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A theory of the self-sustained turbulence is developed for resistive plasma in toroidal devices. 
Pseudoclassical confinement is obtained in the low-temperature limit. As temperature increases, 
the current diffusivity prevails upon resistivity, and the turbulence nature changes so as to 
recover the L-mode transport. Comparison with experimental observation on this transition is 
made. The Hartmann number is also given. 

I. INTRODUCTION 

The plasma transport across the magnetic field has 
been known to be much faster than that expected from the 
binary collision of particles. This is known as the anoma- 
lous transport and efforts to understand it has been one of 
the main motivations of modern plasma physics. The so- 
called “Bohm diffusion,“’ i.e., the thermal conductivity x 
(the energy flux per particle divided by the temperature 
gradient) is given as xB= T/16eB (T is plasma tempera- 
ture and B is the main magnetic field), was overcome by 
the concepts of the minimum average B and magnetic 
shear in toroidal plasmas.* By this, the plasma confinement 
time became longer than Bohm diffusion time rn .3 

For such plasmas, the relation between the confine- 
ment time r and T was studied. It was concluded that ra 
P/R, and this nature of plasma confinement was called as 

the pseudoclassical transport4 The form of x CC Y,& was 
proposed (ve is electron ion collision frequency and pPe is 
electron gyroradius evaluated by the poloidal magnetic 
field). This character has been confirmed in internal ring 
devices, stellarators, and tokamaks in some range of 
plasma temperature.“’ The dependence rcc fi is favor- 
able for thermonuclear fusion research and encouraged 
constructions of large toroidal devices. The deviation from 
fi dependence of r, however, was found;5 r again starts to 

decrease with increments of the temperature. Yoshikawa 
proposed the form of x a T and called it neo-Bohm 
transport.’ The range of temperature variation has become 
wider through use of the auxiliary heating on tokamaks. 
The present database yields the relation T a P-o.5, where P 
is the heating power.“?” This confinement characteristic is 
called as L mode, but is identical, from the viewpoint of T 
dependence of x, to the neo-Bohm confinement. The tran- 
sition happens at certain temperatures from pseudoclassi- 
cal transport to L-mode (neo-Bohm) transport. 

The origin of the pseudoclassical transport was attrib- 

uted to resistive instabilities.4 Much work has been done on 
linear theory and nonlinear theories.12-l5 Linear theory has 
predicted that the favorable dependence rcc 

c 
T should be 

replaced by another dependence as ro: T-l’ at the high 
temperature limit. This would be qualitatively correct. 
However, this fails to quantitatively explain the L-mode 
(neo-Bohm) confinement time. The transition point from 
pseudoclassical to L-mode (neo-Bohm) confinement was 
not explained. No theory has been successful for the simul- 
taneous explanation of the L-mode and pseudoclassical 
confinement as well as the transition between them. 

We have recently proposed a new theoretical method 
to analyze the fluctuations in toroidal plasma.‘“” It is 
considered that the fluctuation itself has the effects to de- 
stabilize the microscopic mode in addition to the stabiliza- 
tion effects. The marginal stability condition for the non- 
linear instability was solved, and the anomalous transport 
coefficient and fluctuation structure were simultaneously 
obtained. The analysis based on the scale invariance 
method has also confirmed the results.” The analysis was 
done for high-temperature plasma, for which the resistivity 
is neglected, and the result was found to explain the 
L-mode confinement. We apply this method to the low- 
temperature toroidal plasma with large resistivity. The 
pseudoclassical transport is recovered in the resistive limit. 
As the temperature increases, the current diffusivity takes 
over the destabilization mechanism. The transition from 
pseudoclassical transport to L-mode (neo-Bohm) trans- 
port occurs at a certain temperature. Comparison with the 
spherator experiment4 is discussed. By using the formula of 
the anomalous transport coefficient, the Hartmann 
number2’ is also obtained. 

II. MODEL AND STABILITY ANALYSIS 

We study the circular tokamak with the toroidal coor- 
dinates (r, 8, 6). The reduced set of equations21 is em- 
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ployed. The EX B nonlinear interactions are renormalized 
in a form of the thermal conductivity, x, the ion viscosity, 
p, and the current diffusivity, A. (The detailed derivation is 
reported in Ref. 18.) We employ Ohm’s law 
Ef uX B= J/a-V: W (0 is the conductivity), the equa- 
tion of motion 

nm. I 1 =BVll J+VpxV 

and the energy balance equation dp/dt=xV: p, Here mi is 
the ion mass, ni is the ion density, r# is the streamfunction, 
B is the main magnetic field, p is the plasma pressure, and 
J is the current. 

The ballooning transformation22 is employed as 

&r&X) = F exp( -ime+@) 

x #(~)exp(imrl-@rl)dv s 
(q is the safety factor), since we are interested in micro- 
scopic modes. The linearized equation is reduced to the 
ordinary differential equation 

d F dqb 
;i;;p+EF+AF*&+ 

~[K+COS ?,?+ (g-a sin q)sin q]# 
P+XF 

- (f+MF)FIp=O. (1) 

We use the normalization r/a-i, t/TAP-‘;, xrAda2--rt, 
p-,&a’ 4, rA/pooa2 * l/6, 

n 

E a ~P~IB,, 

~r.4&w4-4 ‘AP 
yrAp-’ f, and notation 8 = n2d/&, 

A=h4q4, X=$n2$, M=@n2qz, y is the growth rate, 
s=r(dq/dr)/q, F=l+(s~-asin~)2, KZ-(r/R) 

(I- l/g) (average well), BP= Br/qR, -a=$fl’/e, 
E=T/R, a and R for the major and minor radii, p is for the 
pressure divided by th: magnetic pressure, and p’ =dp/ 
d(r/a). If we neglect R, 2, and ,& Eq. ( 1) reduces to the 
resistive ballooning equation. The ideal magnetohydrody- 
namic (MHD) mode equation is recovered by further tak- 
ing l/&=0. 

The stability boundary is derived. Setting p=O in Eq. 
(1), we have the eigenvalue equation, which determines 
the relation between 2, 1, ,& and B for given pressure 
gradient. We study here the case that the ballooning mode 
is destabilized by the normal curvature, not by the geodesic 
curvature, i.e., l/2 +a > s. For the strongly localized 
mode, ?q2 < 1 and 7’ < 1, this eigenvalue equation is ap- 
proximated by the Weber-type equation as 

d2 a( l/&+;in2$) 
zip+ x 

[ ( 1 s2 
x l- 2+0-s+ 1 +&2g,6 1 I q2 f#--r(in4q4 

X [ ( 1/8+&z2q2) + (3fn2$+2/6)s2~2]$=0. (2) 

The eigenvalue for the fundamental mode is readily seen as 

(b) 

FIG. 1. Marginal stability condition for the nonlinear ballooning insta- 
bility (schematic). N stands for tl?e normalized mode number. The resis- 
tive limit (p-0) and the current diffusive limit ( p% 1) correspond to (a) 
and (b) 2 respectively. Dashed lines indicate limiting expressions: Eqs. (6) 
in (a) and Eq. (5) in (b), respectively. 

( 
22 l+pN2 N4 x 1+-- 
g l+g*PNZ 1 ’ 

(3) 

where p is the ratio 

p=[i.X(a/#)“2, 

N is the normalized mode number 
(da) 

N=nq(#/a)“4, 

and (g,gi) are coefficients 
(4b) 

g= 1/2+a+s2--s, 81=(1/2+a--)/g. (4.c) 
The right-hand side of Eq. (3) shows the dependence 

of the marginal stability condition on the mode number. 
Figure 1 illustrates the schematic dependence of critical 
value of a as a function of the normalized mode number. 
In the resistive limit of p +O (i.e., the resistive diffusion of 
the magnetic field is faster than that by current diffusivity ), 
the dependence on the term ( 1 + pN2) -’ on the right-hand 
side (rhs) of Eq. (3) is not important. The limiting equa- 
tion is reduced from Eq. (3 ) as 

G&l-A+-2 1 ( +sv‘q 
g * (5) 

In this case, the upper bound of a for the stability (for 
fixed values of transport coefficients) takes place for the 
low mode number case. Figure 1 (a) illustrates this N de- 
pendence. If, on the contrary, p is greater than unity, the 
term ( 1 + piV2) -’ dictates the minimum of the rhs of Rq. 
(3) + The simplified equation for the limit of P-L CO is re- 
duced from Eq. (3) as 

(6) 

Figure 1 (b) shows the N dependence for the current- 
diffusive limit. The minimum value of a is given by the 
intermediate number of N. 
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In the resistive limit of p-0, the minimum of the rhs 
of Eq. (3) is given as g. The marginal stability condition 
for the least stable mode is given as 

a=a, (7) 
with 

ar=gq. (8) 
In the current-diffusive limit of p -+ CO, the marginal stabil- 
ity condition for the least stable mode is given as 

a=acd (9) 
with 

ati=(R/ii)2'3(f@)1'3f(s)2'3, 

where f(s) = 2ggl dm. 
(10) 

III. TRANSPORT COEFFICIENT 

Based on the stability analysis, we can derive the for- 
mula for the anomalous transport coefficient. Equations 
(7)-( 10) dictate the relation between the transport coef- 
ficients and the pressure gradient at the stationary state of 
the nonlinear ballooning mode. This state is thermodynam- 
ically stable. When the mode amplitude and the associated 
transport coefficients are small, Eq. ( 1) gives the instabil- 
ity. Extra growth of the mode and the resulting enhanced 
transport coefficients over Eq. (3) lead to damping of the 
mode. 

From Eqs. (7) and (9):f is expressed in terms of the 
Prandtl numbers p/f and n/i. For the resistive plasma, 
Eq. (7) gives 

f=a/c?g. 

Using dimensional quantities, Eq. ( 11) gives 
(11) 

x = 2a/pea, (12) 
which has been known as the transport coefficient of the 
resistive plasma. Using the relation of o= ne2/mev,, Eq. 
(12) is rewritten as 

x=4(e/&)‘V,& (13) 

where &, is a-normalized pressure gradient scale length, 
-da/di=p/L,. Apart from a geometrical numerical fac- 
tor of order unity, Eq. ( 13) is the pseudoclassical diffusion 
coefficient. 

On the other hand, thermal conductivity in the current 
diffusive limit was given as 

R=a3’2(i/f) &@/f(s). (14) 
The relations fi/g = S2/a2 and p/f = 1 hold and the explicit 
form of x was given as (VA is the AlfvCn velocity) 

x= f (s)-‘~~(RP’/~)~‘~S~V~/R. (15) 
Compared to Yoshikawa’s formula for the neo-Bohm 
transport, this form of x has a slightly stronger tempera- 
ture dependence. Equation (15) also suggests that the po- 
loidal magnetic field, not the toroidal field, is important in 
determining the anomalous transport. This fact was dis- 
covered in the multipole devices as well. The theoretical 

FIG. 2. Confinement time as a function of the temperature. Formulas 
(17) and ( 18) are fitted to the spherator plasma. Data points are quoted 
from Ref. 4. The solid line is pseudoclassical law ( 17) and the dotted line 
is for the neo-Bohm (L-mode) law ( 18). For the parameter of interest, 
the turnover temperature is predicted as 8 eV. Numerical coefficients of ,y 
are adjusted to reproduce the original line of Ref. 5 in the low- 
temperature limit. 

prediction Eq. ( 15) is consistent with experimental results 
known for the L mode as was discussed in detail.” It is 
noted that Eq. ( 15) is related to the Ohkawa model of x:23 
the geometrical factor is correctly kept in Eq. ( 15). 

The change from the pseudoclassical transport to the 
L-mode transport occurs at the condition a,-acd. This 
condition is written as &-a- 1’2(u/6)2, or in a dimen- 
sional form as 

w4p - a 
l/2 (164 

or 

Ye- VT/ G9 (16b) 

where UTi is the ion thermal velocity. Using the normalized 
collision frequency Y* (ratio of ye to the bounce frequency 
$&./qR), Eq. (14) is rewritten as v, - qdmD 

The transition from the pseudoclassical confinement to the 
L-mode confinement is predicted to occur in the banana 
regime of electrons, if the parameter Lp is of order unity. 

In the limit VJ,.+ 6, the relation between the con- 
finement time r and temperature 

(17) 

holds (assuming that other parameters are fixed). In the 
other limit, we have 

ra Te312. (18) 
Figure 2 compares the theoretical predictions with ex- 

periments on the spherator.5 (Typical parameters are used: 
n,=lO” rnh3, R=0.4 m, R/a=6, ~$=0.4.) For the set of 
parameters, the turnover from pseudoclassical to neo- 
Bohm transition occurs at around 8 eV. In Fig. 2, the 
coefficients of order unity are adjusted to recover the orig- 
inal line of the pseudoclassical law of Yoshikawa (solid 
line of Fig. 2) in the low-temperature limit. Formula (18) 
takes over at the connection point of 8 eV. Since the 
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plasma profile is not compared, only the semiquantitative 
comparison is, at most, possible. We emphasize that Eq. 
( 15) depends on the density profile as well as on the tem- 
perature profile. The larger x value is predicted at the edge 
region due to the large collisionless skin depth (i.e., low 
density). Though the theoretical prediction is based on the 
very simplified point model argument, the theoretical re- 
sults Eqs. (16)-( 18) may explain the pseudoclassical 
transport and transition to neo-Bohm transport in the 
spherator experiments. 

Using the results on the anomalous transport coeffi- 
cient, we calculate the Hartmann number.20 The Hart- 
mann number is an important parameter for the global 
instabilities.24 The other important parameter is the mag- 
netic Prandtl number, P,w=po~p, which may have a key 
role in the dynamo mechanism.25 Hartmann number M is 
defined as M = BL dz, where L is the typical scale 
length. Substituting plasma minor radius into L, we have 
the relation M2 = (qR/a) 2 (C/b). The Prandtl number p/x 
remains of order unity.16s*7 Using the formula of Eq. ( 111, 
we have 

M= (qR/a)&& (19) 

for the plasmas which satisfy pseudoclassical scaling law. 
This result shows that the Hartmann number increases in 
proportion to the magnetic Reynolds number. The linear 
dependence of M on the plasma temperature is also found. 
The geometrical factor is explicitly included in Eq. ( 19). 

As the transition from the pseudoclassical confinement 
to L-mode confinement takes place, the Hartmann number 
changes its dependence on the temperature. Using Eq. 
(15), we have 

M= (qR/S)ii’/2a-3’4 (20) 
for the L-mode plasma. In an explicit form, E+ (20) can 
be rewritten as 

Ma B2q- 1E1/4n-1/2a3/2e (21) 

The Hartmann number no longer depends on the plasma 
temperature. The plasma with the lower density has the 
higher Hartmann number. 

The magnetic Prandtl number is rewritten as PM=@. 
In the resistive limit (pseudoclassical limit), we have 

PM=a/g; (22) 

PM is an increasing function of the plasma beta value. In 
the current-diffusive limit (L-mode limit), PM depends 
more strongly on the plasma temperature, as PM a T3. For 
the parameters of present-day experiments, PM can exceed 
unity. 

IV. SUMMARY AND DISCUSSION 

The theory of the anomalous transport and self- 
sustained turbulence was applied to the resistive plasmas. 
The system with magnetic well and shear, such as in a 
tokamak, was investigated. The pseudoclassical transport 
coefficient was obtained in the low-temperature limit. Us- 
ing the formula of the transport coefficients, the Hartmann 
number and magnetic Prandtl number are also obtained. 

From this analysis, the pseudoclassical transport is 
found to be connected to the L-mode (neo-Bohm) trans- 
port at a certain temperature. The pseudoclassical trans- 
port and L-mode transport are now expressed in terms of 
our unified anomalous transport theory, which is obtained 
for the self-sustained ballooning mode turbulence. Equa- 
tions ( 12) and (15) are the generic expressions for the 
transport coefficients in toroidal plasmas. It is noted that 
the Yoshikawa formula on pseudoclassical scaling and the 
Ohkawa formula keeping S2vA/R dependence represent the 
two limiting features of the anomalous transport in toroi- 
da1 plasmas. “The possibility that anomalous plasma dif- 
fusion depends on geometric factor,” which was posed in 
Ref. 4, is demonstrated and formulated in Eqs. (12) and 
(15). 

It is a straightforward extension to apply this method 
to the system with the magnetic hill. The interchange mode 
is analyzed instead of the ballooning mode. With the in- 
troduction of the additional coefficients which reflect the 
magnetic hill, a similar formula was obtained. This also 
explains the change of the confinement in stellarators from 
the pseudoclassical scaling to the L-mode-type scaling. 
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