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Abstract. The motions of relativistic particles in a magnetosonic shock wave propa-
gating obliquely to an external magnetic field are studied. In the zeroth-order
theory, particles continue to move nearly parallel to the external magnetic field in
the shock transition region, when the shock speed is close to c cos θ, where c is the
speed of light and θ is the propagation angle. Perturbations to this zeroth-order
motion are also analyzed for positrons and ions. The perturbation frequency of
positrons is ω ∼ Ωp0γ−1 and that of ions is ω ∼ Ωi0γ−1/2, where Ωp0 and Ωi0 are
the non-relativistic gyrofrequencies of positrons and of ions, respectively, and γ
is the Lorentz factor. These theoretical predictions are confirmed with numerical
simulations.

1. Introduction
Magnetosonic shock waves can accelerate thermal hydrogen ions, heavy ions, and
electrons with various non-stochastic mechanisms [1]. Recently, two acceleration
mechanisms of non-thermal, relativistic particles in magnetosonic shock waves have
been studied with theory and simulations. One mechanism is associated with large-
radius gyromotions; particles absorb energy from the electric field perpendicular
to the magnetic field B [2]. The other is the acceleration parallel to B [3, 4]. Here,
we investigate particle motions in the latter. In Sec. 2, we describe the zeroth-order
and perturbation theories for relativistic particles. In Sec. 3, we verify them with
simulations. Section 4 gives a summary of our work.

2. Theory
2.1. Zeroth-order theory

We analyze the motions of relativistic particles in a magnetosonic shock wave
propagating in the x direction with a speed vsh in an external magnetic field
B0 = B0(cos θ, 0, sin θ). If the particle speed v is very close to the speed of light c, a
slight change in the particle speed can lead to a great change in the Lorentz factor
γ. Therefore, ignoring γdv/dt compared with vdγ/dt, we obtain the zeroth-order
equation of motion for a particle with a massmj and a charge qj (j denotes particle
species, j = p or i):

mj
dγ0

dt
v0 = qj

(
E+

v0
c

× B
)

, (2.1)

where the subscript 0 refers to the zeroth-order quantities.
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We consider particles moving with the wave, i.e. vx0 = vsh. When vsh ≈ c cos θ,
we find

vz0

vsh
≈ Bz0

Bx0
(2.2)

from (2.1). It is also shown that |vy0| is much smaller than vx0 and vz0; thus, the
particles move nearly parallel to B0. Moreover, we obtain the time rate of change
of γ0 as

dγ0

dt
=

qjBx0

mjvsh

(E · B0)
(B · B0)

. (2.3)

If the particle position in the wave does not change, γ0 continues to grow linearly
with time [3].

2.2. Perturbation theory

The zeroth-order theory is applicable to either positrons or ions. We do, how-
ever, need to treat positron and ion perturbations separately [4]. We assume that
dv1/dt ∼ γ−1

0 Ωp0v1 for positrons and dv1/dt ∼ γ
−1/2
0 Ωi0v1 for ions, where Ωp0

and Ωi0 are the non-relativistic positron and ion gyrofrequencies, respectively, and
the subscript 1 refers to perturbed quantities. We then expand the exact equation
of motion. After some algebra, the perturbation frequency ω of the positrons is
obtained as

ω2 =
(

e

mpc

)2 (γ2
0/c2)(B0 · v0)2 + B2

γ4
0

, (2.4)

which is obviously positive, while that of the ions is given as

ω2 = − qi
miγ0γsh

(
dEx

dξ0
+

vy0

c

dBz

dξ0
− vz0

c

dBy

dξ0

)
, (2.5)

where γsh = [1 − (vsh/c)2]−1/2, ξ = x − vsht, and ξ0 is the center position of the
perturbation; d/dξ0 designates the derivative at ξ = ξ0. The ion perturbation is
stable when ω2 > 0.

3. Numerical studies
We numerically investigate the motions of relativistic particles. For positrons, we
use a one-dimensional, relativistic, electromagnetic particle simulation code [3]. As
in the theory, waves propagate in the x direction in an external magnetic field B0.
The field strength is |Ωe0|/ωpe = 3, where |Ωe0| and ωpe are the electron gyro and
plasma frequencies, respectively. The propagation angle is taken to be θ = 42◦. The
propagation speed of a shock wave studied here is observed to be vsh = 2.4vA, where
vA is the Alfvén speed. It has a typical shock profile with the width of the transition
region of the order of the ion inertial length as shown, for instance, in [3]. Figure 1
shows the time variation of γ of a positron accelerated by a magnetosonic shock
wave in an electron–positron–ion plasma with a positron-to-electron density ratio
of 0.02 [3]. The energy increases up to γ ∼ 600. We did, however, find oscillations
in γ. Figure 2 displays the oscillation frequency ω as a function of γ0 [4]. The data
points represent simulation results, while the solid line shows the theoretical curve
given by (2.4). The simulation results are explained by the theory.
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Figure 1. Time variation of γ of an accelerated positron. Here, ωpe is the electron
plasma frequency.
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Figure 2. Positron perturbation frequency ω versus γ0.
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Figure 3. Time variations of γ and vx of an accelerated hydrogen ion. Here, ΩH0 is the
non-relativistic hydrogen gyrofrequency.

For ions, we calculate test particle orbits; we first obtain the electromagnetic
fields in a shock wave from a particle simulation and then follow particle motions
in the fields, assuming stationary wave propagation. Here, plasma parameters are
|Ωe0|/ωpe = 1.5, θ = 50◦, and vsh = 3.2vA. The initial velocities of the test particles
are given by the zeroth-order theory. In Fig. 3 we show the time variations of γ and
vx of an ion with an initial energy γ = 1000. The energy increases from γ = 1000
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Figure 4. Ion perturbation frequency ω versus γ0.

to approximately 1400. Also, we find small-amplitude oscillations in vx. In Fig. 4,
we display the perturbation frequency ω as a function of γ0. The simulation values
fit well to the theoretical curve obtained from (2.5)

4. Summary
The motions of relativistic particles in a magnetosonic shock wave have been stud-
ied. In the zeroth-order theory, where the relation γ|dv/dt| � vdγ/dt is assumed,
particles are accelerated almost parallel to the external magnetic field, when vsh ≈
c cos θ. This is applicable to either positrons or ions. Perturbation theories for
positrons and ions have been separately investigated. The perturbation frequency
of positrons is ω ∼ Ωp0γ−1

0 and that of ions is ω ∼ Ωi0γ
−1/2
0 . The zeroth- and

first-order theories have been verified with numerical simulations.
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