Journal of Plasma Physics

http://journals.cambridge.org/PLA

Additional services for Journal of Plasma Physics:

Email alerts: <u>Click here</u> Subscriptions: <u>Click here</u> Commercial reprints: <u>Click here</u> Terms of use : <u>Click here</u> JOURNAL OF PLASMA PHYSICS

CAMPRODE

Theory and simulations of relativistic particle motions in a magnetosonic shock wave

SHUNSUKE USAMI and Y. OHSAWA

Journal of Plasma Physics / Volume 72 / Issue 06 / December 2006, pp 887 - 890 DOI: 10.1017/S0022377806005058, Published online: 20 December 2006

Link to this article: http://journals.cambridge.org/abstract_S0022377806005058

How to cite this article:

SHUNSUKE USAMI and Y. OHSAWA (2006). Theory and simulations of relativistic particle motions in a magnetosonic shock wave. Journal of Plasma Physics, 72, pp 887-890 doi:10.1017/ S0022377806005058

Request Permissions : Click here

CAMBRIDGE JOURNALS

Theory and simulations of relativistic particle motions in a magnetosonic shock wave

 $\rm S\,H\,U\,N\,S\,U\,K\,E\,\,U\,S\,A\,M\,I^1$ and Y. $\rm O\,H\,S\,A\,W\,A^2$

¹Computer and Information Network Center, National Institute for Fusion Science, 322-6 Oroshi-cho, Toki, Gifu 509-5292, Japan

²Department of Physics, Nagoya University, Nagoya 464-8602, Japan

(Received 15 August 2005 and accepted 20 December 2005)

Abstract. The motions of relativistic particles in a magnetosonic shock wave propagating obliquely to an external magnetic field are studied. In the zeroth-order theory, particles continue to move nearly parallel to the external magnetic field in the shock transition region, when the shock speed is close to $c \cos \theta$, where c is the speed of light and θ is the propagation angle. Perturbations to this zeroth-order motion are also analyzed for positrons and ions. The perturbation frequency of positrons is $\omega \sim \Omega_{p0} \gamma^{-1}$ and that of ions is $\omega \sim \Omega_{i0} \gamma^{-1/2}$, where Ω_{p0} and Ω_{i0} are the non-relativistic gyrofrequencies of positrons and of ions, respectively, and γ is the Lorentz factor. These theoretical predictions are confirmed with numerical simulations.

1. Introduction

Magnetosonic shock waves can accelerate thermal hydrogen ions, heavy ions, and electrons with various non-stochastic mechanisms [1]. Recently, two acceleration mechanisms of non-thermal, relativistic particles in magnetosonic shock waves have been studied with theory and simulations. One mechanism is associated with large-radius gyromotions; particles absorb energy from the electric field perpendicular to the magnetic field **B** [2]. The other is the acceleration parallel to **B** [3, 4]. Here, we investigate particle motions in the latter. In Sec. 2, we describe the zeroth-order and perturbation theories for relativistic particles. In Sec. 3, we verify them with simulations. Section 4 gives a summary of our work.

2. Theory

2.1. Zeroth-order theory

We analyze the motions of relativistic particles in a magnetosonic shock wave propagating in the x direction with a speed $v_{\rm sh}$ in an external magnetic field $\mathbf{B}_0 = B_0(\cos\theta, 0, \sin\theta)$. If the particle speed v is very close to the speed of light c, a slight change in the particle speed can lead to a great change in the Lorentz factor γ . Therefore, ignoring $\gamma d\mathbf{v}/dt$ compared with $\mathbf{v}d\gamma/dt$, we obtain the zeroth-order equation of motion for a particle with a mass m_j and a charge q_j (j denotes particle species, j = p or i):

$$m_j \frac{d\gamma_0}{dt} \mathbf{v}_0 = q_j \left(\mathbf{E} + \frac{\mathbf{v}_0}{c} \times \mathbf{B} \right), \qquad (2.1)$$

where the subscript 0 refers to the zeroth-order quantities.

We consider particles moving with the wave, i.e. $v_{x0} = v_{sh}$. When $v_{sh} \approx c \cos \theta$, we find

$$\frac{v_{z0}}{v_{\rm sh}} \approx \frac{B_{z0}}{B_{x0}} \tag{2.2}$$

from (2.1). It is also shown that $|v_{y0}|$ is much smaller than v_{x0} and v_{z0} ; thus, the particles move nearly parallel to \mathbf{B}_0 . Moreover, we obtain the time rate of change of γ_0 as

$$\frac{d\gamma_0}{dt} = \frac{q_j B_{x0}}{m_j v_{\rm sh}} \frac{(\mathbf{E} \cdot \mathbf{B}_0)}{(\mathbf{B} \cdot \mathbf{B}_0)}.$$
(2.3)

If the particle position in the wave does not change, γ_0 continues to grow linearly with time [3].

2.2. Perturbation theory

The zeroth-order theory is applicable to either positrons or ions. We do, however, need to treat positron and ion perturbations separately [4]. We assume that $d\mathbf{v}_1/dt \sim \gamma_0^{-1}\Omega_{\rm p0}\mathbf{v}_1$ for positrons and $d\mathbf{v}_1/dt \sim \gamma_0^{-1/2}\Omega_{\rm i0}\mathbf{v}_1$ for ions, where $\Omega_{\rm p0}$ and $\Omega_{\rm i0}$ are the non-relativistic positron and ion gyrofrequencies, respectively, and the subscript 1 refers to perturbed quantities. We then expand the exact equation of motion. After some algebra, the perturbation frequency ω of the positrons is obtained as

$$\omega^{2} = \left(\frac{e}{m_{\rm p}c}\right)^{2} \frac{(\gamma_{0}^{2}/c^{2})(\mathbf{B}_{0}\cdot\mathbf{v}_{0})^{2} + B^{2}}{\gamma_{0}^{4}},\tag{2.4}$$

which is obviously positive, while that of the ions is given as

$$\omega^{2} = -\frac{q_{\rm i}}{m_{\rm i}\gamma_{0}\gamma_{\rm sh}} \left(\frac{dE_{x}}{d\xi_{0}} + \frac{v_{y0}}{c}\frac{dB_{z}}{d\xi_{0}} - \frac{v_{z0}}{c}\frac{dB_{y}}{d\xi_{0}}\right),\tag{2.5}$$

where $\gamma_{\rm sh} = [1 - (v_{\rm sh}/c)^2]^{-1/2}$, $\xi = x - v_{\rm sh}t$, and ξ_0 is the center position of the perturbation; $d/d\xi_0$ designates the derivative at $\xi = \xi_0$. The ion perturbation is stable when $\omega^2 > 0$.

3. Numerical studies

We numerically investigate the motions of relativistic particles. For positrons, we use a one-dimensional, relativistic, electromagnetic particle simulation code [3]. As in the theory, waves propagate in the x direction in an external magnetic field \mathbf{B}_0 . The field strength is $|\Omega_{e0}|/\omega_{pe} = 3$, where $|\Omega_{e0}|$ and ω_{pe} are the electron gyro and plasma frequencies, respectively. The propagation angle is taken to be $\theta = 42^{\circ}$. The propagation speed of a shock wave studied here is observed to be $v_{sh} = 2.4v_A$, where v_A is the Alfvén speed. It has a typical shock profile with the width of the transition region of the order of the ion inertial length as shown, for instance, in [3]. Figure 1 shows the time variation of γ of a positron accelerated by a magnetosonic shock wave in an electron–positron–ion plasma with a positron-to-electron density ratio of 0.02 [3]. The energy increases up to $\gamma \sim 600$. We did, however, find oscillations in γ . Figure 2 displays the oscillation frequency ω as a function of γ_0 [4]. The data points represent simulation results, while the solid line shows the theoretical curve given by (2.4). The simulation results are explained by the theory.

888

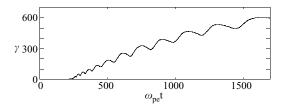
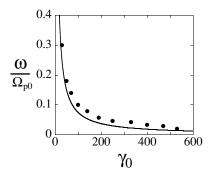



Figure 1. Time variation of γ of an accelerated positron. Here, $\omega_{\rm pe}$ is the electron plasma frequency.

Figure 2. Positron perturbation frequency ω versus γ_0 .

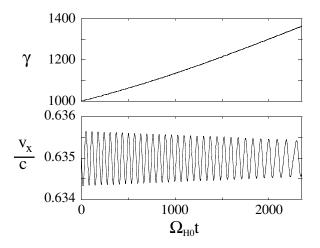
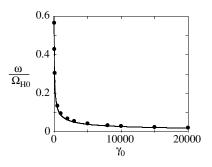



Figure 3. Time variations of γ and v_x of an accelerated hydrogen ion. Here, $\Omega_{\rm H0}$ is the non-relativistic hydrogen gyrofrequency.

For ions, we calculate test particle orbits; we first obtain the electromagnetic fields in a shock wave from a particle simulation and then follow particle motions in the fields, assuming stationary wave propagation. Here, plasma parameters are $|\Omega_{\rm e0}|/\omega_{\rm pe} = 1.5$, $\theta = 50^{\circ}$, and $v_{\rm sh} = 3.2v_{\rm A}$. The initial velocities of the test particles are given by the zeroth-order theory. In Fig. 3 we show the time variations of γ and v_x of an ion with an initial energy $\gamma = 1000$. The energy increases from $\gamma = 1000$

Figure 4. Ion perturbation frequency ω versus γ_0 .

to approximately 1400. Also, we find small-amplitude oscillations in v_x . In Fig. 4, we display the perturbation frequency ω as a function of γ_0 . The simulation values fit well to the theoretical curve obtained from (2.5)

4. Summary

The motions of relativistic particles in a magnetosonic shock wave have been studied. In the zeroth-order theory, where the relation $\gamma |d\mathbf{v}/dt| \leq v d\gamma/dt$ is assumed, particles are accelerated almost parallel to the external magnetic field, when $v_{\rm sh} \approx c \cos \theta$. This is applicable to either positrons or ions. Perturbation theories for positrons and ions have been separately investigated. The perturbation frequency of positrons is $\omega \sim \Omega_{\rm p0} \gamma_0^{-1}$ and that of ions is $\omega \sim \Omega_{\rm i0} \gamma_0^{-1/2}$. The zeroth- and first-order theories have been verified with numerical simulations.

References

- Ohsawa, Y. 2004 Nonstochastic particle acceleration in collisionless shock waves. *Physica Scripta* **T107**, 32–35.
- [2] Usami, S. and Ohsawa, Y. 2004 Evolution of relativistic ions incessantly accelerated by an oblique shock wave. *Phys. Plasmas* 11, 918–925.
- [3] Hasegawa, H., Usami, S. and Ohsawa, Y. 2003 Positron acceleration to ultrarelativistic energies by a shock wave in a magnetized electron–positron–ion plasma. *Phys. Plasmas* 10, 3455–3458.
- [4] Usami, S. and Ohsawa, Y. 2004 Motions of ultrarelativistic particles accelerated in an oblique plasma wave. *Phys. Plasmas* 11, 3203–3211.