate �̃l

�n� for l�0 in every
order of n. Similarly, it is shown that �i�n�̃l

�n� / �̃l=0 are real
quantities.

C. Numerical calculations

Since the potential field of each order is obtained using
the recurrence formula Eq. �48�, we return to Eq. �39� to
obtain the response function using the previously unused
l=0 component. For clarification of the physics, Eq. �39� is
divided into two classes of terms, for zero and nonzero l:

�̃l
�n� = D̃n,l=0,l=0�̃l=0 + �

ns
�

l��0

D̃ns,l�,l−l��̃l�
�n−ns�, �51�

where �̃
l�=0
�n−ns�=�n,ns�̃l=0 is used. The first term is caused by

the uniform potential field �̃l=0 and the second term consists
of various terms resulting from nonuniform fields �̃l�0

�n�0�.

1. The second-order polarization due
to the „zeroth-order… uniform field

Since �̃l=0
�n� =0 for odd number of n, we need to calculate

only the two terms �̃l=0
�n=2� and �̃l=0

�n=4� to obtain the response
function up to fourth order of �p, in which we are currently
interested. In Fig. 2 are shown polarizations caused by the
uniform field: three solid lines show the part contributed by
passing particles ��̃l=0,pas

�0→2� �, the part contributed by trapped
particles ��̃l=0,trap

�0→2� �, and their sum ��̃l=0,sum
�0→2� �. �Generally,

�̃l
�n1→n2� denotes the polarization of order n2 caused by po-

tential of order n1.� In order to highlight neoclassical terms,
the classical terms are subtracted in this display. The normal-
ized frequency �̃=� / ��T,i /qR� is taken for the abscissa. It is
noted that �̃l=0,pas

�0→2� and �̃l=0,trap
�0→2� are comprised of various terms

of harmonic interactions ��̃=m�̃b�, which occur due to finite
orbit effects. A sum over harmonics −6�m�6 was taken,
before being shown in Fig. 2.

A general feature is that the polarizations are positive
and small in the high frequency range and negative and large
in the low frequency range. The latter range is discussed in
Sec. III D in more detail.

The fact that the circulating time of passing particles is
shorter than the bounce times of trapped particles suggests to
us that trapped particles give dominant effects in low fre-
quency range and passing particles dominate in the high fre-
quency range. This trend is seen in Fig. 2; the contribution of

trapped particles to the polarization in GAM frequency range
��̃�2� is less than half that of the passing particles, where
the population of trapped particles are larger than that of
passing particles when �=0.2.

2. The second-order density perturbation due
to „first-order… nonuniform field

The nonuniform field �̃l
�1� is created by �̃l=0

�0� due to the
up-down asymmetry of the density perturbation caused by
geodesic curvature as was pointed out in Ref. 26. We write
�̃l

�1� separating it into contributions from passing and trapped
particles:

�̃l
�1� � �̃l

�1�,pas + �̃l
�1�,trap. �52�

Figure 3�a� shows �̃l
�1�,pas versus �̃ for several values of po-

loidal mode number l; it is found that �̃l
�1�,pas becomes

smaller, in GAM frequency range at higher values of l. How-
ever, two modes �̃l=±2

�1�,pas, and �̃l=±3
�1�,pas cannot always be ig-

nored depending on frequency range. Similarly, Fig. 3�b�
shows the asymmetric potentials caused by trapped particles,
�̃l=±1

�1�,trap, �̃l=±2
�1�,trap, and �̃l=±3

�1�,trap. It is found that trapped particle
creates larger �̃l=±1

�1� harmonics than passing particles, and
�̃l=±2

�1�,trap has an amplitude comparable to that of �̃l=±1
�1�,trap in the

GAM frequency range. This is due to the localized response
of the trapped particles to the uniform field �l=0

�0� localized in
the larger major radius board. Given the first-order potential
field �̃l

�1�, the second-order polarization �̃l
1→2 is obtained

from Eq. �51� taking the ns=1 term, of which �̃l=0
1→2 is the

other basic component in the zonal flow dynamics. In Fig. 4,
�̃l=0

1→2 is shown separated into contributions by passing par-
ticles ��̃l=0,pas

1→2 � and trapped particles ��̃l=0,trap
1→2 �. We find the

contribution of trapped particles is smaller than that of pass-
ing particles, similar to the situation that we see in the re-
sponse of ions to the uniform field. However, there is a no-
table difference in their mechanisms: for passing particles,
the resonant interaction occurs at �̃= �l�−m��̃b, of which
l��̃b is due to Doppler shift in the nonuniform field and
−m�̃b is due to the neoclassical harmonic resonance. For
trapped particles, only the latter ��̃=−m�̃b� takes place even
in response to the nonuniform fields �l��0�.

FIG. 2. Second-order polarization �̃l=0
�n=2� induced by uniform potential field

�̃l=0: The polarization is separated into contribution by passing �̃l=0,pas
0→2 and

trapped �̃l=0,trap
0→2 particles ��sum

0→2= �̃l=0,pas
0→2 + �̃l=0,trap

0→2 �.
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3. GAM described with parabolic response function

These two n=2 terms of polarizations �̃l=0
0→2and �̃l=0

1→2 are
gathered to give charge neutrality

kD,i
2 �p

2��̃l=0
0→2 + �̃l=0

1→2��l=0
n=0 + �ext = 0, �53�

yielding the following parabolic response function and dis-
persion relation

�l=0
n=0 = R�ext, R =

1

D
, �54�

D = kD,i
2 �p

2��̃l=0
0→2 + �̃l=0

1→2��l=0
n=0 = 0. �55�

Figure 5 shows the way the frequency of GAM is determined
with the parabolic dispersion relation Eq. �55�; the sum of
the second-order polarizations �̃l=0

�2� = �̃l=0
�0→2�+ �̃l=0

�1→2� is shown

in the figure with classical term �̃l=0,clas
�0→2� restored. The GAM

frequency is determined as �̃ where the abscissa is crossed
by this curve as indicated with labeled “A” ��̃= �̃A�. Thus,
we obtain �̃GAM= �̃A�5.8, which is interpreted as �GAM

�1.9��T,i /R� when we use the value q=3. This value is not
much different from those obtained in previous papers.23–28

Shown in Fig. 5 with a broken line is the polarization due to
the nonuniform field �̃l=0

�1→2�. If this part is ignored we obtain
the other curve shown by the solid line, which crosses the
abscissa at a lower frequency, i.e., �̃= �̃B�3.8, as indicated
with the arrow labeled “B,” which is interpreted as �GAM

�1.3��T,i /R� with q=3. This significant reduction in �GAM

suggests that, in the present model eliminating the constant
velocity approximation, the nonuniform potential field is
larger than in conventional kinetic models due to the reduc-
tion of −D̃�

approx. For this reason, the parabolic response func-
tion gives, numerically, a similar frequency to previous the-
oretical results23–28 even though trapped particle contribution
is small.

D. The fourth-order polarization and quadratic
dispersion relation

It is found from Eq. �51� that fourth-order polarization is
comprised of four terms, i.e., �̃l=0

�n=4�= �̃l=0
0→4+ �̃l=0

1→4+ �̃l=0
2→4

+ �̃l=0
3→4, which are caused, respectively, due to uniform field

�̃l=0 and nonuniform potential fields �̃l�0
�1� , �̃l�0

�2� , and �̃l�0
�3� . As

shown in Fig. 6, they have comparable sizes and therefore
none of these terms can be ignored. It is noted that their sum
�̃l=0

n=4 changes sign in this calculation at label “C” ��̃� �̃C

�5.5�; i.e., for q=3, ��1.8��T,i /R�.

FIG. 3. The first-order nonuniform potential �l�0
�n=1� generated by zeroth-

order uniform field �l=0
�n=0�: �̃l�0

�n=1� is plotted vs �̃ for several mode number of
l: �a� the part contributed by passing particles and �b� the part contributed by
trapped particles. The trapped particles give larger contributions than pass-
ing particles in generating �̃l

�1� for higher poloidal mode number l�1.
�Imaginary unit �−i� is multiplied by �̃l�0

�n=1� on display so that it has real
values.�

FIG. 4. The second-order density perturbation �̃l=0
�n=2� generated by nonuni-

form first-order potential field �̃l�0
�1� : The contributions by passing particles

�̃l=0,pas
1→2 and trapped particles �̃l=0,trap

1→2 are shown together with their sum
�̃sum

1→2= �̃l=0,pas
1→2 + �̃l=0,trap

1→2 . Polarizations in this class are predicted to be larger
due to the enhancement of nonuniform field, which is attributed to absence
of trapped particles in parallel charge screening.

FIG. 5. Determination of GAM frequency with the parabolic dispersion
equation: The induced charge �̃l=0

�n=2�= �̃l=0
0→2+ �̃l=0

1→2+ �̃l=0,clas
0→2 is plotted vs �̃.

�̃l=0
0→2, and �̃l=0

1→2 are the second-order polarizations caused by zeroth- and
first-order potentials. The GAM frequency is determined as that where this
curve crosses the abscissa; in the figure ��̃= �̃A� is the solution. In the
reference calculation performed without �̃l=0

1→2, the solution is obtained at
lower frequency ��̃= �̃B�. Thus, enhanced �̃l=0

1→2 in the present model com-
pensates the reduction in �̃l=0

0→2 and a similar frequency of GAM is predicted
to that of conventional theories.
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Adding this fourth-order polarization to second-order
equation Eq. �53�, we obtain the charge neutrality equation in
the following form,

kD,i
2 ��p

2��̃l=0
n=2��l=0

n=0 + �p
2��̃l=0

n=4��l=0
n=0� + �ext = 0, �56�

which gives the fourth-order �or quadratic� response function
and dispersion relation

�l=0 = R�ext, R =
1

D
, �57�

D = kD,i
2 �p

2���̃l=0
n=2� + �p

2��̃l=0
n=4�� = 0. �58�

The expected form Eq. �3� is obtained by writing a−b��̃�
= �̃l=0

n=2 and c���= �̃l=0
n=4. Equation �58� gives a solution

�p
2 = �Ik	�T /�c�2=−�̃l=0

n=2��� / �̃l=0
n=4���, that is,

k̃�
2 = �k��T/�c�2 = − ��

q
�2 �̃l=0

n=2��̃�
�̃l=0

n=4��̃�
�59�

in terms of new normalization with respect to Larmor radius.
Now the GAM frequency is a function of wave number

as shown in Fig. 7. It is found that the GAM has two fre-
quency bands of propagation �k̃�

2 �0� for fixed radial posi-
tion 	: Band I is above �̃A�5.8, where �̃l=0

n=2��̃A�=0 and
Band II is below �̃C�5.5, where �̃l=0

n=4��̃C�=0. From inspec-
tion of Fig. 7, these frequencies are identified as the cutoff
and resonance frequencies of GAM: �̃cutoff= �̃A and
�̃resonance= �̃C. The frequency conventionally quoted as
“GAM frequency” corresponds to the cutoff frequency
in terms of the quadratic dispersion relation. Since
�T=�T�T�	��, which decreases with increasing minor radius,
these two bands in frequency �̃ are alternatively interpreted
as two propagating zones in 	. In Band I, the GAM can
propagate in the region outside the cutoff layer �	�	A

=	cutoff� for given �̃, which is in agreement with the obser-
vations in Refs. 3 and 16. Such propagation of GAM waves
may be actually taking place both in simulations and experi-
ments. However, some interpretation is needed in relating
these two bands to experimentally observed GAM, for the
latter is localized in a narrow zone of a few times ion Larmor
radius; possible interpretation is that GAM with frequency �̃

is condensed and observed at certain positions in minor ra-
dius. The cutoff and resonance layers may be candidates to
represent Band I and Band II, respectively. A problem in
relating cutoff frequency to observed GAM frequency is that
wave length generally is long at cutoff layers. In Band II,
GAM can propagate inside the resonance layer �	�	C

=	resonance�. Therefore, the problem that theories predict
GAM frequencies higher than experimental ones will be
naturally resolved by relating �Band-II� to experimental ob-
servations. The general feature that the wavelength is short
around resonance points is also a good material in making
this correspondence, for GAM is reported to be localized in a
thin layer.

�On the contrary, WKB gives the opposite view to the
above discussion, for amplitude of waves generally decrease
and increase in the vicinity of resonance and cutoff points,
respectively. However, the validity of WKB around reso-
nance and cutoff points should be suspect because it should
be taken into consideration that all the up-stream excited
GAM waves are summed in a statistical manner at resonance
layer.�

These bands of propagation depend on the relative posi-
tion of 	̃cutoff and 	̃resonance layers, topologically. We have
seen in Figs. 3�a� and 3�b� that first-order potential has sub-
stantial poloidal spectrum spread, due to neoclassical mode
coupling; this spectrum spread is amplified in each step of
ns. The frequency dependence of �̃l=0

n=4��� is realized as inte-
grated effects of poloidal spectrum spread in �̃l

�n� and
�̃resonance�↔	̃resonance� is very sensitive to their balance. In
Figs. 1 and 5, we have seen that the �̃cutoff�↔	̃cutoff� is de-
termined by combined effects of parallel and perpendicular
dynamics where passing and trapped particles play different
roles. Therefore, consideration of full finite orbit effect is
important in the GAM frequency range as well as in the
lower frequency range. If the GAM propagates transporting

FIG. 6. The fourth-order polarizations �̃l=0
0→4, �̃l=0

1→4, �̃l=0
2→4, �l=0

3→4, are plotted vs
�̃: these terms are respectively due to zeroth- through third-order fields �̃l

�0�,
�̃l

�1�, �̃l
�2�, and �̃l

�3�. The sum of these terms, i.e., �̃l=0
n=4,sum= �̃l=0

0→4+ �̃l=0
1→4

+ �̃l=0
2→4+ �̃l=0

3→4, crosses the abscissa at label “C” ��̃= �̃C�; this frequency is
interpreted as resonance frequency, i.e., �̃= �̃resonance, in Fig. 7.

FIG. 7. Dispersion relation of the zonal flow with quadratic dispersion re-
lation: Squared radial wave number k̃�

2 is plotted vs �̃; GAM frequency is
given as a function of wave number in quadratic dispersion relation reveal-
ing its propagating nature. Due to the presence of resonance and cutoff
frequencies, i.e., �̃= �̃resonance= �̃C and �̃= �̃cutoff= �̃A, GAM can propagate
in two separate frequency bands: Band I and Band II. Considering relation
ship of � with respect to �T�T�	�� /qR, these two bands are translated into
two propagation zones in minor radius �	�.
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energy as predicted in this analysis, the expected role, an
energy reservoir in interplay with turbulence, will require
reconsideration.

E. Characteristics of the response function
at low frequency

Constant velocity approximation eliminated, the present
formulation gives a unified expression of the response func-
tion for low frequency stationary zonal flows right through
GAM frequency ranges. Its general form has been given in
Eqs. �41�, �55�, or �58�. Since we have been looking into the
GAM frequency range in the previous sections, figures were
out-scaled in the low frequency range. The second-order per-
turbation �̃l=0

2 = �̃l=0
0→2+ �̃l=0

1→2 is shown rescaled in Fig. 8�a�,
facilitating comprehensive views in all frequency ranges.
Apparently, the response of plasma is much larger in the
lower frequency range than in the GAM frequency range.
The polarization crosses the abscissa twice: the cross at
higher frequency corresponds to the ordinary GAM �cutoff�
and the cross at lower frequency may give another kind of
GAM, though the latter is heavily damped. At the low fre-
quency limit the polarization takes a constant value with
negative sign. This form of response is understood as “neo-
classical polarization” of low frequency definition; in this
paper we have been referring to the induced charge as “po-
larization” in all frequency ranges. The latter is now under-
stood as generalized “neoclassical polarization,” for it is due
to finite orbit effects. In Fig. 8�a�, �̃l=0

1→2 is shown for refer-
ence, manifesting that it diminishes at the limit of �̃→0. We
find thus that the nonuniform fields do not contribute in the
neoclassical polarization of narrow definition. In Fig. 8�b�,
�̃l=0

0→2 is shown decomposed into its parts contributed by pass-
ing particles and trapped particles. In Figs. 2 and 5 we have
seen that trapped particles gives, in the GAM frequency
range, smaller contributions normalized to their populations
than passing particles. Contrary, at the limit of �̃→0,
trapped particles give larger contributions than passing par-
ticles. In Fig. 8�b�, classical polarization is also shown; we
find �̃l=0,pas

0→2 →0.02, �̃l=0,trap
0→2 →0.06, and �̃l=0,clas

0→2 →0.0022 at
the limit of �̃→0.

Using these values and parameters in calculation
�q=3,�=0.2�, we obtain

�̃l=0,clas
0→2 + �̃l=0,trap

0→2 = �̃l=0,clas
0→2 �1 + 1.88�q2/���� , �60�

which agrees fairly well with the analytical result obtained
by Hinton and Rosenbluth in Ref. 19 and 20, where
�̃l=0,trap

0→2 / �̃l=0,clas
0→2 =1.6 is given in place of 1.88. The former

value has been confirmed over a rather wide range of � �see,
for example, Ref. 15�. This difference becomes smaller at
smaller values of �; we obtain �̃l=0,trap

0→2 / �̃l=0,clas
0→2 �1.73 for

�=0.1 and �̃l=0,trap
0→2 / �̃l=0,clas

0→2 =1.64 for �=0.05, which ap-
proaches 1.6 exactly in the limit of �→0. By using Eqs.
�16�–�19�, �23�, �24�, and �44� in Eq. �51�, we obtain, in fact,
exactly the same form as that suggested in Ref. 19 and 20:

�̃l=0
�n=2� = D̃n=2,l=0,l�̃l=0 = −

1

2�ḡ
� dl

B̃
	 d3��� �̃����

�̃c���
�2

− � �̃����
�̃c���

�2

+
1

2
� �̃����

�̃c���
�2� . �61�

Thus, this response function is an appropriate extension of
the R -H response function to higher frequency range includ-
ing GAM.

IV. DISCUSSION

In this work, we combined DKE by with the well known
classical polarization. The classical and neoclassical terms
are symmetric in the expression of induced polarization; i.e.,
up to the fourth order in �p, we have

�̃l=0 = ��/q�2�p
2��̃l=0,clas

0→2 + �̃l=0,neo
0→2 � + �p

4��̃l=0,clas
0→2 + �̃l=0,neo

0→4 � .

�62�

The procedure for calculating neoclassical �FOE� terms is
analogous to that used in calculating classical �FLR� terms.
In calculating neoclassical term, the following “sum-rule” is
found to hold with respect to the temporal and spatial Fourier
components Ĩm1,m

j and �ns,m1,−m,l−l�
j :

FIG. 8. The second-order polarization in the low frequency range: �a�
second-order polarization �̃l=0

�n=2�= ��̃l=0
�0→2�− �̃l=0,clas

�0→2� �+ �̃l=0
�1→2� is plotted vs �̃;

the classical part is subtracted in order to see only neoclassical part. The
other trace shows �̃l=0

�1→2� for comparison; this term is found to be small in the
limit of �̃→0. �b� Decomposition of the polarization �̃l=0

0→2 into those carried
by passing particles, �̃l=0,pas

0→2 and trapped particles, �̃l=0,trap
0→2 . Inequality

�̃l=0,trap
0→2 ��̃l=0,pas

0→2 holds in the limit of �̃→0; i.e., neoclassical polarization is
dominated by trapped particles. The horizontal straight line is �̃l=0,clas

0→2 in
comparison to other terms, where we find that the ratio of neoclassical
polarizations to classical polarization is of the order of q2 /��.
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�
m�0

�
0�m1�ns

Cns,m1
�− 1�ns−m1 · Ĩm1,m

j �ns,m1,−m,l−l�
j = 0, �63�

which, when substituted into Eq. �36�, gives the following
form:

D̃ns,l�,l−l� � �
m�0

�
0�m1�ns

Cns,m1
�− 1�ns−m1 · Ĩm1,m

j


�ns,m1,−m,l−l�
j Bns,l�,−m

j

= �
m�1

�
0�m1�ns

Cns,m1
�− 1�ns−m1 · Ĩm1,m

j


�ns,m1,−m,l−l�
j �Bns,l�,−m

j − Bns,l�,−m=0
j � . �64�

Though limit�̃→ Bns,l�,−m
j →0 does not always hold,

limit�̃→�Bns,l�,−m
j −Bns,l�,−m=0

j �→0does hold so that the fun-
damental requirement that the response of the plasma dimin-
ishes in the limit of �̃→ is satisfied. This property was
used for numerical accuracy check in the computation.

As a part of this work we are motivated to assess the
existing difference between the empirical GAM
frequency29–38 �exp=��Ti+Te� /mi and theoretical predic-
tions: MHD3,22 and kinetic.23–28 Theory predictions are
�MHD=�2��5 /3�Ti+Te� /mi and �kinetic=�2��7 /4�Ti+Te� /mi,
respectively. Assuming that Te�Ti, we summarize these re-
sults as follows: �exp��T,i /R, �MHD��kinetic, and �theory

��2.7�exp.
Notwithstanding that the present model gives a quite dif-

ferent picture for large values of ����0.2�, its GAM fre-
quency prediction is not much different from conventional
theories in the frame work of parabolic response function.
This was discussed in Sec. III C in terms of the creation of
nonuniform potential. The quadratic response function ex-
plored in the present paper suggests the presence of two
bands in GAM, Band I located at higher frequency range
than Band II. The GAM frequency discussed above, in this
view, is identified as the cutoff frequency, which bounds
Band I at low frequency. Similarly, Band II is bound by a
resonance frequency �or layer� at high frequency. Thus, the
propagation of GAM is characterized by cutoff and reso-
nance pair that may be modeled by a Budden’s equation;
their distance is considered to affect the GAM dynamics.
With a smaller value of ���=0.1�, the distance between these
resonance—and cutoff—layers are further apart than in the
case of ��=0.2�. Thus, Band II is taken as one of the candi-
dates to account for the experimental GAM frequency. The
depicted propagating nature of GAM is important in study-
ing the interplay between the drift wave turbulence and zonal
flows. For example, a transport barrier, which is character-
ized by a high temperature gradient, will provide all up-
stream �small minor radius region� excited GAMs with
closely packed resonance layers. Such layers will work as a
bank stopping propagation of GAMs; GAMs will dissipate
their wave energy there affecting transport.

Finally, a few comments are made regarding the approxi-
mations employed in this paper. In order to simplify the cal-
culations, only real part of response function was treated in
this paper utilizing only the real part of Zn+2���. In the inter-

mediate frequency range between GAM and stationary zonal
flows, calculations in full complex ���̃ plane would be
much more informative. We have employed an approxima-
tion equation �9� by assuming l�̃�t , t���k	�̃�t , t��; this ap-
proximation, however, is not essential. If this condition is
violated in considering zonal flows of longer radial wave-
length, one can calculate the Fourier component of Eq. �8�
directly and constitute an algorithm similar to that shown in
this paper. The other approximation was used in Eq. �54�,
with which a small part of mode coupling may be missing.
The missing part “mode coupling in parallel dynamics” is
retained if the algorithm introduced in Sec. III A is employed
and constitute an algorithm leading to Eq. �41�.

V. CONCLUSIONS

In this paper, a semi-analytic linear response function is
derived for investigations of zonal flows. The method of in-
tegrating along particle orbits is adopted without using any
approximations and unified expression is obtained valid in
all frequency ranges from the stationary zonal flow range to
the GAM range. The new formulation includes both zonal
flows in the framework of finite orbit effects, and reveals
important features in zonal flows which were missing in past
works based on constant velocity approximation.

It is found that neoclassical mode coupling is stronger
than it was when evaluated with this approximation and gen-
erates nonuniform poloidal modes in wider spectrum. Under
the separate treatment of passing and trapped particles, it was
found that trapped particles do not participate in the relax-
ation of up-down asymmetry and therefore the excited non-
uniform potential field is larger. These enhanced nonuniform
fields affect the prediction of GAM frequency in the para-
bolic dispersion relation.

The present formulation allows writing the dispersion
relation to any desired order of finite orbit parameter. The
fourth-order term is driven by potentials of various orders
spread in various poloidal harmonics. By solving the qua-
dratic dispersion relation it is found that there are two fre-
quency bands in GAM frequency range, which may aid in
interpreting the experimentally observed radial structure in
GAM. This unified response function is written in rather gen-
eral form and allows taking into account the geometrical
complexity of devices through metrics. Relations between
magnetic configuration, zonal flows, and transport improve-
ment may be interesting subjects for future research.
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