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Turbulent momentum transport given by the Reynolds stress is considered as a candidate for 
explaining the production and sustainment of the mean shear flow in the high confinement “(H)” 
mode. The fluctuation mechanism for the shear flow generation and transport reduction in the 
three-dimensional (3-D) multihelicity system is given. The profiles of the Reynolds stress, shear 
flow, and thermal flux in the 3-D case are compared with those in the two-dimensional (2-D) case. 
The Beklemishev-Horton theory for the anomalous transport which multiplies the 2-D transport by 
the density of distinct mode rational surfaces is found to overestimate the observed flux due to the 
disappearance of a subset of modes on certain rational surfaces. The mixing-length theory, in which 
the anomalous transport is independent of the density of mode rational surfaces, underestimates the 
thermal flux. 

I. INTRODUCTION 

In this work we are concerned with the problem of the 
interaction of multiple helicity modes as influenced by the 
mean shear flow generated through the resistive-g plasma 
turbulence. L* The rate of genera ti o n of the flow and the in- 
fluence of the mean shear flow in single-helicity resistive-g 
modes is investigated in Carreras et aL3 and Sugama and 
Horton.4 In those works it is demonstrated that the radial 
divergence of the turbulent flux of poloidal momentum 
p(G,V,), where p is the mass density, can produce a sharp 
transition to a lower level of turbulence with an appreciably 
lower thermal flux. In this single-helicity case a tangent 
hyperbolic-like mean E,xB flow profile is generated about 
the mode rational surface. The question arises as to how well 
this simple picture survives in the case of nearby coupled 
mode rational surfaces. Here we report that the description of 
the shear suppression changes as a function of the density of 
mode rational surfaces. 

A theoretical description of two limiting results for the 
transport as a function of the density of the mode rational 
surfaces is given by Beklemishev and Horton.’ We show 
here that the actual outcome for the dependence of the ther- 
mal flux 4 = (rj$) on the density of mode rational surfaces is 
bounded between the two theoretical idealizations for rea- 
sons that lie outside the scope of the idealized descriptions. 

The first standard model6 is that the thermal flux is in- 
dependent of the density of mode rational surfaces. The 
model assumes that as the number of modes in each radial 
interval increases, their amplitudes decrease such that there 
is an equipartition of the fixed total fluctuation energy to 
each mode. This may be called the equipartition model and is 
essentially the mixing-length model since that model does 
not depend on the density of states. 

The second alternative model, advanced by Beklemishev 
and Horton,’ is that the modes do not equipartition the avail- 
able fluctuation energy. This part of the Beklemishev- 

Horton model (hereafter called the BH model) model is 
borne out by the simulations presented here. 

The second assertion of the BH model is that each (dis- 
tinct) mode localized on its corresponding rational surface 
reaches roughly the same amplitude obtained in the single- 
helicity limit. The total thermal flux is thus approximately 
the density of distinct mode rational surfaces times the 
single-helicity flux. The idea of the BH model can be sup- 
ported if the single-helicity nonlinear self-interactions are 
much stronger than the interactions between modes with dif- 
ferent helicities. 

From the simulations reported here we see that this 
Beklemishev-Horton model is defeated (at least for the 
resistive-g turbulence considered here) by the fact that the 
nonlinear interactions between modes on neighboring ratio- 
nal surfaces are strong. In fact, in one case the interaction 
eliminates every other localized mode. In this case the com- 
puted flux is approximately one-half the BH value but still 
more than twice the equipartition value. These mode- 
interaction effects directly relate to the effectiveness of the 
generation of the mean shear flow since this flow generation 
process is also localized to the mode rational surfaces and 
would be reduced substantially in the standard models with 
the equipartitioning of energy on each rational surface. 

The work is organized as follows: In Sec. II we intro- 
duce the standard nonlinear partial differential equations for 
resistive-g turbulence and review the relation between the 
dimensional and dimensionless equations and variables. In 
Sec. III we present the simulation results for the single he- 
licity and multiple helicity simulations. In the multiple helic- 
ity problem three different densities of the mode rational 
surfaces are compared with each other and the single-helicity 
results. In Sec. IV the conclusions and observations are 
given. 

II. MODEL EQUATIONS 
In order to describe the resistive-g turbulence, we use 

the following equations2.4 for the electrostatic potential 
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Cp=&,+$ and th e pressure p= P,+j (the subscript 0 de- 
notes the background part and the fluctuation part) 

PmC a 
-&- -pv:+~;xvqbv qcp 

i 0 i 

= -2 q+(y !?$ , 

i 
&-xv:+~ixv~.v p=;p;1$, 

i 
(2) 

where Bu is the component of the static magnetic field along 
the z axis, p,,, the average mass density, c the light velocity in 
the vacuum, 17 the resistivity, p the viscosity, x the pressure 
diffusivity, Ph = dPo/dx (~0) the background pressure gra- 
dient, and fI’=dRldx (>O) the average curvature of the 
magnetic field line,2 Vl =a:+ d; denotes the two- 
dimensional Laplacian. The gradient along the static sheared 
magnetic field line is given by 

d‘vE= - ax(V,V,) + pa&. (8) 
Here -(~,~,)-(C4846><~&s>) P re resents the Reynolds stress 
caused by the potential fluctuations and ( . ) 
= (L,L,)-‘~~Y dy ,kZ dz is the average on the (y,z) sur- 
face with the periodic lengths L, and L,. Equation (8) fol- 
lows from averaging Eq. (5) over y and z, integrating once in 
x, and using uE(x,t)= d&(x,t)ldx, where 4 is y-z average 
of ~$(x,y ,f). The Reynolds stress term in Eq. (8) is derived 
from the average of the nonlinear term in Eq. (5) as 

<[~,vl~l>=<v*.r~,v*~l> 

=a,(a,{(a,~)(a,i)}-a,{(a,i)(a,i)}) 
= - &+m,&>. 

In deriving Eq. (8) from Eq. (5), an integration in x is per- 
formed and we put the constant of integration as zero. 

d x d 
YI=& +L,dy* (3) Ill. SIMULATION RESULTS 

Here Bo, L,, pm, 7, x, f’&, and R’ are assumed to be con- Equations (5) and (6) are numerically solved in the 
stant since we treat a local transport problem. The electro- sheared slab configuration. Hereafter, we consider the hydro- 
static approximation is used in Eqs. (1) and (2) since we gen plasma in the peripheral region with the parameters 
consider the low-beta plasma in the peripheral region. given by 

The dissipation coefficients ,U and x are included to give 
an energy sink in the high wave number region, which is 
necessary for the turbulence saturation. We consider that they 

B=l T, T,=Ti=50 eV, n,=1X10’9 mm3, 

L,= 1 m, L,2/LAC=10. (9) 
are dominated by the ion-ion collision and given by the 
classical or neoclassical expressions. 

In this case, Eq. (4) gives 

Hereafter we use the resistive-g units given by [t]=3.2x10-6 s, [~]=1.3XlO-~ m, 

[t]=(-P~n’Ipm)-1’2=JL_pLcIvT, [z]=l m, [p]=[x]=[x]2/[t]=5.0X 10e3 m2/s. 

[x]=[y]=cL,?+‘+p,P;R’)“4/Bo 
(10) 

Then using the Braginskii ion classical viscosity and thermal 

=Ls(veVr10ceWciJ)“2, 
diffusivity, the normalized dissipation coefficients in Eqs. 
(5), (6), and (8) are given by 

Ezl=L,, II2 (T,/Ti)‘12 LAC 
[~]=[x]=c[~1/Bo=[X]2/[tl=C2~(-P~)~’L,21B~ l+T./T L” =“” (11) 

I e s 

[PI = CXXI~ 
=D&:IL&L,), II2 ( TilTJlf2 LpLC 

(12) 
(4) 

(1 +T./T I e )2 7 =2.2. s 

where v,=n,e2~lm, is the electron collision frequency, 
D,,=c2vPOfB; the classical diffusivity, u,, = eBo/mec, 
wci = eB lm .c 
= J(T,, ~~1,~~~~~ = ?y;ze;hen i,’ 
obtain model equations in nondimensional variables from 
Eqs. (1) and (2) as follows: 

It should be noted that the normalized dissipation coeffi- 
cients are independent of the magnitudes of the magnetic 
field, density, and temperatures and determined by the geo- 
metrical factor L2/LAL, and the ratio between the ion and 
electron temperat&es. 

The potential and pressure fluctuations are Fourier ex- 
oanded as 

1:; A (i) = 2 [ ~~~~~~]exp[ Z,i( E +:)I, (13) 

where where L v and L , denote the maximum poloidal and toroidal 

v,,=dz+xdy, V,gl=(4.f H~ygH4d(~yf 1. (7) 
wavelength. Since the value of the minimum poloidal wave- 
length LJM (M: the maximum ooloidal mode number) are 

The equation for the background poloidal flow vE=d+o/dx 
is derived from Eq. (5) as 

determined by requiring that the dissipation coefficients ,u,x 
yield a strong short wavelength damping, the maximum po- 
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loidal wavelength L, used in the simulations is limited by the 
maximum number of modes admitted by the computer 
memory. A typical value employed here is L,/2~=20, which 
corresponds to a poloidal wavelength of 1.6 cm, i.e., 22 
times larger than the ion thermal Larmor radius for the 
plasma parameters in Eq. (9). 

We put the boundaries at x = 2 a, which are chosen such 
that the fluctuations are damped enough by the magnetic 
shear before reaching them. We employ the boundary condi- 
tions given by 

$=a,‘$=$=0 (at x=+a). (14) 

Since we are concerned with the background shear flow pro- 
duction due to the Reynolds stress, we neglect the quasilin- 
ear pressure flattening implied by the y-z average of Eq. (6), 
that is, take &,,,=O). This fixing of the background pressure 
gradient to the value of l/L, which appears as unity in the 
coefficient of the $4 term in Eq. (6) is a standard simulation 
procedure. The procedure of fixing the background pressure 
gradient is equivalent to the addition of a source heating term 
to the pressure equation that is such as to exactly Lance1 the 
y-z average of the [&P] term. This heating term is written 
as 4 = ([ $,p]) = dx(@jx). For reference, see Ref. 7. 

Figures l(a) and l(b) show the linear growth rates for 
the resistive-g mode under the background poloidal in the 
form of uE(x)= V, sin(rx/2a). Here a =30 is used, which 
is much larger than the mode width. The maximum vorticity 
(or shear) is given by VA = rrVo/2a. The dependence of the 
growth rates on the poloidal wave number k,,=2rrmlL, is 
shown for VA = 0,0.3,0.6 in Fig. l(a) and that on VA for the 
minimum wave number k, =0.05. We can see that the system 
is completely linearly stable for V(, Z 0.56. It should be 
noted that, due to the radial symmetry of the system, the 
stability and the growth rates are independent of the sign of 
VA . 

A. Single-helicity simulations 

Here the results of the single-helicity nonlinear simula- 
tion are described for comparison with those of the multihe- 
licity case as shown later. The shear flow generation in this 
case was already reported in our previous paper. There it was 
shown that the vortex tilting in the resistive-g mode under 
the small shear flow gives the Reynolds stress which pro- 
duces the large shear flow and the resultant turbulence sup- 
pression. It was also shown that the shear flow generation by 
the Reynolds stress is more effective when the viscous 
damping of the background flow is weaker. 

In Eq. (13), L,=2OX277 and a =30 is used for the maxi- 
mum poloidal wavelength and the modes with Irn 1~12 and 
n =0 are included. Here ]m( ~6 corresponds to the linearly 
unstable modes. In this case, we obtain the multiple saturated 
states which depend on the initial conditions. This depen- 
dence is similar to the results of Carreras et al3 In the satu- 
rated states, a certain linearly unstable mode dominates all 
other modes and its poloidal mode number characterizes the 
saturated state. It is found in the simulations that the smaller 
the dominant poloidal mode number is, the larger the satura- 
tion level becomes, even if the linear growth rates are de- 
creased for lower mode numbers. Figure 2 shows the time 

(a) k,=2 n m/L, 

I I I I I 

I b I 1 I 

0 0.2 0.4 0.6 

FIG. 1. The linear growth rates for the resistive-g mode under the back- 
ground poloidal flow. (a) Dependence on the poloidal wave number k, for 
different values of the vorticity (or shear) V; : Vh = 0 (no background flow 
case), 0.3 and 0.6. (b) Dependence on Vi in the case of k,=0.05. 

evolution of the kinetic energy and the turbulent transport in 
the case where the mode with the lowest poloidal mode num- 
ber, i.e., m = 1 is dominant. 

Here it should be remarked that, for more strongly tur- 
bulent states, the energy tends to concentrate on the lowest 
number mode through the inverse energy cascade process. 
As an example, Fig. 3 shows the time evolution of the kinetic 
energy in the case where L,= 10013X27r is used. In this case, 
both the total mode number and the linearly unstable mode 
number are 5/3 times larger than in the case of Fig. 2, and the 
more turbulent behavior is realized. In Fig. 3, perturbations 
with the same kinetic energy and a random phase relation are 
initially given to all the single-helicity modes and the back- 
ground flow is fixed as uE=O. Then, the most unstable mode 
(m=5) grows into the dominant mode in the first saturated 
state although we finally have the saturation with the m = 1 
mode dominant. Thus as far as no additional damping term 
for lower wave numbers is assumed in the model equations 
(5) and (6), the m = 1 mode (or the largest poloidal wave- 
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FIG. 2. The time evolution of the kinetic energy g(u’)d~ (top) and the 
convective transport J&i,)dx (bottom) in the single-helicity case with 
L,/27r=20. Here the m=l mode is dominant in the saturated state. The 
background flow us is fixed as us=0 for O<t<lOOO and us is given by 
solving Eq. (8) for t>lOOO. The background flow kinetic energy (m=O) as 
well as the dominant mode (m = 1) kinetic energy is plotted. 

length mode) dominates the final saturated state in the 
strongly turbulent system using the larger values for L, . 

We consider the m =l mode dominant case shown in 
Fig. 2 as a standard single-helicity result for L, /2rr=20 for 
comparison with the multihelicity cases. In Fig. 2, the back- 
ground flow is fixed as uE=O for O<t<lOOO in order to 
obtain the L-mode type saturation while uE is given by solv- 
ing Eq. (8) for t>lOOO. At t-1800 with some delay after the 
change of the simulation conditions we see the low “(L)” to 
high “(H)” L-H confinement mode transition, i.e., the gen- 
eration of the background shear flow (m=O) and the reduc- 
tion of the fluctuation and transport. Figure 4 shows radial 
profiles of the convective profile @,) at the L mode (a solid 
line, t= 1000) and the H mode (a dashed line, t =3000) 

FIG. 3. The time evolution of the kinetic energy ~J(u2)& in the single- 
helicity case with L,Rrr=100/3. Here initial perturbations with the same 
kinetic energy and a random phase relation are given to ail the single- 
helicity modes and the background Row is fixed as us=0 all the time. 

~~~‘1.5 m*/s for the L mode and xth= 1.0 m*/s for the H 
mode. Radial profiles of the background shear flow and the 
Reynolds stress (fiXi;,) in the H-mode phase (t =3000) are 
shown in Figs. 5(a) and 5(b), respectively. The flow profile is 
an odd function of x similar to the hyperbolic tangent. The 
maximum value of the shear or the vorticity is uL(x 
= 0) = 0.62, which is larger than the critical value for the 
linear stability 0.56. Since the signs of u;(x) and (U,U,,) are 
the same, the energy transfer is from the fluctuation to the 
background flow, at the rate given by (C,rj,,)v~ > 0. Thus in 
the H mode, the fluctuation level is lowered through the Rey- 
nolds stress transferring the fluctuation energy to the back- 
ground mean shear flow kinetic energy. That is, the IIuctua- 
tions transport the PuE momentum up the uE gradient in 

200 I I I I I 

d t=1000 
X 

h t=3000 /\ 
\ 

:I A 

100 I \ 
\ 

I I 
I 

\ 
\ 

! 
I 
! i 

0 -1 // ‘L - I I I I I 1 

-20 0 20 
phases in the case of Fig. 2. The turbulent transport is re- 
duced to a factor of 2/3 by the L-H transition. If we esti- X , 
mate the anomalous thermal diffusivity by ,&= &%,),,X/ 
( - PA) and express it dimensionally, we obtain from Fig. 4 

FIG. 4. Radial profiles of the convective flux (fit?,) for I = 1000 (a solid 
line) and t=3000 (a dashed line) in the case of Fig. 2. 
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VE o() 

(a) 

FIG. 5. Radial profiles of (a) the background poloidal flow uE(x) and (b) 
the Reynolds stress (i;,fiY) at the time t=3000 in the case of Fig. 2. 

contrast to collisional viscosity which always transport the 
momentum down the gradient [(u,~,,)~“%~= - p(d~~/ 
dx)’ < 0, where /J is the positive definite collisional viscos- 
ity]. 

The linear resistive-g modes in the absence of any shear 
flow have a symmetry in the radial structure such that a 
single, isolated mode cannot produce a radially asymmetric 
shear flows. However, we find in Figs. 2, 4, and 5 that the 
transition from the initial radially symmetric state with no 
flow to the final asymmetric state with the shear flow, which 
is a typical example of a spontaneously broken symmetry. 
The asymmetry in the radial mode structure is caused by the 
nonlinear interaction between the modes with different 
phases. The property of the radial symmetry in the 
resistive-g modes is reflected by the fact that both signs of 
the flow shear are realized with the same probability. In our 
previous work4 we showed that the key parameter for the 
L-H transition is the shear flow damping coefficient and that 
the transition to high-shear flow-low transport occurs when 
the damping coefficient is smaller than some critical value. 

B. Multihelicity simulations 

In the multihelicity simulations we use the same values 
for p, x, and L, as in the single-helicity case shown in Fig. 2. 
In all the multihelicity simulations, we include the modes 
with ]m 1~11 and In) c 2m. Thus the number of modes with 
the largest poloidal wavelength, i.e., the m = 1 modes, is five 
(n =O,tl,t2). Initially, perturbations with the same kinetic 
energy and the random phase relation are given only to the 
m=l modes in order to obtain the saturated state with the 
m = 1 modes dominant, compared to the single-helicity result 
in Fig. 2. Another important parameter in the multihelicity 
cases is the maximum toroidal wavelength L, in Eq. (13). 
The positions of the rational mode surfaces are represented 
by x= -(Ly/L,)(n/m) and therefore the interval between 
the m = 1 modes is given by A=L,IL, . [Here it should be 
noted that the magnetic shear length L, is unity in our units 
(4). The density of states for a general q(r)= rB,/RBo pro- 
file from Eq. (6) of Ref. 5 is pm(r)=m61q’l/rr2q2 where 
6/&0.608 is the fraction of irreducible mode rational sur- 
faces with given m = k,r mode number. Locally this density 
is l/A for m = 1 in the present simulations with constant L, .] 
From Fig. 4, the radial width W of the m = 1 mode is roughly 
given by W=20. In order to examine the dependence of the 
transport on A, we use three different values for L,, i.e., 
L,/2rr=1,4l3,8/3 which correspond to A=20,15,7.5, respec- 
tively. It is expected that the overlap or direct interaction 
between the adjacent m =l modes is weak for A=20, mod- 
erate for A=15 and much strong for A=7.5. 

Figure 6 shows the time evolution of J&(V*) and 
sdx@,) in the multihelicity cases of A=20,15,7.5. Here 
the background flow is fixed as uE=O and we also plot the 
kinetic energy and transport in the case of Fig. 2 multiplied 
by five for comparison. We can see that the turbulence level 
in the multihelicity case is lower than predicted from simple 
superposition of the independent single-helicity subsystems 
which is given by the dashed line at 5X200=10 000. The 
turbulent transport per active, single m = 1 mode remains 
about the same (-150-200 for the three active modes) but 
the multihelicity interactions suppress two of the five modes. 
Figure 7 shows radial profiles of the convective flux (PC,) 
for the three multihelicity cases in Fig. 6 at the saturated 
states. For A=7.5, the profiles of the two modes with m = 1 
and n = 2 1 almost disappear in contrast with the dominant 
contributions from the modes with m = 1 and n =0,+2. In the 
multihelicity cases, we find that the large vortices with low 
poloidal mode numbers suppress their neighboring modes. 
Then, we can find only one peak within the width W of the 
m = 1 modes, i.e., when the m = 1 modes exist inside the in- 
terval W, only one of them survives. The reason that the total 
turbulent kinetic energy and transport decreases for smaller 
A is this annihilation or damping of some m = 1 modes rather 
than a homogeneous decrease of each m =l mode energy. 
Thus when the interactions between modes with different 
helicities is large, the total transport is not simply propor- 
tional to the radial distribution density of the unstable modes, 
since they reduce the number of the modes with significant 
contributions to transport. The total transport is also not 
given by the model of equipartition in which all m modes 
share the same total fixed energy level (with that level given 
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FIG. 6. The time evolution of the kinetic energy 2(u2)dx (top) and the 
convective transport .f(@C,)dx (bottom) in the multihelicity cases with 
L,/2n-=20 for different values of the interval between the adjacent m=l 
modes A: A=ZO, 15, and 7.5. Here the modes with Irnl~ll and ln1<2m are 
included and perturbations with the same kinetic energy and the random 
phase relation are initially given only to the m=l modes (n=O, irl +2). 
The background flow uE is fixed as vE=O. Dashed lines represent the kinetic 
energy and transport in the single-helicity case of Fig. 2 multiplied by 5. 

by the mixing-length formula for example). The situation as 
described here is a more complex one with the total transport 
level lying between these two extreme limiting models. The 
two limits are analyzed in Beklemishev and Horton,’ but the 
disappearance of some of the primary modes was not taken 
into account in the BH model. In the absence of shear flow 
generation the computed flux is approximately one-half the 
BH value and three times the single helicity value. 

Next, in order to investigate the shear flow generation by 
the Reynolds stress, we continue the simulations in Fig. 2 
with the temporal evolution of the background flow uE(x,t) 
included by solving Eq. (8). Figure 8 shows the time evolu- 
tion of the turbulent kinetic energy and transport, where the 
same results in Fig. 2 are plotted for OCtC500 and uE is 
allowed to evolve for t >500. The time evolution of the back- 
ground flow kinetic energy is also shown in Fig. 8 for the 
three cases of A=20,15,7.5. It is seen that the reduction of 

0 
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III II 1 I I I I I 
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00 

0 j!!!!L: 
-50 0 50 

X 

FIG. 7. Radial profiles of the convective flux ($UX) in the three cases of Fig. 
6 for t=500: (a) A=20, (b) A=15, and (c) A=7.5. 

the turbulent kinetic energy and transport accompanied by 
the background flow generation at t>500 is the most clear 
for A=7.5 and not so for A=15,20. Radial profiles of ($ti,), 
UE, (V,ii,) and (ti..$,)u~ in the cases of Fig. 8 are given in 
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FIG. 8. The time evolution of (a) the turbulent kinetic energy, (b) the back- 
ground flow kinetic energy, and (c) the convective transport in the multihe- 
licity case with L,/2rr=20 for A=20, 15, and 7.5. Here the same uE=O case 
results as in Fig. 6 are given for O<t<500. For t>500, ug is given by 
solving Eq. (8). 
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FIG. 9. Radial profiles of the convective flux (PV,) in the three cases of Fig. 
8 for t=500 (dotted lines) and t =1500 (solid lines): (a) A=20, (b) A=15, 
and (c) A=7.5. 

Figs. 9 and 10. The dashed line in Fig. 9 gives the thermal 
flux (62) calculated at t=500 where u,=O. 

As seen from Fig. 9, the peak values of (PC,.) at t = 1500 
(solid lines) tend to decrease for smaller A. Interestingly, in 
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FIG. 10. Radial profiles of (a) v,(x), (b) (tj,fi,), and (c) (fi,i;,)u; in the 
cases of Fig. 8 for t= 1500. 

the case of A= 15, the amplitudes of the m = 1 modes with 
n = t 1 increase and become comparable to those of the m = 1 
modes with n =0,?2. We argue that this reappearance of the 
n = SC 1 modes is because the background shear flow causes a 
narrower radial mode structure and less interactions of the 

m = 1 modes with different m’s. Due to this fact, the reduc- 
tion of the total turbulence level by the shear flow is not so 
clear for A=15 in Fig. 8. It is found from Fig. 10 that, 
compared to the case with A=7.5 and compared to the 
single-helicity case, the background flow profile for A=20 
has more radial oscillations and accordingly the radial profile 
of transfer rate (Vxi;y~L) of turbulent kinetic energy to the 
mean flow is oscillating around zero, which appears to ex- 
plain the difficulty with the shear flow suppression of the 
turbulent transport in the case of A=20. 

The poloidal acceleration by the Reynolds stress has the 
form of the radial derivative of the turbulent momentum flux. 
Therefore, by considering its radial integral, we find that the 
macroscopic variation of the poloidal flow with a large aver- 
age value can be produced by the Reynolds stress only when 
the difference between the Reynolds stress at the inner and 
outer boundaries is large. The simulation results are now 
understood by observing that the poloidal flows with macro- 
scopic shear profiles, which effectively suppress the turbu- 
lent transport, are produced by the single-helicity-like vorti- 
ces with large radial scale lengths rather than by radial arrays 
consisting of a large number of small vortices. 

IV. CONCLUSIONS 

Thus the principal conclusions from these multiple he- 
licity simulations of the resistive-g turbulent transport that 
include the generation of the background shear flow are as 
follows. 

(i) In the multihelicity case, the large vortices (or con- 
vective cells) with low poloidal mode numbers suppress 
other modes around them. Within the width of the m =l 
modes, there exists only a single peak in the convective flux 
profile even when there are mode rational surfaces within the 
mode width. Thus when the interactions between modes with 
different helicities are large, the total transport is not simply 
proportional to the radial distribution density of the unstable 
modes, since the neighboring interactions have essentially 
eliminated some of these modes. In an example given with 
AfW=7.5/20, every other mode has been eliminated by the 
multihelicity nonlinear interactions so that the thermal flux is 
about one half that obtained by multiplying by the density of 
states as given by the Beklemishev-Horton’ model. 

The transport is a function of the density of the rational 
surfaces in contrast to the equipartition description in which 
each mode would be diminished equally with increasing 
mode density. In the highest density of rational surfaces case 
the transport is approximately three times the equipartition 
level. 

(ii) When the number of vortices localized around dif- 
ferent mode rational surfaces is large, the Reynolds stress 
produces radially oscillating background flow profiles, and 
the associated profile of the energy transfer from the turbu- 
lent kinetic energy to the background shear flow also oscil- 
lates around zero. Then the transport suppression by the tur- 
bulence driven shear flow is weak. 

(iii) The simulations show that for the multiple helicity 
system the shear flow generation and turbulence suppression 
by momentum transport from p(ti,fi,) is more effective 
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when there exists strong nonlinear interactions so that a few The work was supported by the National Institute for 
low-order rational surfaces with large vortices dominate the Fusion Science, Toki, Japan, and U.S. Department of Energy 
turbulence as in the single-helicity case. Grant No. DE-FG05-80ET-53088. 

The 3-D-multihelicity enhancement of the thermal trans- 
port by a factor of approximately 3 is similar to the enhance- 
ment found in the ion-temperature gradient drift shear flow 
problem.8>9 
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