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Transport processes and resultant entropy production in magnetically confined plasmas are studied
in detail for toroidal systems with gyrokinetic electromagnetic turbulence. The kinetic equation
including the turbulent fluctuations are double averaged over the ensemble and the gyrophase. The
entropy balance equation is derived from the double-averaged kinetic equation with the nonlinear
gyrokinetic equation for the fluctuating distribution function. The result clarifies the spatial transport
and local production of the entropy due to the classical, neoclassical and anomalous transport
processes, respectively. For the anomalous transport process due to the electromagnetic turbulence
as well as the classical and neoclassical processes, the kinetic form of the entropy production is
rewritten as the thermodynamic form, from which the conjugate pairs of the thermodynamic forces
and the transport fluxes are identified. The Onsager symmetry for the anomalous transport equations
is shown to be valid within the quasilinear framework. The complete energy balance equation,
which takes account of the anomalous transport and exchange of energy due to the fluctuations, is
derived from the ensemble-averaged kinetic equation. The intrinsic ambipolarity of the anomalous
particle fluxes is shown to hold for the self-consistent turbulent electromagnetic fields satisfying
Poisson’s equation and Amms law. © 1996 American Institute of Physics.
[S1070-664X96)03206-5

I. INTRODUCTION for the neoclassical transport equations connecting the con-

Plasma transport of particles and heat in magneticall ugaFe pairs —even —in nonaxisymmetric  magnetic
onfigurations.

confined toroidal systems consists of classical, neoclassica(f, Compared to the classical and neoclassical processes. it
and anomalougor turbulen} processes. Both the classical . h %_ﬁ_ It t | Ith : tl P " |
and neoclassical transpbrt are caused by Coulomb colli- IS rather difiicult to analyze thé anomalous transport process

sions of particles, while the anomalous transhogsuilts because of its nonlinearity even for more simplified configu-

from turbulent fluctuations driven by various instabilities ex- ations, and extensive theoretical and experimental studies
isting in confined plasmas. have been performed so farHowever, most theoretical

On the collisional transport, the classical process in\works on the anomalous transport have been done separately

volves particle gyromotion while the neoclassical process i§°M th7e8 neoclassical transport theory, except for works by
concerned with guiding-center drift motion in toroidal mag- Shaing:’ Balescu and by Sugama and Hortdfi,which

netic configurations. For the entropy production due to theSynthesize both the neoclassical and anomalous transport
classical transport, its kinetic form defined by the collisiontheories. These synthesized theories depend on how to for-
operator is equivalent to its thermodynamic form written asmulate the neoclassical and anomalous parts of the total
an inner product of thermodynamic forces and their conjuiransport fluxes. In the works by Shairfgand by Balescd,
gate transport fluxe® Also, due to the spatial locality of the the separation of variables into the average and fluctuating
process, the Onsager symmétnf the classical transport Parts is done at the level of the fluid momentum balance
matrix is directly derived from the self-adjointness of the equations, while, in the theory by Sugama and Holftas
linearized collision operatdr’ On the other hand, since the Well as in the present work, the plasma kinetic equation is
long mean-free path of the guiding-center motion is involveddivided into the ensemble-averaged part and the fluctuating
in the neoclassical process, the neoclassical fluxes are deart, and the fluctuation-particle interaction operatgr[de-
fined through magnetic surface average, and the neoclassidéned by Eq.(6) in the next sectiohplays an important role
transport matrix contains parameters relating to both the colin the linkage of these two parts. Shaing and Balescu define
lisionality and the magnetic geometry. Thus, only by taking athe anomalous fluxes from the fluctuating parts of the fluid
magnetic surface average of the kinetic form of the neoclasvariables and use Shaing’s anat4or the kinetic distribu-
sical entropy production, we can derive the thermodynamidion function including mixture of the potential fluctuations
form, from which conjugate pairs of the thermodynamicand the averaged flow. Owing to the use of the fluctuation—
forces and the neoclassical fluxes are rigorously identified.particle interaction operator and the standard drift or gyroki-
Then, the Onsager symmetry is shown to be robustly valichetic equatioh*° without Shaing’s ansatz in our formula-
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tion, we can define the anomalous fluxes in more compact C

forms analogous to the definition of the classical fluxes in gnomze—B (Ka1xn),

terms of the collision term, and we succeed to define the a 3)

entropy production rate kinetically even for the anomalous 1 . = ¢

transport processes, which is not considered in the theories -|-_a Ga = ea_B (Kazxn),

by Shaing and by Balescu. From the anomalous entropy pro- ]

duction rate, we can clearly specify the conjugate pairs of théeSPectively, wher&,, andK,, are the anomalous forces

thermodynamic forces and the anomalous transport fluxe§ven by

which are shown to be connected with each other by the I I

Onsager symmetric quasilinear transport matrix. In the Kal:f d*v Zama v,

present work, we extend the formalism by Sugama and (4

Horton' to more general toroidal systems with nonaxisym- K =f ddv & ( 2_ E
. . ) T L a2= v YmyVv| X

metric magnetic configuratiots'8and gyrokinetic electro- a

ik
magnetic fluctuations, and give the complete description Oﬁerexgz m,v?/2T, is the normalized kinetic energy arid,

the entropy and energy balance including all the transporig the fluctuation—particle interaction term contained in the

processes, and examine the Onsager symmetry of the tranéﬁsemble—averaged kinetic equatfsee Eq.6) in Sec. II.
port equations for each process.

Int ¢ the orderi 8o /L (0. the th It is shown in Ref. 10 that the relative effects of the
N terms ot the ordering paramelssp, (pa : the € anomalous forceK ,; (j=1,2 on the parallel viscosities and
mal gyroradius] : the equilibrium scale lengihthe gyroki-

. ) . . accordingly on the neoclassical transport are measured by
netic ordering employed here for the turbulent fluctuations 1502/ 5 if we represent the order of the normalized fluctuations
written as 2

by f./f,~e,¢/T,~---~A instead of the gyrokinetic order-
f. ed Bl kK o ing in Eg. (1). Then, the neoclassical banana-plateau fluxes
LT Bk Q. "¢ (1) and the bootstrap current are significantly modified by this
a a L a

* A . coupling to the anomalous forces in the case wheres'?,
Heref,/f,, e,¢/T,, and|B|/|B| are normalized fluctuations as assumed in Ref. 10. On the other hand, in the present
of the distribution function, the electrostatic potential, andwork, this modification of the expressions for the neoclassi-
the magnetic field strength, respectively, where the caregal transport fluxes does not occur in the dominant or lowest
(") represents the fluctuating part. The subscaiienotes  order since the gyrokinetic ordering~ & in Eq. (1) assures
the particle species arld,=e,B/m,c is the gyrofrequency that the coupling effect is smaller by the orderdf 5~ 5<1.
of the particle with the mass, and the chargee,. The  Thus, the condition for the validity of the additive expres-
characteristic parallglperpendiculgrwave number and fre- sions for the neoclassical and anomalous transport without
quency for the turbulence are denotedkyfk,) andw, re-  their coupling is estimated bx<s"2
spectively. Assuming tha,~L~*, we find from Eq.(1) that From a microscopic point of view, for a single realiza-

K pa~1 and w~ w, ,~ wr,~v7/L, Wherew, ,, wr,, and  tion in the ensemble of the turbulent systems, the collision is
vr, are the drift frequency, the transit frequency, and thethe only irreversible process producing the entropy. The irre-
thermal velocity, respectively. versibility or the positive entropy production due to the tur-
According to the same formulation as in Ref. 10, thebulent process is observed macroscopically by taking the en-
magnetic-surface-averaged radial particle and heat fluxes agemble average or coarse graining. Besides the ensemble
given up to?(6%) by average, the gyrophase average is also utilized to coarse
. _/7cl. PS, bp, grain the microscopic phase space, when the gyrokinetic
(Fa-VV) =(T5-VV) +({T2VV) (T V) fluctuations with frequencies much lower than the gyrofre-

+(TRVV)+ (F;E)~VV) +(I2"°mVV), quency are considered. Then, as shown later, the fluctuation—
“ oS b ) particle interaction operatav/, defines the anomalous trans-
(Aa-VV)=(d3-VV)+(0q - VV)+(q™- VV) port fluxes and describes completely the entropy production

due to the gyrokinetic electromagnetic turbulence. The en-
tropy production allows the identification of the conjugate
where(-) denotes the magnetic surface average and the vopairs of the anomalous fluxes and the forces.

umeV inside the magnetic surface is used as a radial vari- It is a formidable task to give analytically the complete
able. Here the superscript “cl,” “PS,” “bp,” “na,” and  expressions for the anomalous transport equations that give
“anom” represents the classical, Pfirsch—S¢ktubanana- the anomalous fluxes as complicated nonlinear functions of
plateau, nonaxisymmetric, and anomalous fluxes, respethe forces. In addition to the nonlinear gyrokinetic
tively. In Appendix A, their definitions are given. Since, in equation'® the Poisson’s equation and the Amgs law are

the gyrokinetic ordering, the ensemble-averaged drift kinetigequired for a self-consistent description of the fluctuations
equation is not affected up t6(8),'° all the neoclassical in the particle distributions. Such additional constraints are
(Pfirsch—Schlter, banana-plateau, and nonaxisymmetric important for establishing the properties of the anomalous
fluxes as well as the classical fluxes are given in terms of th&ransport without obtaining directly the anomalous transport
thermodynamic forces by the same transport equations as gguations. The intrinsic ambipolarity for the anomalous par-
Ref. 5 for the cases with no turbulence. The anomalous paticle fluxes will be derived from these properties. Then, we
ticle and heat fluxes are defined by will find that the radial electric field in the axisymmetric

(g2 VV) +(az""mVV),
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configuration is not determined by the ambipolarity condi- af, e, df 4 -
tion, even in the presence of the anomalous transport. S TV Vit B4 cvxB]- = =(Co)enst “a,
Within the quasilinear framework, the anomalous trans- a (5)

port coefficients are given as functionals of the turbulence . o o _ _
spectrum. Thus, the quasilinear transport equations are ald#hereCs is a collision term and/, is a fluctuation—particle
considered as implicitly nonlinear with respect to the forcesinteraction term defined by

Since the Onsager symmetry is relevant to the linear thermo- -

dynamic transport equatiofists direct validity is question- G=— & < E+ l vXB ‘9_fa>

able for the anomalous transport equations, even in the qua- ~ © My N/ s

silinear version. However, as in Ref. 10, we will find that the R (6)
Onsager symmetric matrix connects the conjugate pairs of - ~ 10A . -

the anomalousquasilineay fluxes and the forces in the gy- E=—-V¢- c at’ B=VXxA.

rokinetic electromagnetic turbulence.
The rest of this work is organized as follows. In Sec. II, Here(-)s,sdenotes the ensemble average and we divided the
the Hazeltine recursion technicfd€® is applied to the distribution function (the electromagnetic fielgisinto the
ensemble-averaged kinetic equation in order to obtain th@nsemble-average pdit (E,B,®,A) and the fluctuating part
gyrophase-averaged kinetic equation including effects of théa(E,B,¢,A).
electromagnetic fluctuations. The resultant equation contains Equation(5) is derived by taking the ensemble average
(&) terms, which are not contained in the conventionalof the kinetic equation containing the Coulomb collision
drift kinetic equation but necessary for a proper descriptiorferm with both the electromagnetic fields and the distribution
of the entropy variation due to the classical and anomalou8inction regarded as turbulent or stochastic variables. It is
transport processes. In Sec. IlI, using the kinetic definition oShown in Ref. 22 that the averaged kinetic equation for the
entropy, the entropy balance equation is derived from th@ne-body distribution functiof(1)=f(x,,v,,t) with the col-
gyrophase-averaged kinetic equation obtained in Sec. Il aniéion term and the collective interaction term similar to Eq.
the nonlinear gyrokinetic equation for the fluctuating distri- (5) also follows from an appropriate truncation of the
bution function. There, the spatial transport and local producBogoliubov—Born—-Green—Kirkwood—Yvo{BBGKY) hier-
tion of the entropy due to the classical, neoclassical, an@rchy describing a turbulent plasma. In the second equation
anomalous transport processes are clearly described. Fix the BBGKY hierarchy, the particle discreteness source
each transport process, the kinetic form of the entropy proterm
duction is rewritten in the thermodynamic form, from which S(1.2)=—(e2/mrd)r
the conjugate pairs of the thermodynamic forces and the e 127712
transport fluxes are identified. The entropy production due to (9l oV, — al V) F(1)F(2)(ry=r1—r,)
the anomalous transport process is shown to balance with the
collisional dissipation for the fluctuating microscopic distri- causes the collisional interaction part of the two-body corre-
bution function, which agrees with the argument by Krom-lation functiong,(1,2). Substitution of this part af, into the
mes and Hu on the entropy paraddxn Sec. IV, the On- first equation in the BBGKY hierarchy for the one-body dis-
sager symmetry for the anomalous transport equations igibution functionf(1) gives the collision operator. The re-
shown to be valid within the quasilinear framework. Usingsidual part ofg, resulting from plasma unstable modes de-
the Krook collision model, the detailed expressions for thescribes the collective interaction and gives the term
quasilinear anomalous transport coefficients are derived angbrresponding to ou/, when it is substituted into the one-
the results, especially on the magnetic fluctuation effects ohody equation. Thus, the collision ternC, and the
the anomalous transport, are compared to those in previodbictuation—particle interaction terny, in Eq. (5) follow
works. In Sec. V, from the ensemble-averaged kinetic equafrom the corresponding parts of the two-body correlatign
tion, we obtain the complete energy balance equation for theroduced by the discreteness source t&im2) and by un-
cases, in which all of the classical, neoclassical, and anomatable modes in a turbulent plasma, respectively.
lous transport processes are involved. That equation eluci- Hereafter, we derive the gyrophase-averaged kinetic
dates how the fluctuation effects on the energy balancequation from Eq(5) by applying the recursion technique
should be expressed, which has been somewhat obscure proposed by Hazeltin€:?° For this purpose, let us introduce
previous literatures. In Sec. VI, Poisson’s equation, and Amthe phase space variables,,u,£) which is defined in terms
pee’s law are used for the self-consistent turbulent electroof (x,v) as
magnetic fields, and the intrinsic ambipolarity of the anoma-

2
lous particle fluxes is shown to hold for the self-consistent r_ _ } 2 _ Mavy
) ) ) . . O X=X, e=smutte,®, u= ,
fields. Finally, the conclusions and a discussion are given in 2 2B
Sec. VII. (7

vV, /v, =€, cosé+ e, Siné,

IIl. GYROPHASE AVERAGE OF ENSEMBLE-

AVERAGED KINETIC EQUATION where (e;,e,,n=B/B) are unit vectors that form a right-

handed orthogonal system at each point, afad n+v, with
We start from an ensemble-averaged kinetic equation foo,=v-n. The differential operator on the left-hand side of Eq.
speciesa: (5) is written as
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dt ot v ma ¢V " av Z(fat f )= +V9°V +€9°ae+’ug°@ fa
4 o0 a .9 d?a _ S
=E V V +68_ Iu’ (7# ga_fl (8) = W :<Ca>ens+£7/a_';%/(fa+fa)v
gc
where, in the last line, the partial differentials are taken with (15

(tx',eu,& as independent variables, aMi=d/ox" is de-
fined. The fast gyrofrequency§l, is contained in¢ as
E=—Q0,+ 56(5¢/Q,~ 6), and we subtract the fast gyrofre-
guency fromd/dt to define the following operator:

where detailed expressions for the guiding center motion
(Vge:€qoritgo) are given in Ref. 19. The terms in the last line,
except for the first one, ar®(s% and not included in Ref.
19, although they are necessary for deriving complete ex-
pressions for the collisional and anomalous entropy produc-

J (9)  tions and transport.

d
('J)E -+ -
7 dt a €
Then, rewriting Eq. (5) in the phase space variables
(x',e,u,&) and separating it into the average and oscillating!ll- ENTROPY BALANCE EQUATION

parts with respect to the gyrophase angleve obtain Let us define the kinetic form of the entropy per unit

volume for species in terms of the ensemble-averaged dis-

Z(fatfa)=(Caenst Za, 10 yipution functionf, as
oy ~ .
Qg ﬁ_;z—%)fa_<ca>ens_ D 11 SaE—j d* faln fa
where the average and oscillating partstiare represented = —f d%v f_a In f_a+ 6%, (16

for an arbitrary functior-(¢) as 0
wheref /f,=(J) is used. If we use the total distribution
function f,+f, to define the entropy, only the collisional
processes produce that entropy while it is preserved, even in
the presence of the turbulent transport for the collisionless
From Eg. (11), the gyrophase-dependent part of thecase. By using the definition of E€L6) in which the micro-
ensemble-averaged distribution function is given to the low-scopic turbulent processes are coarse grained, we can formu-
est order ind by late the positive definite entropy production caused by the
turbulent or anomalous transport.

In order to obtain the entropy balance equation, let us
multiply Eq. (15 by —(In f,+1) and integrate it over the
velocity space. First, we consider the contribution from col-
where the integration constant related ffod¢ is uniquely lisions to the entropy balance equation, which is represented
determined by the conditiof") = 0. Substituting Eq(13) by
into Eq.(10) with &7, dropped gives Hazeltine’s original drift _ _ L
kinetic equatiof®?® for the case of no turbulence. Since, 'sacz—j do(In o+ 1)((Colens— 2FS)
here, we are concerned with entropy productions due to both
collisional and turbulent dissipations, we need to retajnin @ _

Egs. (10) and (11) and also calculatd, up to O(&). The z—f d3v(In faM)Ca(fa)—J' d%v fi CL(f)
solution of Eq.(11) up to O(&) is written asf,=fM+12), am
where theO(&°) part is given by

3€d§F F=F-F. (12)

(1) L e
f; 0. de “f,, (13

+f d3o(In fo+1) 2FS

o 1 (¢ ~ ~ ~ oy e
f§f>=—J def #fV—CL(f ) — 2=+ 15+ 14, 2
Qa _j d3

My ncl, &cl
(14 Ca(fa)+od+S;. 17

Y 2T,
Here?c ande causes classical and turbuléat anomalous Here the first term on the right-hand side is rewritten as
dissipation terms, respectlvely, when they are substituted into

Eq. (10). On the other hand} gives only the higher-order f d3
small corrections to the drift orbit, and it is neglected here-

after since it is not related to any dissipations. Then, usingvhere Q,=/d% gma(v—ua)ZCa(fa) and Fa1

Egs. (10) and (14), the double-averaged kinetic equation = fd% m,vC,(f,) represent the collisional heat and mo-
over the statistical ensemble and the gyrophase afigde  mentum generation rates, respectively. The energy conserva-
written as tion in collisions requires

a

2-|- a(fa) (Qa+ Ug* al)a (18)
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where the rapid spatial variation in the perpendicular direc-
; (QatUaFa1)=0. (19 tions is included through the eikongk k, -dx’. The fluctu-
_ ating part of the distribution function is divided into the adia-
The entropy variatiow)® caused by th@©(4) deviationf(")  batic and nonadiabatic parts as
from f,\, is related to the neoclassical transport processes, as -
shown in detail in Ref. 5. Taking the species summation of €ab(k,)
the flux surface average ofi® multiplied by T,, we obtain Ta

the thermodynamic form of the entro roduction due to the
neoclassica?ltransport' PYP where L,(k, )=k, -vxn/Q,. The nonadiabatic part of the

distribution function satisfies the following nonlinear gyroki-
netic equatiort®

fa(k,)=— fam+ha(k,)elbatke), (26)

2 Ta(o3) =2 (JeiXar+ Ig8Xa) +IeXe,  (20)
a a (? "
where the thermodynamic forceX(;,X,,,Xg) and the neo- | dt Filwetwpa) Foin-V hatky)
classical transport fluxesIf¢', %', J¢) are defined in Appen- o 5
dix A. In Ref. 5 it is shown from the self-adjointness and the =_-2 faml = +i(we+ wla) ;ﬁa(kl)
positive definiteness of the linearized collision operator that Ta at
these fluxes and forces are connected to each other by the c ~ ~
neoclassical transport matrix with the Onsager symmetry and  + B E [n-(k| xk7)]da(k)h(k])
that=,T,(oh = 0 holds. After some calculations, we find K[ +K =k,
that the entropy variatioS‘;' defined fromf$ is rewritten as dé
S=-V.04+ 09, (21) ! 3€ 5. ¢ Gk, 27

where JZ, is the entropy flux due to the classical flow§ — Where wg=k, :(CEXn/B), wpa = K :(Vavs * Vacun)
= I‘gllna andqgl (See Appendifoor their def|n|t|0|)sand is (Va VB - VB-drift Ve|OCIty, Va curv- curvature drift Ve|OCIt§’,
given by ;0= 0o 1+ 7205~ )] [0,a=(cTy/e;B)k, (N
xVinn,), n,=dInTy/dInn,], Ak)=n-Ak,), and
B,k )=in-k, XA(k,). Here the gyrophase-averaged poten-

1
c _ cl, = Acl
Jsa= Salla T, Ya (22) tial for the turbulent electromagnetic fields is defined by

and ag' is given in the thermodynamic form of the entropy - _ ik 5 -
production due to the classical particle and heat transport as bak)=e a0 bk, )— c v-A(ky)

1 - -
of=1 (I Xar+ IGpXa2). (23) =Jo<%> ( bk, )— A|(kL))
a a c
Thus,SgI consists of the entropy transport term and the en-
tropy production term, both of which result from the classi- +J;
cal particle and heat transport. The classical particle and heat _
fluxes (%, ,J%,) defined in Appendix A are also related to Appendix B shows that the entropy char§egiven by Eq.
the thermodynamic forces,X(;,X,,) With the classical (24) is rewritten as

transport matrix with the Onsager symmetry. It is also shown .
thats,T,0%= 0. Sh=-V .35+ oh+ .75, (29)

kLUL) U_L éH(kL) 28)

O,/ ¢ k.

Next, let us consider the contribution from turbulent yere the anomalous entropy flug, is given by
fluctuations to the entropy balance equation, which is repre-
sented b 1

y NSRRI (30
a
A _ 3 rs o _ A
= fd v(in fat 1)(Za= #12). @9 \where us=I"4/n, and g4 are defined by Eqs(34). The
anomalous entropy productias, is written in the thermo-

. <A .
In order to rewriteS; in a physically understandable form, dynamic form as

the information for the fluctuating paft, of the distribution

function in the turbulent electromagnetic fields is required. o4 =J5 X5+ I,X5+ I8 X455, (31
We assume that any fluctuating fiefd oscillates rapidly in i i i

the directions perpendicular to the magnetic field lines, with?nd the residual term is defined by

a characteric scale length ~p,. Then, it is useful to put 9
fluctuating functions in the WKRor eikona) form: %){::f d3u2 —+v|n-V’)
k \dt
~ ~ . X’ , ~ ~
F(taxl,fy/lug):F(tnx,yéal-lng;kj_)exr(|f kJ_'dX )1 X<|fa(kL)|2_|ha(kL)|2>ens (32)
(25) 2 faM
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which vanishes when the magnetic surface avekagend  (3), while g3 is different from the anolamous flug"™™ de-
the quasisteady state orderiag).,ddt=7(5°) are used. In fined in Eq.(3). The difference between’ and q2"" is
Eq. (31), we defined conjugated pairs of the thermodynamicgiven by

forces,
X dlnp, e, b 1

AE_alE__a__a = A _ Hano .YV

Xa =7 N T,V T, (6™

XA Xaz Jd |n Ta XA o 1 :_J aSU a enSV-VV

A S VAR O 2 fam

and the anomalous fluxes z_f dBo[{(Fat T IN(Fa+T2)Vens

Jal_FA-VvEf Ao, (h% (K, )Vga(K,)Yens VV, —faln falv-VV, (36)

kL

1 which is regarded as a residual microscopic entropy flux.
‘]az_ T. qa Using the gyrokinetic equatiof27), the anomalous en-
tropy productiono’y defined in Eq(31) is rewritten as

5 ~ N
= f dBU ( Xezl_ E) kE <h; (kL)Vda( ki)>ens'VVa (34)

fd UE <h*(kJ_ a¢a(kL)> ,

ot

F‘a(k )2ens
+ vin )<| 2f:h|ﬂ>

oh= f d3vz

- [ o =3 (rkoCH Tk s (37
where the guiding center velocity due to the turbulent elec- K
tromagnetic fields/y,(k, ) is defined by

If we use the quasisteady-state orderiig,,Jdt="(5) and

take the magnetic surface average of &Y), we obtain the
balance between the anomalous entropy production driven
by the turbulent transport and the collisional dissipation of

~ . C -~
Gaa(K)=—1 = Ba(k, )k, xn

_JO< Kuv )[VE(kL)_’_UIIn(kL)] the fluctuating distribution function:
20a )5 (Mare); ok 35 A s, 1 4 L
i, 71 a, [ravet) 39 <oa>=—Jdvm%<<fa<kL>ca[fa<kL>]>>, (38

Hereve(k,)=—i(c/B) ¢(k, )k , Xn is the electric drift veloc-

ity due_to the fluctuating electrostatic potentiab,  where (-)) represents a double average over the magnetic
A=(i/B)A(k, )k, xn denotes the perturbation of the mag- surface and the ensemble. This balance equation is equiva-
netic field direction due td\” (AH gives the magnetic field lent to Eq.(41) in Ref. 21, where Krommes and Hu dis-
fluctuation in the direction perpendicular to the equilibrium cussed the problem of the “entropy paradox.” Equati@8)
field), andv, yg(k,) = |(c,u/eaB)BH(kL)kanrepresents shows that, if there are no collisions, then the anomalous
the VB drift velocity due to the parallel magnetic field fluc- entropy production from the turbulent transport should van-
tuationB,. The magnitudes of the drift velocities due to the ish. However, Krommes and Hu recognized the critical dif-
perpendicular and parallel magnetlc fluctuations are estiference between the limiting behavior of a system with neg-

mated asv”n~vTaBL/B v, aNdV, yg ~ kJ_pavTaB”/B ligibly small collisional dissipation and the behavior in the
~ k| pa dvta, and thus the latter is negligible compared tono collision case, and argued that the dissipation plays an
the former in the long-wavelength limt p,<1. In Eq.(35), important role, even in the limit of vanishing dissipation.

Jo(k v, 1Q,) and (22,/k, v,)Jd1(k, v, /Q,) give finite gy-  Here, following their argumentfbrcing determines dissipa-
roradius effects, and they both reduce to the unity in theion” [see Eq(43) in Ref. 22, we consider that, in the col-
long-wavelength limit. lisionless limit, the turbulent transport and accordingly the
The radial particle fluxi3; =I'4-VV is conjugate to the anomalous entropy productids)==?_,(J4)X4 achieve

force X4, consisting of the radlal pressure gradient and thenonzero steady-state values independent of collisions, al-
radial electrlc field;J5,=qA-VV/T, is the radial heat flux though the fluctuating distributiof, adjusts itself such that
divided by the temperature conjugate to the radial temperahe balance equatiof38) holds. From Eq(38) and the posi-
ture gradientX%,. The flux J4; is conjugate to the force tive definiteness of the collision operatdk [see Eq(10) in

a3= 1/T, and represents the heating of the particles due tdRef. 5], we obtain the following inequality for the anomalous
the electromagnetic fluctuations. It should be notedF§as  entropy production similar to those for the classical and neo-
the same as the anomalous particle IiGR°" defined in Eq.  classical entropy productions,
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3
S ToD)=3 3 TP X S T =3 Tul(o) +(ol) +(oh)=0. (49

1 R
-3 Taf B — S (f*k,) IV. ONSAGER SYMMETRY FOR ANOMALOUS
7 fam % TRANSPORT EQUATIONS

xcg[fa(ki)]»;o. (39 Here we examine whether the Onsager symmetry is
Up to this point, we have derived the physically under-va“d or not for the anomalous transport matrix, which con-

standable expressions of the entropy variations due to th ects conjugate pairs of the thermodynamic forces and

. . anomalous fluxes defined in the previous section. We treat
classical, neoclassical, and anomalous transport processes P

separately from their kinetic definitions. The entropy produc—t rf)itsrg?itl:truf?r o:ht:er;%rr?]lélst?:hiezgﬁg;fi‘g::t'?o?etlgz asseﬁl_ven
tion rates for all the transport processes or their magnetié1 y

surface averages have been shown to be written in the the(g_on&stent turbulent fields are discussed in the next section

modvnamic form. i.e. as the sum of the products of theand consider the anomalous transport matrix as a functional
therr)r/wd namic f;)rc.:e.s1 and the coniugate ?rans ort quxesOf the fluctuation spectra. It is still difficult to derive the
Using Eés (15)—(18), (21), (22) (24)1(29) and (3%) we rigorous expression for the response of the distribution func-

obtain the equation describing the temporal variation of the}Ion to the fluctuating fields by solving the nonlinear gyroki-

magnetic surface average of the entropy dené8y) for netic equatlor(27), S0 we neglect th? nonllqear te_rlm in Eq.
(27) and use a linear response relation to givpiasilinear

speciesa,
transport fluxes.
39S,  HISLVV) . The quasilinear anomalous transport equations are writ-
W”LT:(‘TJ' (40 ten as
where I (LYY (LHT AT xA,
S L, | =3 | W5 N5 (LIE|| X |, @6
<0'a >=<Ua>+<0a >+<Ua>+T_a<Qa>+T_a<ua' 31341) Ja3 (LA)gjk_, (LA)gg (LA)gg Xa3
where the anomalous transport coefficients)¢?, are de-
and fined by Eq.(C4) in Appendix C. The anomalous transport
1 coefficients )20 are functionals of the spectra of the elec-
<J§;-VV)ESa<ua-VV>+T—(qé-VV}. (42)  tromagnetic fluctuationsg(k | )=[p(k,),A,k,),B;k )k, ]
a and that it also containB as a parameter:
The last term in Eq(41) is rewritten as -
(Bl BF (LA = (LY B.{ ], (47)
(Ua-Far)= %— ((I5) +IED X, (43 where the spectra of the electromagnetic fluctuatiajsare

assumed to be givea priori. It is shown in Appendix C that
which can be expressed as a second-order form of the thethe quasilinear anomalous transport coefficients satisfy the
modynamic forces in the same way@s) and(s®) since  following Onsager symmetry:
(Buyj,) and (BF31)=(B-V-m,)—n,e,(BE;), as well as N N
o gnd.]gf, are gl;iven by linear forms of the thermodynamic To{(LY i BA A} =To((LA)paf —B.{b(—1)}]),
forces. It should be noted that, to the lowest ordeé,is, is (48)
a magnetic surface quantity likg, andT, and is given by5,  where T, and T, appear because we defined the conjugate

= — Jd% fauInfay = — nulin[ng(my/27T,)% — & pairs of the forceX and the fluxes) from the entropy pro-
=(S,). The radial components of the flow, and the heat ductiono by o,=J,-X, for the anomalous transport, but by
flux g} are given by 2,T,0,=J-X for the classical and neoclassical transport.
Na(Uy-VV)=(T,-VV) Here it is noted that, as in the neoclassical case, the O.n.sager
symmetry of the quasilinear anomalous transport coefficients
:<Jg'l> +J§15+ Jgg+Jgi‘+J;’i>+ <J§l , is valid for their magnetic-surface-averaged values instead of
, A ano (44)  their spatially local values. The global dependence of the
(- VV)=([dat(da— 03" M]-VV) anomalous fluxes arises from the fluctuations with large
_1~ . . .
= (39)+ IPSH 3084 a4 (A wavelengthsk; ~~L along the magnetic field lines.

In order to obtain detailed expressions of the quasilinear
where the residual anomalous heat fla§ & g2"" givenby  anomalous transport coefficients, we assume that the parallel
Eqg. (36) is added to the heat flug, given by Eq.(2) to  correlation length for the fluctuations is short enough for
define the total heat fluxj,. Definitions of the classical inhomogeneities of the equilibrium quantities to be ignor-
fluxes Jg'j, the Pfirsch—Schter fluxes JEJ-S, the banana- able,k,>L"*. Then, we use the Fourier transform for spatial
plateau quxes]gﬂ-’, the nonaxisymmetric fluxe)®, and the variation of the fluctuations along the magnetic field lines so
particle fluxJ{§ due to the inductive electric field are given thatn-V is replaced withik,, where the parallel wave num-

in Appendix A. We obtain from Eqg19) and(41), berk, is assumed to satisty” '<k, <k, . Similarly, the Fou-
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rier transform is used for temporal variation of the fluctua-the coefficients connecting the fluxes to the forces for differ-
tions to replacei/dt with —iw. Furthermore, for simplicity, ~ent species vanish, and we have

we employ the Krook collision operator mod@t(hae'La) Ayab _ 1 Aja _

= —w,h.e'a where v, is the collision frequency and the (LOmn=(Lmndap - (MN=1,2,3. (49)
contribution ofhkJ (b#a) to C. is neglected(The validity ~ Here the quasilinear anomalous transport coefficieln$3,
limits due to the Krook model will be discussed latdthen  are given by

m+n—2
I—A)mn ( )fdgv 1:aM( _) 2 <|¢a(kivk\\1w)|2>en$a(kiak\\7w)|(kixn)'vv|2 (m,n=1,2),

kKo

5 m—1
5) S B k) Pl K)ol xm)- 9V (m=12),

Ky o

(LA) m3= (LA)3m:_ f d fam| X
(50

(LA)gSZezEJ d* faM 2 <|¢a(kL1kH w)|2>enﬁa(kiak\l w)w

Kk ko

where the functiom\,(k, .k;,w) is defined by and perpendicular effects are comparable to each other for
. o gyrokinetic fluctuations wittk, p,~1 and8~1. In order to
Ak, Ky @)= val (0= 0= wpa—kp)?+vg] 51) show these magnetic fluctuation effects on the anomalous
transport more clearly, we assume that the temporal variation

which, in the limit »,—+0, reduces tomd(w—wg—wp,  of the fluctuations is very slow~0 and that the wave num-

—kjv;). We can directly confirm by Eq(50) the positive  ber spectral functions are written as

definiteness ofoh ==, (L2 XaX4, and the symmetry

properties of [*)2[B{¢}] with respect to the transforma- <|kL (ko H)|2)ens,<|BH(kl K| ens

tions[B{¢(1)}]—[—B{(—1)}] and (m,n)—(n,m):

~ ~ 1 2y 2 2y 2
A BABDI=(LY5 L ~B{d(—1)}] “exﬂ[‘z('&mklxu , (53)

a

= (LM B{o(1)}]. (52 \where\, and )\, denote perpendicular and parallel correla-
We see that, fok,>L ', the Onsager symmetry holds for tion lengths, respectively. Here we do not consider the elec-
the local values of the quasilinear transport coefficients as iffostatic ~ fluctuations ~and the cross correlation
the case of the classical transport coefficients. These expre@qAH (ky ., ”)B”(h ,Ki)Yens for simplicity. Then the contri-
sions of the anomalous transport coefficients with the Onbution of the perpendicular magnetic fluctuations to the par-
sager symmetry are consistent with results of previous worktcle diffusion coefficient (%)%, is given by
in Ref. 10 and Ref. 23, where only the electrostatic fluctua-

tions are consideredNote that the conjugate pairs of the (Lay)o NavTaDg.|VV/|?

forces an(_j _the an_omal_ous fluxéand accordingly t_he trans- BL/11 \/;(1+2P$a/?\f)l/2

port coefficienty given in the present work are slightly dif-

ferent from those in Ref. 10 and Ref. 23, although the trans- vral (V2va\y),  for vy uvral)h,

port equations for the former pairs are consistently 1, for vo<vta/\. (54)

transformed into those for the lattpr.

Now let us examine the effects of the magnetic fluctua-Here Dg, represents the perpendicular diffusion coefficient
tions in more detail. Two physically distinct types of mag- of the magnetic field line defined by
netic fluctuationsA, and B, are contained in the anomalous
transport coefficients througl, . The effects ofA,, which ZJ' dl (BL[X(1)]-B,(X)Yens
give the fluctuating magnetic field perpendicular to the equi- BLT 2B? '
librium field line, have been thoroughly investigated in the
literatures?*~2° On the other hand, the fluctuations of the wherex(l) denotes the position at a distaricigom x along
parallel componenIBH, which gives the fluctuatiny B drift ~ the magnetic field line. In the limit op;,/\, —+0, the re-
velocity V, yg as shown in Eq(35), have scarcely been sults of Eq.(54) reduce to those in Ref. 26, when the particle
taken into account. This is becauBg/B~ B(e,4/T,) for  motion is within a time scale in the rangg,<t<t.,,
low B(=8mp/B?) plasma&’ and because the paralléB)  where tyi=v; ' min{1,(v\/v1e)} and tma=vs > max1,
effects are negligible for fluctuations with low wave numbers(v\ /v1,)%. By using both the Langevin equation and the
k. pa<1, as is expected from a factdg(k, v, /Q,) multi-  Fokker—Planck equation, Balesetial®® confirmed that the
plied by B, in Eg. (28). On the other hand, both the parallel guiding center motion in the stochastic magnetic field shows

(55
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a ballistic behavior for a shorter time scalet,,;, and a 3 dp, J 5 IPa
subdiffusive behavior for a longer time scdlet,,,. Thus, 5ot = 7y | |Gat 5 Pala|-VV ) +(ua-VV) =
the diffusion coefficient in Eq(54) obtained by the gyroki-

netic equation with the Krook collision model is considered +(Ua-V-am) +{Qa) +(H,), (59
to correctly describe the particle transport only for a time
scalet i, <t<t,.x- Equation(54) shows that the finite gyro-
radius effect reduces the diffusivity by a factor
(1+202,/\2) 12 which is in agreement with the result ob- (Ua
tained by the stochastic Vlasov equation in Ref. 28. uf

The_ co_ntrlbutlon of the parallel magnetic fluctuations to (Up-V oam) = B_?’ (B-V-m,)+ I 1
(LM, is given by

whereH = [d® &,im(v—u,)? denotes the anomalous heat
generation due to the fluctuations. The viscous heating term
-V-ar,) in Eq. (59 can be written in various forms:

_<Bu\la><B'V'”a>

(Lo 1Dy VP pT/AT ——<Bz>—+(Jg§+Jg§)xa1
Bil/11 \/; (1+ ZP%a/Ai)alz
N ex(Buy)(BE
v1al (V2ua\)),  for va>vral\,, 56 _Naeat <é§;< ”a>+(<Jg'1>+J§f+Jg';
IOg(UTa/Va)\“), for Va<UTa/)\H,
where + gi)xal+<ua‘Fa1>- (60)
A 5 The magnetic-surface-averaged anomalous heat generation
= (B,[x(1)]B
DBHEJ dl < H[X( )B]z H(X)>ens. (57) <Ha> is written as
0
. . . 17
The anomalous dlffusuo_n descrlbe_d by EqS6) and (57) (Ha>:_(9_v<(q§_qgn0").VV>+<J§1>xal+<Jg\3 )
results from the fluctuating magnetic dnff vz and accord- 61)

ingly the resultant quasilinear diffusion coefficiettz()$, is
proportional to the velocity correlatiofV, veVa ve)ens@Nd  Substituting Egs(60) and (61) into Eq. (59), we obtain
therefore to(BB,)ens: We see thatl(g,)$; vanishes in the

both limits of pr /A, —+0 and+o, while it has a maximum E 9Pa_  J
value atpr,/\, =1. Equation(56) shows that (g)§; mono- 2 gt 4V
tonically increases with decreasing the collision frequency

va, even forv,<uvt,/\;, which is a contrast tol(g, )§; in- —ean(Us-VV) @—J(E)X +(Q.)
dependent ofy, for the same collision frequency region. arara gy “alnal a
However, it should be recalled that a time scale for validity

5
qg_’_ E paua) 'VV>

naea<Bulla><B EH>

of Eq. (56), obtained by using the Krook model also has an +(Ug-Far) + > +(J5

upper limit, since the velocity-space diffusion, which is de- (B9

scribed not by the Krook model but by the Fokker—Planck 9 5 (BU)(B-V -,

collision operator, deforms the propagator and causes the  =—— (| g4+ = Palla| - VV ) + — 2
e T . Vv 2 (B%)

subdiffusion in a longer time scafé.

1 d
o () + 2P 2
V. ENERGY BALANCE EQUATION . . oD .
_ P jna -

For transport analyses of toroidal plasmas, particle and Ca(Ja T Ja1t (Jar) Vv (Qa) +(Jaa), (62)
energy balance equations are used generally in the magnetic- , . )
surface-averaged forms. The fluctuation term in theVhereu, andq, are written as Eq(44). On the right-hand
ensemble-averaged kinetic equatitB) conserves the par- Side of Eq.(62), the parallel flow(Bu,,) and the parallel
ticle number and gives neither source nor sink terms in th&/iSCOsity(B-V. ) can be written in terms of the thermody-
continuity equation derived by taking the zeroth moment of?@mic forces in the similar way as the other classical and

the kinetic equation. Then, the magnetic-surface-average%eOCIaSSical transport fluxes. From the species summation of
continuity equation has a well-known form: the momentum balance equations multiplied by the flow ve-

locities, we have the following relation:

ang  KIx-VV)
T vl (58) s (Bug)(B-V-m) 1
: . . 3 (B%)
where it should be noted that anomalous particle flux is also ”
included in the total particle fluxI',-VV) as given by Eq. I BJ,)(BE
(44). i FaVWasguentyEL L et - T(Qa)|= B '<>éz> 2 e
The energy balance equation is similarly derived from
the kinetic equation and it is written in the magnetic-surface-Equation(63) shows that the species summation of the heat-
averaged form as ing terms on the right-hand side of E@2), except for the

ap
+ n (IS +I5D T\;— ea(I20
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anomalous heatingJ4;), originates from the Ohmic power VI. SELF-CONSISTENT ELECTROMAGNETIC
input due to the inductive electric field[The term FLUCTUATIONS AND AMBIPOLARITY CONDITION
(IB)/n,)(ap4/aV) on the right-hand side of Eq62) does
not appear in Eq(63) since its species summation cancels
out with the residual Ohmic heating ternds, -E(") and
(JEP)—(BINBEM)/(B?).]

Shaing et al~® presented energy balance equations fo
toroidal plasmas, including nonaxisymmetric systems from
the neoclassical theory, although they did not give a cleal!
theoretical foundation to treat the energy balance in the cases R . Kv,
where the anomalous transport exists. Equat@®), which (K+apHp(k )=4m eaf d% ha(kL)Jo(Q—),
was rigorously derived based on the gyrokinetic ordering é 3(66)
from the kinetic equation taking account of the electromag-
netic turbulence, shows completely how the fluctuations afand the parallel and perpendicular components of Awipe
fect the energy balance. The anomalous particle fhﬁw law:
= 12" and the anomalous heat flgf = g2"°™ + (g5
— 2" are naturally included in the radial derivative term K2A, (K, )= am S e j d% v,h.(K,)d (kLUL) 67)
of the total energy flux. We also find that the product of the - "~ - ¢ 4§ FaltLol 9, )
anomalous radial current and the radial electric field

Up to this point, the turbulent fluctuations have been
general prescribed fields. When the fluctuations are local,
self-consistent fields not driven by external sources, there are
I;:\dditional properties of the transport that we now derive.

Here we impose the self-consistent constraints on the
rbulent fields, which are given by Poisson’s equation:

—e,(J5)od/dVas well as the anomalous heatifdss) LA _Am J’ s - (kle
should be added into the energy balance equation. For the ke By(k)= ¢ Ea: €a | % v Na(ky)Jy Q, )
self-consistent fluctuations not driven externally, both (68)

A A ;
>.e,J31 and 2,325 vanish[see Eqs(69) and (71)]. Then, where the Debye lengthy=(47,n.€2/T.) 2 is used.

—e,(J51)a®/aV and(J%;) cause the anomalous energy ex- N e A ,
change between different species of particles although theThe use of the Ampre’s law is justified since the displace-

give no net heating of total particles. The summation of thesglent curr_ent_ is neglected due t_o the gyr0k|_ne_t_|c ordering.
tWo terms is written as Substituting Eqgs.(66)—(68) into the definition of the

anomalous fluxes, we find that the anomalous particle fluxes
are intrinsically ambipolar:

oP
—ex(J5 v (I53

g e I'A=0. (69)
e, | d® >, { (hX(k)) 2 e ba(K))
a kK at ™ gt E)FaltL It is proved from the momentum conservation by collisions
>,F21=0 and the charge neutrality conditigijn, e, =0 that,
. ~ (9 . ~ . . . . .
_ 3 gtk 9 aiwgt even if particles of different species belong to different col-
eaf a2, <<e ha(ku) ot e ¢a(ki)]> > lisional regimes, the ambipolarity condition is automatically

and separately satisfied by the classicag'll, Pfirsch—
Schiiter (379, and banana-plateady)) parts of multispe-
cies particle fluxes, which is called the principle of detailed
ambipolar balanc&3®3! Then, only the nonaxisymmetric
particle fluxes)}$ are nonambipolar and the nonintrinsic am-
bipolarity condition is written as

(64)

The radial electric field-0®/oV enters the nonlinear gyro-
kinetic equation(27) and Eq.(64) only in the form of the
Doppler shift @/t +iwg), and does not appear explicitly in
the self-consistent conditions given in the next secfisse
Egs. (66)—(68)]. Thus, for the solutions of Eqg27) and
(66)—(69), '“tth,(k,) ande'“e'¢,(k,) are independent of ; ea(Fa-VV>=§ €aJai=0, (70)
the radial electric field. Then, the radial electric field does not
affect the magnitude of the anomalous heating effect givemvhich is used to determine the radial electric field®/oV
by Eqg.(64) in the nonaxisymmetric systems.

The entropy balance equati@gd0) can be derived also Equations(66)—(68) and Eq.(34) with the quasisteady-
from substituting the continuity equatidg8) and the energy state orderingX-)e,ddt=c7(8% show that the species sum-
balance equation into the temporal variation of the entropy,mation of the anomalous heatidg, vanishes:

n, 2

at 2T, ot

a&_sta:(sa 5) Ny 3 9pa 65 gagg:o. (7D

The self-consistent fluctuations cause no net heating of the
although the correspondence between the kinetic and thetetal particles, since the source of the anomalous heating is
modynamic forms of the entropy productions due to the clasthe energy of the fluctuating electromagnetic fields, which
sical, neoclassical, and anomalous transport processes is beénnot be a stationary energy supplier unless the fluctuations
ter understood by the derivation in Sec. Ill. are externally driven.
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Furthermore, we find from Eq$26), (36), and the Am-  only by the ensemble average but also by the magnetic sur-
pere’s law that the species summation gf(— g2"°" iswrit-  face average to be viewed as an irreversible macros¢opic
ten as thermodynamig process.

In the strong turbulence regime defined by short life-
A _ano 3 A times of the fluctuation components, the proof of the On-

; (da—da ")'VVZE eaf d*v(fadp)enyy-VV sager symmetry for the anomalous transport matrix breaks
down due to the nonresonant nature of the fluctuation—
particle interactions. Krommes and #wclaim that, instead
of the conventional Onsager symmetry for transport equa-
tions near thermal equilibria, the generalized Onsager sym-
Thus, Ea(qﬁ—qgno”) corresponds to the Poynting energy metry is valid for transport near the turbulent steady states.
flux of the fluctuating electromagnetic fields, which is not The generalized Onsager symmetry is relevant to the incre-
included in the heat flux2"®™. [The definition of the heat mental transport equations that connect the small deviations

Cc A A
= 27 ((EXB)-VV)ens. (72)

flux g, in EQg. (2, which contains g™, is of the forces and fluxes from their steady-state values, al-
0,=/d% f,3mJv—u,*(v—u,) and takes account of the though the anomalous transport equations considered here
heat flux due to the particles ony. and in many other works relate the total anomalous fluxes at

the steady state to the total forces. The transport equations
for the total anomalous fluxes are generally nonlinear with
respect to the forces, even for the quasilinear case, and it is
beyond the scope of this work to obtain them for the strong

In this work, we have investigated the entropy produc-turbulence.
tion mechanisms due to all transport processes in the mag- Using the Krook collision model, we derived fafl <1
netically confined toroidal plasmas with the gyrokinetic elec-the locally symmetric quasilinear transport matrix as a func-
tromagnetic turbulence. The kinetic equation doubletional of the gyrokinetic electromagnetic turbulence spectra.
averaged over the turbulent fluctuations and the gyrophag@s for the magnetic fluctuations, the contribution of the per-
was derived up ta”(&%). The kinetic equation is employed as Pendicular magnetic field fluctuations to the anomalous
the foundation on which the entropy productions by the clasiransport decreases monotonically with increasing the ratio
sical, neoclassical, and anomalous transport processes are Rf-the thermal gyroradius to the characteristic perpendicular
netically defined. The recursive technique was used to derivBuctuation lengthp/k, . In contrast, the parallel magnetic
the double-averaged kinetic equation, from which the enfluctuations’ contribution, which has not been considered in
tropy balance equatiofd0) was obtained. We showed the previous works, becomes negligible at the both limits
correspondence between the kinetic and thermodynamie/A, —+0,+, and comparable to the perpendicular contri-
forms of the entropy productions and identified the conju-bution atp/\; =(1). At low plasma beta, the parallel mag-
gated pairs of the forces and fluxes for all the transport pronetic fluctuations’ effect is small sind®/B~ 8(e,¢/T,).
cesses. For the fluctuating part of the kinetic distribution ~ The complete energy balance equati6) derived from
function, we used the nonlinear gyrokinetic equati@7)  the ensemble-averaged kinetic equat{énh shows how the
derived by the recursive technique instead of the noncanonturbulence effects should be included. The anomalous heat
cal Hamiltonian formalisi?~3*since the latter is for the total flux g3 occurring in the entropy and energy balance equa-
distribution function and is not clearly given for the casetions contains the contribution of the residual microscopic
with collisions. The collisions are not only the cause of theentropy flux given by Eq(36). Besides the anomalous par-
classical and neoclassical entropy productions but also iticle and heat fluxes included in the radial derivative term of
essence required for the balance between the anomalous dhe total energy flux, the energy balance is modified by the
tropy production and the microscopic dissipation in the staturbulence through the product of the anomalous radial cur-
tionary state as shown in E6B9). It would be interesting to  rent and the radial electric field-e,(J5;)d®/9V and the
monitor the spatiotemporal variation of the anomalous enanomalous heatinglg\g). These anomalous terms can cause
tropy production given by Eq31) in the gyrokinetic simu-  a large energy exchange between electrons and?fons.
lations and examine the validity of the minimum entropy  The self-consistent turbulent electromagnetic fields sat-
production for the turbulent stationary states. isfy Poisson’s equatiof66) and Ampee’s law given by Egs.

It was shown that the anomalous transport equations sat67) and (68), from which the intrinsic ambipolarity of the
isfy the Onsager symmetry within the quasilinear frame-anomalous particle fluxes is derived. Then, as in the conven-
work. For the gyrokinetic electromagnetic fluctuations withtional neoclassical theory, the radial electric field is deter-
parallel wave numberkH~L‘1, the magnetic surface aver- mined by the ambipolarity condition for the neoclassical
age must be taken in order to show the positive definitenessonaxisymmetric particle fluxes, although it is not for the
of the anomalous entropy productipsee Eq.(39)] and the axisymmetric system in which all the particle fluxes are in-
Onsager symmetry of the quasilinear anomalous transpottinsically ambipolar. We also find for the self-consistent
coefficientysee Eq(48)]. This need for the surface average fluctuations that the species summation of the anomalous
implies that microscopic phenomeffar individual realiza- heating vanishes and that the residual anomalous heat fluxes
tions in the ensembleoccurring over the distance af(L) sum up to the Poynting energy flux of the turbulent electro-
along the magnetic field lines should be coarse grained, nahagnetic fields.

VII. CONCLUSIONS AND DISCUSSION
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In some operational regions of tokamak plasmas such as
high-confinement modegH mode$*® and reversed shear
configurations there have been observed transport barriers

1dpy, 0P aT,

Xa1=— VARG VA Xa2=~ 7 (A3)

with significant reduction of anomalous transport to the levelThe neoclassical particle and heat fluxes are given by

of neoclassical transport. Generally, large radial electric field

ncI ncl
' ; = 0+
shear(or shearedE x B flow) is considered as a cause of such Jar=(Ta™VV)= J J Jat Ad
a reduction of the transport level. In the present work as well 0 " oS b . (A4)
as in the conventional neoclassical theory, thgB flow ag_ <q CVV)=35+35+333

velocities have been assumed to 6ésvt) (vy: the ion

thermal velocity,5=p/L). However, this assumption is not Here the Pfirsch—Schier (J55), the banana-plateaw),
suitable to describing the effects of the large radial electriand nonaxisymmetricJ;?) parts are defined by

field shear since the radial electric field is undetermined for
tokamak plasmas due to the intrinsic ambipolarity of particle
fluxes in axisymmetric systems. In the H-mode theory by
Shainget al,*8 the drift kinetic equation with large flows but
without fluctuations are used to obtain the neoclassical vis-
cosities and accordingly the ambipolarity condition as the
constraint on the radial electric field, which is different from
that given in the present work. Such pure neoclassical mod-
els as by Shaingt al. do not treat interactions between the
ExB background flows and the fluctuations through the
Reynolds stres®*° but they are considered as another im-
portant factor of transition processes occurring in the trans-
port barriers for a self-consistent description of the radial
electric field, fluctuations, and transport. As an important
task for understanding the transport barrier physics, exten-
sion of our theory to that including the large radial electric
field and the Reynolds stress is now under investigation.

ACKNOWLEDGMENTS

c |F
IE=(IESVV)=— .8’ <—

(B

W=(PVV)=— g gy (BV-m)

a=(T3"VV)= (By-V-1,),

Cc
08{
(AS5)

PS_
a2_

—<( - 5]}

(By)

e,B? (B?)

<q VV)

bp_
aZ_

<qap VV)=- (B-V-0,),

na:_ <q V> <Bt V- ®a>

HBg

This work is supported in part by the Grant-in-Aid from where the viscositiea-a and @, are defined by

the Japanese Ministry of Education, Science, and Culture,
and in part by U.S. Department of Energy Grant No. DB-
FGO05-80ET-53088.

APPENDIX A: DEFINITIONS OF CLASSICAL AND
NEOCLASSICAL TRANSPORT FLUXES

The radial components of the classical particle and heat

B 1
7=(Pja—Pra)| NN— § I

1 — 1
Ef d3v ma(vz—zvf)fal( nn—z I),

1 (A6)
O0.=(0— ®La)< nn— 3 I)

fluxes are defined by
1 5\— 1
Ef d3U ma(vf— E Ui) (Xg_ E) fal( nn— § |) .

The inductive electric fieldEW=—c~* sA/at also produces
the radial particle fluxd5'='®.vV), defined by

EAxn
Jgﬁ)znac< = -VV>

{5 (oo ] )

5 Here we have used the Hamada coordinét€8,{) with the
Fa2=J d3 muv| x2— E) C.. normalizationfdd=¢$d{=1 to define the contravariant and

covariant components of the magnetic fieRf=B-V4,
The fluxesJS; andJS, are conjugate to the thermodynamic B=B-V¢, B,=B-dx/d6, B,=B-ax/d{, and the toroidal mag-
forcesX,; andxaz, respectlvely, which are defined in terms netic field B,=B¢ ox/d;. Another pair of the flux and the
of radial gradients of the pressure, electrostatic potential, anfbrce is Jg,Xg), whereJg is defined in terms of the total
temperature as parallel current), =X ,n,e,u,, as

J¢ =r¢. VV=_—= (Fauxn)-VV,

(A1)

J;'Z:T qs- V=2 (Faxn)-VV,

respectively, where the friction forcég,; andF,, are given
by

Fa1= f d3v m,vC,, (A7)

(A2)
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(BJ)

JEE W—, (A8)
and Xg is given by the parallel electric field, as
(BE))
Xe= Ty (A9)

APPENDIX B: DERIVATION OF EQ. (29)

Here we find how to derive Eq29) from Eq.(24), or in

af(l)
a—(+ca[f<1><k )],
(B4)
(2) (kJ_)
E@(k,)=-Ve(k,)- :
at
Using Egs.(B3), (B4), and
) geiLalkp) .
Q,e'talk) T —ik, -v, (B5)

other words, how to rewrite the kinetic form of the anoma-we obtain

lous entropy production by the thermodynamic form.
Using integration by parts, Eq24) is rewritten as

. e, [
s’*zfdf5 -= <f
2 % m, a

d~A
a
+(In faM+1)W

~ 1 “ dlinf
E+—va>> - am
c EY

ens

e PN Aoy A
=T—a f dSu(FVE@+FPEW) oV
a

+V.

J d3v(In faM+1)?§vl)

d1n fam
ox'

_ f o FAv, - (B1)

Here it should be noted that, sinéé /"(62) its calculation
requires the fluctuating distribution functlo‘ra and the tur-
bulent electric fieldE up to (&):

f.=tD+12+ (83,
A oA - B2
E=EW+E@+(8%. B2)
The lowest-order parts &fa andE are(6) and their Fourier
amplitudes for the perpendicular wave number vektoare
written as

(k)=

e (kK A )
# faM+ha(kl)elLa(ki)v

a

ED(K, )= —ik, (k,). 63

For the/(8) partsf® andE@, we have

: 0 ) ~
Qae'La(kD a_g [eﬂLa(kL)f(aZ)(kl)]

(9 a
2. 25w
STV aE | Tk
€ |- 1 N If a1
2 ED - (1) .
* o [ED )+ S vxBO (k) |-
€ |- 1 N f 20
+ 21 E® + - yxB® .
m, [E (ky) c vxB*(k,) v
e ~ 1 ~
= {E“)(ki)#——va(l)(kL)
Ma o o7 -k c
1L 1 L
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f d%(fgl)é(z)}ensv:f d%; <ﬁ§(ki)eiLa(kﬂv
1

1 9A(k
( Vaik)— ¢ “))>

ot
(B6)
and
stv<%212)é(l)>ensv
- R . geiLaky)
:Qaf d%o > (ff,f> (k) (K, ))eng-atk)
ko 2
=—Qaf 3 <a>*<kl>e“a<kﬂ
Ky
xi[e—iLa(kl)%(Z)(k )]>
&g 2 . ens
fd%E <¢>*(kL — V- V)f(l)(k )> (B7)
ens
Noting that
']E’A
TA
f ag(f len) ﬁg vV, Xn, (B8)
it 1 . ¢ A1
Ta_ - 2% [t
7€ QJBﬁ<f<E+VXB>’
ens
(B9)
and
onfam__ 11y x 2| lyy B10
Ix’ __T_a al+ a2X_§ ’ ( )

the last two terms on the right-hand side of EB1) are
rewritten as

V-( f d3u(In fay+ 1)?/;\@)

Cfd3 In f,u+1 J
B v(In fam )(vxn)w

.<fgl> =
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A m,C s DAL respectively, which are shown to be equivalent to the defini-
= _V'JSa_V'<TaB j dPo(feVEM)ens V(vXn) tions in Eqs.(30) and (34) from the following relation:
C /A . ~ 1 ~
(B1D = < h;(kl)e"La(kl)< ED(k,)+ 2 v B(l)(kl)) > xn
and ens
. C ~ ~
_f &0 ?AV . d1n fam =1 E <h;(kl)¢a(kL)>ens(kan)
avl IX A
c 5\ 4 = (h3 (K )Vga(KL))ens: (B14)
=78 Jd3v(vxn-VV)[Xal+Xaz X2— 5) v Finally, substituting Eqs(B6), (B7), (B11), and (B12)
a into Eq. (B1), we obtain
“ “ 1 ~
. f(l)(E(1)+— xBD . 1
< 2 c’ ens Si=-V-Js.t T. (JaXa1+ Ja2Xa2 t J5s)
1 maCXaz |f(l) k )2—|ﬁ k )|2
= (JAlXa1+JA2Xa2)+T i f 3 < a ( L a( L >
Ta a a TaB + ot d v % 2 faM
212 (1) 2_In 2
xf AP (FOED), cv(vXn-VV). (B12) . Jd% 5 (|5 (kL)ZIf Iha(k,)| >Un}
kL aM

Here, the anomalous entropy, particle, and heat fluxes are

) (B15)
defined by

which is the same one as E®9).

A_ _ E 3 D[ £ APPENDIX C: PROOF OF ONSAGER SYMMETRY OF
‘]Sa d U(In faM+1) fa E
B QUASILINEAR ANOMALOUS TRANSPORT
MATRIX

> xn, Here, the Onsager symmetry given in E48) for the

ens quasilinear anomalous transport matrix is proved by the tech-

nigue similar to those in Ref. 2 and Ref. 5. This proof is valid

for the linearized Landau collision operator without assum-

ing the Krook model. The solutioih, of the gyrokinetic

(B13) equation(27) with the nonlinear term neglected is written as
a linear function of the thermodynamic forck§,;

o= fd?’v(xz—§> A S
a2 g a 2 ha(kL)ZEb mE:l Gabm(ki)xlkl_)\m' (Cl)

(i e Lyxae
a c

> xn-VV, where éabm(kJ.) (m=1,2,3 are the Green’s functions that
ens satisfy

E+i<wE+wDa>+v”n-V')éabm<kg—e-“a<kﬁ2 Cal Gannl(k )& =), Gyrpr(ki )€ 0] = 5pf oy Wom(k ),
a!
(C2
|
with Substituting Eq(C1) into Egs.(34), we obtain the quasilin-
ear anomalous transport equatigd$), with the anomalous
transport coefficients given by
- c A -
—i = (k, xn-VV k ~ 2
F ) g (KX VWISl 3= [ S (Wan(k) Sl Dene
~a c - L
=| —i = . 2_5
\ANaZ(kL) = | B (kixn VV)(Xa 2)¢a(ki) (m,n:1,2,3' (C4)
Wa3(kL) 5(}) (k ) ~ . .
e a™l Here G, are functions of the perpendicular wave number
L aoat . vectork , the positionx’ (which is used to represent the
spatial dependence along the magnetic field)]itlee timet,
(€3 ial depend long th ic field)Jittee ti
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and the velocity space var|ables(e=zmav +e, P,
u=mu?/2B, o=v-n/|v-n|). We also note thaﬁ;abmdepends
on equilibrium parameters contained in EG2) such as the
equilibrium (or ensemble-averagednagnetic fieldB=Bn,

?am(th):_? —-B),

am( -t
(C1))

Zam(t,B)=Zan(—t,—B),

and that they are functionals of the spectra of the electromag-

netic fluctuationsg(k, )=[A(k, ), A(k,), Bk, )/k, I

Gapnl K, X't €, 0,0 B.{B}].

Then, Eq. (C4) shows that the anomalous transport coeffi-
cients (")22 are also functionals of the fluctuation spectra
and that it also containB as a parameter:

= (LA B¢},

where the spectra of the electromagnetic fluctuat{@}}sare
assumed to be givea priori.

Now let us divide the fluctuatlond» into even and odd
parts with respect to the time reversal:

éab m— (CH

(LM (C6)

b=+,
b ()=¢.(—1), ¢ (H)=—¢ (—1).

According to this diViSionWam and éabm are divided as

(C7)

Wam: Wam[{ngr}] + Wam[{gbf}] = ?am"' 2ama
. . . . . . . (Cy)
Gabm=Gabn{ 1@+ 11+ Gapnl{ -} 1=HapmT lapm-

The functions on the right-hand side of EG:8) satisfy
Yarl{$(D}]=Yanl {(—1)}],
Zard{$(}]=~ Zan {H(—1)}],

Habrl { #(1)}1=Hapnl {(—1)}],
Tabnl {A(D}]= ~Tapn {H(—D}].

Then, Eq.(C2) also separates into the two parts:

(C9

I(wE+ (UDa)+U”n V

abm

at

- L ~ - ~ 0,
€ ILaE Caal[HabmelLa:Ha’bmelLa]
a/

= SabfomYbm»
(C10

ot

+i(wg+wpa) +un- v’ } labm

- e_iLaE C;a'[i\abmeiLav’l\a’bmeiLa’]
aV

= SapfomZom-

Next, we consider the transformatidhB)—(—t,—B).
Noting thatY am andZ am are odd and even with respect to
this transformation, respectively:
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we find that Eqs(C10 are separated into even and odd parts
as

d
at

+i(wg+wpa)+oyn-V’ ) Habm

—i L g+t ailgy™ iLy
—e ILaE Caa’[HabmelLaHa’bmelLa]:ol
a/

&t+|(wE+wDa)+vlln V! ) Habm

—i L r- ailag— iLg
—e ILaE Caa’[HabmelLaHa’bmelLa]
a/

= 820 om Y bm»
(C12

abm

J
ot +|((,L)E+ wDa)-i—an -V’

it 2 Caar[labm ILaI a’bm elLa] 5abfbMmev

J
ot +|((.L)E+ wDa)-i—an V

abm

. L ~_ A o
—e ILaE Caa’[labmelLa!Ia’bmelLa]:0’
a/

where the superscripts and —
of the functions:

represent even and odd parts

Hipm(t.B)=H o —t,— B),

Hapn(t,B)=—Hapm( —t,—B),

(C13

abm(t B) B),

Iabm(_t!

ia_bm(t!B): _ia_bm(_t!_B)'

From Egs.(C12 and the self-adjointness of the linear-
ized collision operatorC,, we can derive the following

equations:
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TaMaIb T <fd302 <(Yam+zam)(Habn abn)>ens

= - 2 Tar<Jd3
a’,b’

1x e tarct, [(A 1o

,* )
aam aam

a'M

+<(Ha bn

a’am

-I—al\lflnbnE <f dSUZ <(Yam+z m)(Habn+|abn)>ens>

Freffes

I(wE+ Q)Da)"l'U”n V,)

a’'M kJ_

{< (ﬂ;r"l;n—’_i;’ﬁn)

X
at

+%
+1

a’am)<ﬁ

( ’bn+i;’bn)> )

Using the self-adjointness @}, again, we find

TaM;bn: M ba TaN;bn: _TbNg%'

nm?»

~ L ~_ ~
><(Ha’am_l_la’am)> <(Ha ram

ens

|((,!)E+ wDa)-i-an V

(C19

From the symmetry properties given by Ed€9), (C11),
and(C13), it is shown that

B} =M[—B{(—1)}],

N?nbrrB,{<}>(t>}]=—N%%[—B{&(—t)}].
Finally using Egs.(C15 and (C16), and noting that

(C16)

—iL, L R
€ I aca’b’[(Ha’bn+

)e”—a (H

T- iLy (gt T- il
larpn) €2 (HprpntTprpn) €70 Dens

1) €0 Dend (C14

b’am
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