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The formation of an ion-dissipation region, in which motions of electrons and ions decouple and fast
magnetic reconnection occurs, is demonstrated during a steady state of two-dimensional collisionless
driven reconnection by means of full-particle simulations. The Hall-term effect is suppressed due to the
gyroviscous cancellation at scales between the ion-skin depth and ion-meandering-orbit scale, and thus
ions are tied to the magnetic field. The ion frozen-in constraint is strongly broken by nongyrotropic
pressure tensor effects due to ion-meandering motion, and thus the ion-dissipation region is formed at
scales below the ion-meandering-orbit scale. A similar process is observed in the formation of an electron-
dissipation region. These two dissipation regions are clearly observed in an out-of-plane current density
profile.
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Collisionless magnetic reconnection is a fundamental
mechanism for the rapid release of magnetic energy in
solar corona, high temperature tokamaks, magnetospheric
substorms, and laboratory plasmas [1–7]. Recent computer
simulation studies have revealed that the rate of reconnec-
tion by collisionless processes is very large compared to
those obtained by using resistive magnetohydrodynamics
(MHD) [8]. Rapid reconnection is demonstrated to occur
when the motions of electrons and ions decouple in a
narrow region around the reconnection point, in two-fluid
simulations, in hybrid simulations, and in full-particle
simulations [8–16]. This decoupling is explained in terms
of two-fluid effects and particle orbit effects, which are not
included in the MHD model, and which form an ion-
dissipation region. In this region the ion frozen-in condi-
tion is broken and the ions are unmagnetized, while the
electrons are tied to the field [8–16]. This difference be-
tween the ion flow and electron flow causes fast magnetic
reconnection because it leads to the generation of fast
electron flows in the ion-dissipation region. We call the
region, in which the plasma’s frozen-in condition is vio-
lated, the dissipation region, although the violation is
caused by collisionless effects. The violation dominantly
controls the formation of the dissipation region and of the
current density profile.

When the electrons are tied to the magnetic field in the
ion-dissipation region, we expect that the ion frozen-in
constraint is broken at scales below the ion-skin depth,
because

E � ve � B � E� vi � B�
di
n
J�B � 0; (1)

where J � n=di�vi � ve�, vi, ve, n, and di � c=!pi are
the electric current, ion flow velocity, electron flow veloc-
ity, plasma density, and ion-skin depth, respectively. On the
other hand, full-particle simulations show that the ion
frozen-in condition is violated only within the ion-mean-
dering-orbit scale in steady collisionless reconnection [17–
05=95(4)=045003(4)$23.00 04500
19]. Note that the meandering motion is a bouncing motion
in a field reversal region.

In this Letter, we work out this discrepancy between the
two spatial scales controlling the ion-dissipation region:
the ion-skin depth di suggested by the electron frozen-in
condition and the ion-meandering-orbit scale lmi suggested
by full-particle simulations. We show that the ion pressure
tensor plays two crucial roles in the formation of the ion-
dissipation region. One role is by the gyroviscous pressure
[20,21], which suppresses the violation of the frozen-in
condition due to the inertia effect, so that the ions are
almost tied to the field within di. The other role is played
by the nongyrotropic pressure, which causes strong viola-
tion of the frozen-in condition within lmi.

We analyze a steady state of collisionless driven recon-
nection without any guide field in an open system with the
mass ratio mi=me � 800 by using the two-dimensional
electromagnetic particle-in-cell simulation code developed
in our previous work [9,10,17,18]. The simulation domain
is a square open region in the xy plane. At the upstream
boundary, the ions and electrons are tied to the magnetic
field, and thus the plasma inflow is driven by E�B drift
due to an external electric field applied in the z direction
[17]. The applied field takes a uniform profile with a
constant value E0 when the system relaxes to a steady state
[17,18]. At the downstream boundary, the plasma can
freely flow in or out [18]. The initial condition is given
by a one-dimensional Harris-type equilibrium as Bx�y� �
B0 tanh�y=yh� and P�y� � B2

0=8� sech2�y=yh�. We set the
time step to be !ce0�t � 0:02 and use a 512� 512 point
grid and 25:6� 106 particles.

Figure 1 shows the perspective view of the out-of-plane
current density profile in the reconnection plane after the
system relaxes to a steady state. The profile has a sharp
peak at the center where reconnection occurs, and this
point is called the X point. The current density profile
along the inflow direction consists of two parts. One is a
sharp peak and the other is a low shoulder. Figure 2 illus-
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FIG. 2. The spatial profile of the out-of-plane current density
along the vertical line passing the X point in the steady state.
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FIG. 1 (color). The perspective view of the out-of-plane cur-
rent density profile on the xy plane in the steady state.
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trates this two-scale structure in detail, where �d0 is the
Debye length. The low shoulder is controlled by the ion-
meandering-orbit scale lmi, which satisfies lmi � �i�lmi�.
This scale corresponds to the location where the local ion
Larmor radius �i�y� � vti�y�=!ci�y� is equal to the scale
length of the magnetic field �i�y� � LB�y�, where LB�y� �
Bx=�@Bx=@y�, and thus the ion dynamics is fully kinetic
within lmi. Note that the local ion cyclotron frequency
!ci�y� �

����������������������
eB�y�=mic

p
and the local ion thermal velocity

vti�y� �
������������������
Ti�y�=mi

p
are evaluated by using the local mag-

netic field B�y� and the local ion temperature Ti�y� calcu-
lated from the particle velocities and particle positions. The
sharp peak is formed through the electron dynamics. The
current layer has no structure characterized by the ion-skin
depth di, which is evaluated by using the averaged density
in the current layer. Note that two-fluid effects should be
included within this scale, while a MHD description is
valid beyond this scale. We call the region between di
and lmi the two-fluid region.

We focus on the formation of the dissipation region that
enables fast magnetic reconnection. Figure 3 shows the
spatial profiles of various terms measuring the violation of
the frozen-in condition along the vertical line passing
through the X point in the steady state. The out-of-plane
electric field Ez that is induced at the upstream boundary
by the applied electric field E0 � �0:04B0c spreads over
the system and becomes uniform. The value of the electric
field at the X point, y � 0, is the reconnection electric field.
Figure 3(a) shows that �vi �B is almost the same as the
electric field at the outside of the region indicated by ion
scales, and thus the ions are tied to the field. The ion
frozen-in condition is strongly broken within the ion-me-
andering-orbit scale lmi. On the other hand, the ions are
almost tied to the field in the two-fluid region (lmi < y <
di), and correspondingly the Hall term J� B is small
between di and lmi and becomes large within lmi.
Figure 3(b) shows the relation Ez � �ve � Bjz holds ex-
04500
cept near the Xpoint. This implies that the electrons are still
tied to the field in the ion-dissipation region where the ion
frozen-in condition is broken. This electron frozen-in con-
dition implies the violation of the ion frozen-in condition
within di as explained by making use of Eq. (1). We note
that this electron frozen-in condition is consistent with the
results of the Swarthmore spheromak experiment [7],
which showed the electron inertia term is small in the
region where the Hall term is large.

In order to investigate the violation mechanism of the
frozen-in constraint in relation to the formation of the
dissipation region, let us examine the nonideal terms in
the momentum equations at steady state

E � vi � B �
di
n
r 
 Pi � divi 
 rvi; (2)

E � ve �B � �
di
n
r 
 Pe �

d2e
di

ve 
 rve; (3)

based on the particle simulation data, where Pi and Pe are
the ion and electron pressure tensors, respectively. The
normalizations are v=vA ! v, B=B0 ! B, n=n0 ! n,
Ec=�vAB0� ! E, x=L! x, t=�L=vA� ! t, P=�B2

0=4�� !
P, J=�cB0=4�L� ! J, where vA � B0=

�����������������
4�min0

p
.

Figures 3(c) and 3(d) show the spatial profiles of the out-
of-plane component of the terms in Eqs. (2) and (3). It is
worth noting that the ion pressure tensor term r 
 Pi
cancels out the ion inertia term vi 
 rvi in the two-fluid
region (lmi < y < di) where the ion inertia term is large
and works toward breaking the frozen-in condition as
shown in Fig. 3(c). Therefore, this cancellation leads to
the suppression of the Hall-term effects and to the main-
tenance of the ion frozen-in constraint within di. The ion
frozen-in condition is strongly broken, and the vi � B term
is small in the full kinetic region within lmi where the
pressure tensor term is dominant. This large pressure ten-
sor term is originated from the nongyrotropic ion-
meandering motion. The strong violation leads to the for-
mation of the low shoulder of current density profile in
3-2
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FIG. 3 (color). The spatial profile of each term in the out-of-plane component of the ion momentum equation and of the electron
momentum equation along the vertical line passing the X point in the steady state.
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Fig. 2. Note that the nongyrotropic part of the ion pressure
tensor balances the electric field at the X point. Figure 3(d)
shows that the electron pressure tensor term r 
 Pe and the
electron inertia term ve 
 rve break the electron frozen-in
constraint near the X point. The electron inertia term
vanishes at the X point, while the electron pressure tensor
term has a sharp peak, and it balances the electric field
there. Thus, the reconnection electric field is generated by
the nongyrotropic pressure tensor originating from the
electron-meandering motion at the X point as suggested
by Refs. [15,19]. The electron pressure tensor seems to
cancel out the electron inertia effect in the region between
de and lme. Unfortunately, the cancellation is not clear
because the electron-skin depth de is close to the
electron-meandering-orbit scale lme in our simulation. A
similar counterbalance is also demonstrated in the simula-
tion of electron-positron plasmas [22]. We summarize the
violation of the frozen-in condition and the counterbalance
in Table I.
TABLE I. Violation of frozen-in condition.

Violation of ion frozen-in condition

0< y< lmi lmi < y < di di < y
E� vi �B � r 
 Pi E� vi �B � 0 E� vi �B � 0
vi 
 rvi � r 
 Pi J�B � r 
 Pi � vi 
 rvi � 0

Gyroviscous cancellation
Fully kinetic Two-fluid region MHD is valid

Violation of electron frozen-in condition

0 � y < lme lme < y < de de < y
E� ve �B � �r 
 Pe E� ve �B � 0 E� ve �B � 0

ve 
 rve � r 
 Pe r 
 Pe � ve 
 rve � 0
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Let us consider how the ion pressure tensor compensates
the frozen-in condition for the violation due to the ion
inertia effect within the ion-skin depth. This effect is
generated by the gyroviscous cancellation [20,21], which
is a common property of magnetized plasmas and is caused
by the finite-Larmor-radius effect,

n
dvdi
dt

� �r 
 �gv�? � �r? g; (4)

where d=dt � @=@t� vi 
 r, vi � vki � vE�B � vdi,
�r 
 �gv�? � �r 
 P�? � r?p?, and subscripts jj and ?

denote parallel and perpendicular components. In this
equation vE�B � E� B=B2, vdi �

di
nB2 B�rpi, �gv,

p?, and  g are the E� B flow velocity, ion diamagnetic
flow velocity, gyroviscous tensor, perpendicular pressure,
and a correction of scalar pressure [21]. The out-of-plane
component (the z component) of Eq. (4) at steady state is
vi 
 rvdiz �

1
nr 
 Pjz � 0, where Ajz stands for a z com-

ponent of A and the relations r? gjz � r?p?jz � 0
have been used because @=@z � 0 in the two-dimensional
system. Thus, Eq. (4) implies that the z component of the
ion inertia term balances the pressure tensor term vi 


rviz � vi 
 rvdiz � � 1
nr 
 Pjz between di and lmi be-

cause the ion flow velocity viz is dominated by the dia-
magnetic flow velocity vdiz for lmi < y < di as shown in
Fig. 4. Therefore, the violation due to the ion inertia term is
being counteracted by the gyrotropic pressure tensor term,
and the Hall term is small,

1

n
J�B�vi 
rvi�

1

n
r
Pi�O�me=mi��O�me=mi�;

(5)
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FIG. 4. The spatial profile of the out-of-plane ion flow velocity
(solid line) and the out-of-plane ion diamagnetic flow velocity
(dotted line) along the vertical line passing the X point in the
steady state.
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for lmi < y < di. This cancellation should occur inside of
di because it is the finite-Larmor-radius effect. Moreover,
the cancellation should occur outside of lmi because ions
do not exhibit the Larmor motion within lmi. Thus the
cancellation mechanism works well only in the two-fluid
region (lmi < y < di) when lmi < di.

In summary, we have worked out the discrepancy be-
tween the two spatial scales that can control an ion-
dissipation region, where fast reconnection occurs, in
steady collisionless reconnection. One is the ion-skin depth
di predicted from the fact that electrons are tied to the
magnetic field in the ion-dissipation region because of
Eq. (1). The other is the ion-meandering-orbit scale lmi,
which is revealed from full-particle simulations. We found
that gyroviscous cancellation occurs at scales between di
and lmi, and correspondingly the ion pressure tensor com-
pensates the ion frozen-in condition for the violation due to
the ion inertia effect. Therefore, the Hall term is small at
scales between di and lmi. The nongyrotropic pressure
tensor effect due to the ion-meandering motion strongly
violates the ion frozen-in condition within lmi, and it
dominantly controls the width of the ion-dissipation re-
gion. Hence, there exists the current layer controlled by the
ion-meandering-orbit scale and no spatial structure char-
acterized by the ion-skin depth in the current density
profile during the steady state of collisionless reconnec-
tion. This result is consistent with the observed current
layer width of 0:4di � �i in the magnetic reconnection
experiment [5]. Note that the difference between di and lmi
is not an order but a factor in our simulation. The difference
should be large in low-" plasmas. We also note that the
ion-skin depth controls the current layer width when the
reconnection is unsteady as shown in Refs. [12,13,19].

A similar counterbalance is observed in the violation of
the electron-frozen-in condition. Our numerical results
suggest that the electron pressure tensor term counteracts
the violation due to the electron inertia within the electron-
skin depth, and thus the width of the electron-dissipation
04500
region is mainly controlled by the electron-meandering-
orbit scale. Unfortunately, the counterbalance is not clear
compared to that of the ions because the electron-skin
depth is close to the electron-meandering-orbit scale in
our simulations. The electron-dissipation region corre-
sponds to the sharp peak in the current density profile,
and thus we have the two-scale structure of the current
layer as shown in Fig. 2.

We found that the cancellation occurs when the plasma
" is about one and expect that the cancellation is universal
when plasma " is less than one because the gyroviscous
cancellation is a common property of magnetized plasmas.
This would be examined from simulations of magnetic
reconnection in low-" plasmas in future work.
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