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Study of electromagnetic microinstabilities in helical systems
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Electromagnetic microinstabilities in helical systems are studied by numerically solving integral
eigenmode equations, which are derived from the ion gyrokinetic equation, the quasineutrality
equation, the Ampe’s law, and the massless electron approximation. The stellarator expansion
technique is used to evaluate finite-beta effects on the guiding-center drift in the helical
configuration, where the toroidal plasma shift and the magnetic shear strongly influence the
magnetic curvature and accordingly the stability of both magnetohydrodyngviit® ) and kinetic
modes. The kinetic integral equations are shown to reduce to the ideal MHD ballooning mode
equation in the fluid limit, from which the Mercier criterion is obtained. For helical geometry like
the Large Helical DevicéLHD) [Motojima, et al., Nucl. Fusion43, 1674(2003], it is confirmed

that, when increasing the beta value, the ion temperature gradient mode is stabilized while the
kinetic ballooning mod€KBM) is destabilized due to the unfavorable geodesic curvature resulting
from the negative magnetic shear combined with the toroidal plasma shift. Also, dependencies of
these kinetic-mode properties on the poloidal wave number and the magnetic shear are investigated.
It is found that the KBM-unstable parameter region is narrower than the Mercier-unstable region in
the LHD-like configuration. ©2004 American Institute of Physic§DOI: 10.1063/1.1730294

I. INTRODUCTION In the present work, we investigate electromagnetic mi-
croinstabilities in helical systems with the LHD-like mag-

Microinstabilities.in magnetically confingd plasmas hav_enetic configuration. Recently, the KBM in the LHD was also
been studied extensively as a key mechanism for producmgtudied by Yamagishét al® using the ordinary differential

plasma turbulence and resultant anomalous trandpdrove eigenmode equation derived by Taegal,? in which the

aII_, ion temperature gradier{TG) ”?Odes_ and _turbulence poloidal wavelength is assumed to be much larger than the
driven by them have been most actively investigated by nu: . ;
. . ) X ion thermal gyroradius. Here, in order to fully take account

merous theories and simulations in recent yéarae ITG - . .
; ) o . - of the finite-gyroradius effect on the electromagnetic mode,
mode is essentially an electrostatic instability, which is more

.~ .~ we use the kinetic integral eigenmode equations similar to
unstable for lower-beta plasmas, and electromagnetic micro- 9 9 d

O . .
instabilities such as the kinetic ballooning ma#dM )* are those by Donget al. for tokamaks,” which are derived from

. . . . ’12 . . ._
anticipated to become an active source of turbulence anﬁ1e ion gyrokinetic equatio;™ the quasineutrality condi

transport in high-beta regimes. For the ITG mode, electronliON: AMpee’s law, and the massless electron approximation.

are often assumed to adiabatically respond to electrostatidul numerical solution to the kinetic integral eigenmode

fluctuations while, in the electromagnetic case, it is neces€duations utilizes procedures by Sugéﬁi@r.proper ana-
sary to include more complicated nonadiabatic electron dyl_ytlc continuation of the dispersion relation in the complex

namics due to magnetic fluctuations. So far, for helical sysfreéduency plane, by which we can calculate both positive
tems, theoretical studies of microinstabilities have also beeANd negative growth rates so as to accurately determine the
concerned with electrostatic modes mafiifand those of critical condition for the marginal stability.

electromagnetic modes have not been done sufficiently com-  Helical ripples and safety-factor profiles in the LHD-like
pared with tokamak cases. Since, recently, helical systenféonfiguration present a striking contrast to those in toka-
such as the Large Helical Devi¢eHD)” have succeeded in maks. The ideal MHD ballooning mode in tokamaks is stable
producing high-beta plasmas, understanding the physicdfr the negative magnetic shedw/dr<0 (q: the safety fac-
mechanism of their anomalous transport requiredor, r: the minor radiuswhile, as shown by Nakajimé, the
electromagnetic-microinstability analyses. Also, electromagunfavorable geodesic curvature resulting from the negative
netic microinstabilities are deeply related to the ideal magshear combined with a toroidaShafranoy shift of the
netohydrodynamics(MHD) interchange and ballooning finite-beta helical plasma destabilizes the ballooning mode in
modes with short wavelengths. In the LHD, a large pressuréhe LHD configuration. Here, we employ the stellarator ex-
gradient is observed even in the Mercier-unstable regfon. pansion methdd to evaluate the finite-beta toroidal shift,
Therefore, it is interesting to examine how the stability cri-which critically affects local magnetic shear, magnetic cur-
terion based on the ideal MHD is modified by the microin- vature, guiding-center drift, and resultantly stability of both
stability analysis, which takes account of kinetic effects suchMHD and kinetic modes. In fact, Nakamuea al }® showed

as the Landau damping and the finite gyroradii. that the stellarator expansion well describes beta dependence
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of the magnetic axis position and the magnetic well depth irhelical field. Now, we takey=(r) so that the poloidal
the heliotron-type configuration by comparison with resultscross section labeled by is a circle with the radius, the
from three-dimensional equilibrium calculations. The kineticcenter of which is shifted fronfR=R, by A(r) (<r). Ne-
eigenmode equations are shown to reduce to the ideal MHBlecting small terms-(A/r)?, Eq. (2) is rewritten as
ballooning equation in the fluid limit, from which the
Mercier criterion for the helical plasma is obtained. Then, weV [ #(r) = #(r)—A(r) g (r)coso]
can make a comparison between kinetic results from the mi- ,
. " : . L p'(r)|2r
croinstability analysis and the Mercier criterion. ~—Aq——=| = c0S6+ Qp(r)
The rest of this paper is organized as follows. In Sec. Il, ¢'(r)[Ro
equmbr!a of helleal plasmes are treated by the Ste”ara.to\r/vhere’zd/dr and the pressure gradiept is regarded as a
expansion technique to derive useful formulas for evaluatlonSmall quantty of O(A/r) We obtain G(r)
of the toroidal plasma shift and the magnetic drift for the )

finite-beta case. The kinetic integral eigenmode equations 1‘0?4770"“)IO (r)/y(r) from the no net toroidal current

o o . , condition,(V2A)=0, where( - ) denotes the flux surface av-
electromagnetic microinstabilities are derived in Sec. IIIAera e. Then, separating E@) into the ¢-averaged part and
and the ideal MHD ballooning equation is obtained from ge- » SEP g B gedp

them in the fluid limit in Sec lIl. B, where we also derive the the ¢-dependent part, we fing(r) = yn(r) and

+G(r), 4

Mercier criterion which takes account of the finite-beta heli- (Ay') Ay p’ 2r
cal configuration by using the formulas in Sec. Il. In Sec. IV, (Ay")"+ - —=47— —, (5)
the kinetic integral eigenmode equations are numerically r r " Ro

solved to investigate dependencies of electromagnetic-mode . -
g P g spectively.  Defining the safety factor q(r)

ti the pl beta, th tic shear, and the
properties on the plasma beta, the magnetic shear, an T Bo/(Rey (1)) and the local plasma beta valig(r)

poloidal wave number. There, the relation of the kinetic re-— /B2 and usi ield
sults to the Mercier parameter is also examined. Finally, con-=877p(r) Bo, and using Eq(5) yie

clusions are given in Sec. V. q(HA(0)

rdX rx
A(r)=Roq(r)J —af y2q(y) 8’ (y)dy+ o0
Il. EQUILIBRIA OF HELICAL PLASMAS 0 X= Jo q(

(6)

vhere the toroidal shifd(0) of the magnetic axis can ex-
rperimentally be controlled by the external vertical field.
[Equation (6) is equivalent to Eq(7.112 in Freidberg'’]
From Eg.(6), we can show

Here, we use the toroidal coordinates{,¢), wherer,
0, and{ denote the minor radius, the poloidal angle, and th
toroidal angle, respectively, and they are related to the co
ventional cylindrical coordinatesR| ¢»,Z) with

R=Rg+A(r)+rcost, ¢=—¢, Z=rsinb. (1)

. . Roa(r r A(r
Here the point defined brR= Rp andZ=0 represents the A'(r)= Oq: ) f qu(x)ﬁ,(x)dXJré(r)Q’ @)
geometrical center of the poloidal cross section of the wall r 0 r
boundary(or the external helical coilsandA(r) is defined
later. and

In the stellarator expansidn,the lowest-order poloidal , . ,
flux function = — (47°R,) 1fB-V AdV is independent of rA"(r)=—a(r)+[28(r)—3]JA"(r)
£, and is written asy=A+ ¢y,. Here A is the toroidal({) A(r)
component of the magnetic vector potential associated with +[28(r)—82(r)+r8'(r)] - (8
the plasma current ang;, represents the contribution from

the external helical fields. The functidhis determined by  \\here the magnetic shear parame¥@m)=rq’ (r)/q(r) and
dp a(r)=—Ryq?(r)B’'(r) are defined. The toroidal force bal-
VZA=—47Q dw +G(¢), (2)  ance for the finite-beta case causes the toroidal axis shift and
the poloidal field compression, which are taken into account
where V2 denotes the two-dimensional Laplacian in the by Egs. (6)—(8). In the well-known s-& model, |A”|
plane perpendicular to the toroidal direction, the equilibrium>|A'|/r~|A|/r2 is used and only the first term @ on the
pressurep(y) andG(y) are flux functions, and) is given  right-hand side of Eq(8) is retained by assuming that the

by pressure profile has a steep gradient only around the surface
2(R—Ry) consideredsee Sec. 10.5.5 in Freidbéfy This term is re-
0= R—+Qh. 3 sponsible for the second stabilization of the ballooning mode
0

in high beta regimes. However, it was pointed out by
Here, Q,, is associated with the contribution of the helical Nakajima* following the high beta model by Copgit al®
field to the averaged magnetic curvature. Hereafter, we aghat, in the helical system, the second group of terms
sume that there is no net toroidal current and thigt (25(r)—3)A’(r) on the right-hand side should also be kept
=yn(ro) and Q,=Q,(ro) are functions off,=[(R—Rg)?>  and combined with the geodesic curvature in order to explain
+272]Y2=r + A(r)cos@ only, wherer, is the minor radius the destabilization mechanism of the ballooning mode for the
measured from the centéor magnetic axisof the vacuum case of the negative magnetic shéar0. Using the expres-
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sion for A” in Eq. (8), we can naturally unify the conven-

H. Sugama and T.-H. Watanabe

lical geodesic curvature, respectively. From Eds.and(3),

tional s-& model based on the assumption of the steep preghe averaged normal curvature te{f)’ is written as

sure gradient and the high beta model by Cogipal 1® and
Nakajima* who used the near-axis expansion.
In the ballooning representatidt?’°we treat the fluctua-

Q) =Qp(r)+ Ri(Aercose)’. (14)
0

tion which varies rapidly across the field lines and has thedere, from Ref. 21, the averaged helical curvature is ex-

wave number vector perpendiculartie=B/B denoted by

Vr bXVr

ko =knrgr kT

9

In the present case, the compon&ptangential to the flux

pressed in terms af and$ as
M (r¥/q)’ M r

U R LR

Qp(r) (4-9). (15

The contribution of the toroidal plasma shift to the normal

surface is approximately equal to the poloidal wave numbergypyature is represented by

ki=ky=nq(r)/r, wheren is the toroidal mode number. The
ratio %, of the normal componeii, to the tangential onk, is
written as

k
zzr“:é(e— 0,)+[A'(1+8)+rA"]sing, (10)
t
whereO(A") terms are neglected except for the tefrh(1
+8)sin g that significantly affects the ballooning mode sta-

bility. From Egs.(9) and(10), we have
K2=kJ1+32]. (11)

When evaluating the guiding-center drift which is re-

sponsible for ballooning-type instabilities, we take into ac-
count effects of helical ripples in the magnetic field strength

by usingB=Bg[ 1— €po(r) — €(r)cosf—ey(r)cosLo—M{)],
whereL andM are the poloidal and toroidal period numbers
of the helical fields, respectivelyL&2 andM =10 for the
LHD). Here, e,=r/R, and €,(r) (=r") represent the tor-

oidicity and helicity parameters, respectively. The stellarato

expansion technique is used to gigg(r) =3[ (Q)+ B(r)],

[(r2A)'/Ir]’

2
R—O<A+r cosf)' = Ry

Ry —a(r)+28A

A
+(2§—§2+r§’)7 , (16)
where Egs.(6)—(8) and (-)=¢-(1+ A’ cost)dd/(2m) are
used. We see from EQq$8), (10), (13), (14), and (16) that
a>0 included inA” reducess, and accordingly contributes
to stabilization by entering both the averaged normal curva-
ture term(Q )" and theX term combined with the geodesic
curvature. In helical systems with negative magnetic shear
§<0, destabilization occurs from an increaseGp due to
SA’>0 that also appears in botlf))’ andX.

In Sec. Ill, the gyrokinetic analysis of electromagnetic
microinstabilities in helical plasmas is carried out based on

the geometrical expressions shown in this section.

which is associated with the averaged normal magnetic cur-

vature and the diamagnetic effect. Then, the magnetic dri
frequency for the particle speciaswith the massn, and the
chargee, is given by

wp =260, a(vf +0112)v75G(0), (12

wheree,=L, /R, is the ratio of the density gradient scale
lengthL,=—(dInny/dInr)~! to the major radiuRy, w, ,
=—kyCT,/(esLy) is the diamagnetic frequency; (v,) is
the parallel(perpendicular velocity, andv,=(2T,/m,)*?

fﬁl. EIGENMODE EQUATIONS

Here, the kinetic integral eigenmode equations are de-
rived and the ideal MHD ballooning equation is obtained
from them in the fluid limit.

A. Kinetic integral eigenmode equations

The distribution function in thex,v) phase space for the
speciesa=i (ion) or e (electron is divided into the equilib-

is the thermal velocity. Also, the dimensionless curvatureium and perturbation parts dg=noFya+ 6f, whereng is

factor G.( ) is defined along the field line labeled with,
={—q6 by
Ge(0)=Rg[ (b-V)bXb]- (k /k)
=Ry(Q)'/12+cosO+L(e,/e)cof(L—Mq) o
—Mag}+2(6)[sin6+L(e,/e)sin{(L—Mq)é
—Mayg}]. 13

Unfavorable (favorable curvature is indicated bys.>0
(<0). On the right-hand side of Eql3), the first term is

the equilibrium density ané =7 %12 exp(—v¥v?,) is
the Maxwellian distribution function. In the magnetic field
B, the perturbation par$f, with the perpendicular wave
number vectok is written as

et

Ta
where ¢ represents the electrostatic potentjgl=bXv/Q,
denotes the gyroradius vector, af,=e,B/(m,c) is the
gyrofrequency. Here, the first and second terms on the right-
hand side of Eq(17) represent the adiabatic and nonadia-

5, NoFmat hae e Pa)

17

derived from the averaged normal curvature, the second anhtic parts, respectively. The nonadiabatic distribution func-
third terms correspond to the normal curvature due to the&ion h, is independent of the gyrophase and is described in
toroidicity and the helicity, while the fourth and fifth terms the collisionless linear electromagnetic case by the gyroki-
with the coefficientS, contain effects of the toroidal and he- netic equatiort}*

Downloaded 22 Apr 2007 to 133.75.139.172. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp



Phys. Plasmas, Vol. 11, No. 6, June 2004 Study of electromagnetic microinstabilities . . . 3071

density gradient. In Eq.18), we have neglected the parallel
ha magnetic field perturbation and used the ballooning represen-
tation to regard the poloidal angteas a coordinate along the
(19) magnetic field line which forms the so-calledvering space
(— o< f<+x) 1920
Throughout this work, following Dongt al.*° effects of
magnetic geometry in helical systems are considered only

U” Jd
Roq 0

—i(w—wpa)

= —i(@— @y 1a)NoFpado(K pa) = (¢— —A,

whereA,= 5A-b is the parallel component of the vector po-
tential for the magnetic field perturbationp, is given by

Eq. (12), and through the magnetic drift and the perpendicular wave num-
ber vector described in the previous section. Trapped particle
v \2 3 effects and variation in the parallel velocity along the field
WiTa= Oya 1+ 74 (vTa) - EH (19 Jine are neglected because such instabilities as the ITG mode

and the ballooning mode treated here are driven by passing
Here, J, is the Bessel function of order zero ang, particles mainly. Then, the solution of E¢L8) with the
=dInT,/dInnyis the ratio of the temperature gradient to the boundary conditions ligy, . ..h,(#) =0 is given by

_ i2(6,6") _o
|J do’ (Rog/|v|)e'¢a (0— 0, 12)NoFmadol J_pa) (¢ Au) for v,>0

he={ (20
. ) . ) , I
_IL do’ (Roq/|vy)e %) (w— w, o) NoFmado(K] pa) = (¢_ Au) for v;<0,

wherek| is given by Eq.(32) and vo dK
(1+7e) (k)= \/—

. UTi
+{K'12<k,k'>+r<iz<k.k’>}TTAH(M ,

Kia(kk)B(k’)

4
La(0,0")= L,dé’”(Roq/|vu|)[w—wDa( 0")]. (21)

23

In the ballooning representation, the boundary conditions 23
limy_ ..¢(8)=Ilim,_ ...A/(8)=0 are also employed. Us- . 5
ing the solution given by E¢20), we can calculate the den- Where 7.=T¢/T;. From the Ampee’s law kiA,
sity perturbation, on,=[d3% &f,=—nge,d/T,+ [d3%  =4méJ /c, we obtain
X Jo(k, pa)h,, and the parallel current perturbation),
Eza:i,eeafdsv Jo(KLpa)hav .

In the same way as in Donet al,'° we here take the 4 , UTi
limit of the small electron-ion mass rations/m;—+0. K k All(k)
Then, we see that, in E(L8) for electrons a=e), the terms
proportional to the parallel velocityv(~v+e) are dominant oo dK’
and their balance yields the constraint for the lowest order of = ( f

A, in the (my/m;)Y2-expansion,

Koi(k,K') +K3y(k,K')} (k')

. UTi
oo +{K'22(k,k’)+K?z(k,k’)}%Au(k’)})- (24)
f_w dk A (K)=0, (22)

When using the Ampe’s law to determine the lowest order

of A in the (m./m;)Y%expansion, there simultaneously ap-
where k=|38k,|(6— 6) is used as an independent variable pear terms including an unknown low-order part’gfwhich
instead off. Equation(22) implies that the electric field are not negligible. However, these terms are independent of
integrated along the field linéE dl=i(w/c)[A,dl should k so that, in Eq(24), they are eliminated by taking differen-
vanish in order to forbid unlimited acceleration of masslesdial with respect tok.
electrons. The quasineutrality conditidy_; ;e,6n,=0 is In Egs.(23) and(24), the integral kernels due to ions are
rewritten as defined by
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i ’ i ’ ior "2
(kK Ki(kk') o J2e , ® 3 pk—k')
T e L L 0 P R PR
Kaa(k,k")  Kai(k,k") va (1+a Wye 2 4an
L (k—=k")
27, KE+k? o kkl 1 2+/an
+ - + — (25
(1+a) 2(1+a)7e (1+a)7elo/ || B; (k—k') Bi (k—k')?
e 24/an e da
|
and those due to electrons are given by tion of k for the unstable mode as shown lafdihere seem
\/— \/— , to be typos in Eqs(16) and(17) of Donget al, too.] Also, it
(k)= Tl @ (k=k') is shown in Sec Il B that, in the fluid limit, the ideal MHD
12 2‘/ 13 en w*e lk—k'| ' ballooning mode equation is naturally derived from Egs.
(22)—(24), which indicates the validity of our eigenmode
, Bi , equations.
Si(kK') == =Ky (k,k"), (26)
Te
2
, ‘/; a , ® B. Ideal MHD ballooning mode equation
KAk k >=ﬁi—(r) [k—k'[| - ( —1> ? |
4v2 \ S€n Wye\ Wxe Here, we consider the fluid limit of Eq$22) (24), in

which |k i/o|~|(vri/Reqw)(d/96)|<1, kZpZ.<1, and

2 I (k=k) |wp;/w|<1. It can be shown that, in the fluid limit, the in-
+2|Sk0| €n 1-7e , . . . . .
Wye |k—k'| tegrals including the ion kernels are approximately written
4 by
x f ,, 407G oo dK

o (kK ) (k")

Here, following Donget al,*® we have used variables de- * =~ V2

fined by
) Wy e Wy e
7=Rq 60— 0'|/|v,|, (27 =|Tet W 1+(1+ m)Tew>
7_2 § 2
AN=— _fn) wie’ (28) k2 Wye 7'ev'zl'l d?
Tea\( X —+26nG —t =SS5 | (33
2 2R3q%w? d6
2ie 0, T
a=1+— (09— Py ) f de"'G C(G”) (29) o dk!
1k, KA (K"
=8ko|(6— 6, k'=|3ke|(6'—6)), (30) TrN2m
k k! k2 +k!2 w*e) T dA
R B N T =il 1+(1+7) (34)
Folki ki) '0( r(1+a) eXp( ariray) Y " re0) 2Roqe do’
K =KI1+322(0)], k[*=K[1+32%(6")]. 32 [+=dK
—K5(k, k") (k'
In Egs. (23)-(32), the wave numberk,, k, , andk are - 24 21( J$(k')
normalized byp ! with ps=\2T./m/Q;, and |, is the q
modified Bessel function of order. The integral parameter i| 1+ (1+ 77) Bivri _¢ (35)
7in Egs.(25) and(29) has the opposite sign to that in Dong ! Te® 2R0qw de’
et all® Equations(22)—(24) form coupled integral eigen-
mode equations which determine the dispersion relation and += dk’
the mode structure of the electromagnetic instabilities in he- \/—KZZ(k k')A (k")
lical systems. Instead of using the second integral eigenmode
equation by Donget al. [see Eq.(13) in Ref. 10, we have 0ye\ Bi
employed its derivative with respect koand the constraint —| 1+ (1+ ) ?A”- (36)
e

given by Egs.(24) and (22), respectively, although their
eigenmode equations and ours both give the same result fafsing Eqs.(33)—(36), we can rewrite Eqs(23) and (24) as
0= 0 becausd\, for the most unstable mode is an odd func- ordinary differential equations,
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’ 2
Wye _Roqw t (6—0") Wye kJ_ Wye
1- d—i f do'———A| (") | +| 1+(1+») —+26,G.—| ¢
w |6—0'] Te® 2 w
w5 d[ 1 dp o
t— =" 1-A|=0 (37)
2Ryqw* df\Rpyq d6 ¢
and
J (1 o\ Bvri d [ 1 d¢ RO ﬁlRoqw Wy e Roqw
k AH 1+(1+77i)_ o e A|| 1- (]5_|
90 27e Tew/] 20 dO\RpyQ do C TUT 1) 2c
xﬁwda'(a 6,)A(0) —26,G FiRoAee 1= (1 g 28 Roqwﬁwda'(a 6,)A(0) 0, (39)
lo—0'|"" e 7| 2e lo—0'] "
I
respectively. Multiplying EQq.(38) with i7.01i/(BiRoqw) 1 d(¢— g 1 d¢ o
and adding it to Eq(37), we obtain R 46 Rgdd —icA=0, (42)

2
Wye kL Wye
1+(1+ %) 7_e—w) (?4—26“(3(:7) 1)
vri d [ 1 al Ui
,B,Roqw de c !

Roq w

2ie G, O
l€n 2C

Wye
(1 (1+ 70 w)

xf:odo’( — ’)AH(G) 0. (39)

|6— 0"

For low betag;<(kyvri/w)?, we find from Eq.(39) that

|wA/c|<|apld6|I(Roq). Then, in this electrostatic case,

terms withA; are neglected in Eq37), and we have

T3 d [ 1 dqs)
—_— | — |+
2R0qw2 dt9 Roq d0

k?
—+2€¢,G;

2
-1
Wye
TeW

Wye

1_w_ 1+(1+ %) $=0, (40
®

which represents zero parallel electric figlg=0 as in the
ideal MHD. We also note that, because of the boundary con-
ditions limy...¢(0)=0 and limy...¢,(6)=0 derived from
Eq. (22), the relation in Eq(41) is also derived from inte-
grating Eq.(42) without an arbitrary integral constant. Thus,
the conditions written in Eqg41) and(42) are equivalent to
each other. We now use these conditions to elimidgtén

Eg. (39) and obtain

2 dé Rga? 25 2
(1+E )E .2 (1+29) {0+ 1+ 7))
X(wy el o) 0} +aG| =0, (43

where we have defined the Alffwe velocity v,
=B,/(4mnym,)*? and used Eq(11) and the normalized
pressure gradient parameter= — R,g?dg/dr with B=p,
+B.=8mng(Ti+T)/B3. In Eq. (43, o, i(1+7)
=—(w,e/7e)(1+ 7;) represents the diamagnetic frequency
associated with the ion pressure gradient. If the magnitude of

which gives the dispersion relation in the fluid limit for elec- the eigenmode frequency is much larger than this ion dia-
trostatic modes such as the slab and toroidal ITG modes arftiagnetic frequency, Eq43) reduces to

the electron drift wave.

Next, let us consider the electromagnetic high-beta case. (9

It is found from Eq.(40) that, in the electrostatic fluid limit,
(1= wi e/ W) (1+(1+ 7)) w, o/ (Tew)) is as small as terms
of first order in kuvr/w)?, k?, and|wp/w|. For the elec-

d¢
2
33| 5 gl

R5a?

0*(1+3%)+ aG¢ | =0,

Ua
(44)

tromagnetic case, in which the above electrostatic conditiomvhich coincides with the ideal MHD ballooning mode equa-
for the eigenfrequency is not satisfied, the lowest-order relation.

tion betweeng andA, is obtained from Eq(37) as

Roqa) J‘ q (6—0")
0 ——
vl I P

o= ih= Ai(0')=0, (4D

where ¢,=i(Roqw/2c) [ 2d6'A(0")(6—6')I|6—6'| is

So far, we have confirmed how the ideal MHD balloon-
ing mode equation shown in E@44) is derived from the
kinetic integral eigenmode equations in the fluid limit. Then,
the interchange stability criterion, namely, the Mercier crite-
rion can be derived from examining the asymptotic behavior
of the solution to Eq(44) for the case ofw=0 (see Sec.

defined ¢, should not be confused with the poloidal flux 10.5.4 in Freidbert). When deriving the Mercier criterion

function ¢ in Sec. l). Taking the derivative of Eq41) with
respect tk yields

for equilibria of helical plasmas described in the previous
section, we adopt detailed expression&andG,. given by
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Egs.(10) and(13) with help of Egs.(8), (14), and(16). The (a)
resultant Mercier stability criterion is written as 05 : :
./,
a| Ry a L(en/€r) i e
o Ry &g Hel) —I6.
S| 2 2 Mqg—-L —
0 T
5 A 4(BM
+|=5—1|A’'+(25—8%+r8')—
2 r
1 0.5} 1
<-. (45) W/ Wy
4 TG .
In Eq. (45), the term proportional ta./(Mg—L)(<1) may PN ,
be ignored as a higher-order term in the stellarator expan- 0 0.005 0.01
sion. The well-known stabilization due to the magnetic shear
is recognized in the denominator Bf,. The normal curva- (b)
ture termRy(2{/2 associated with the external helical field is ' [
a main source of the interchange instability in the helical 2 [ W /Wy~ KBM ]
system. We find that the term proportional te //
=—Ryq°dp/dr is stabilizing because the Shafranov shift ob—/
caused by increasing acts favorably on both normal and e ”
geodesic curvatures as seen in the previous secfion. ’ )
should be noted that the Mercier criterion shown in &) IO/ Wy e T
contains both normal and geodesic curvature effeéiso, KBM
for typical g profiles in the helical system, we havé-282 -4t 1
+r8’<0 and therefore the term proportional Aoleads to
more stability for largerA. On the other hand, for negative 6 i
magnetic shead=(r/q)(dg/dr)<0, the term g5—1)A’ 0 0.02 004 006 0.8

becomes positive due to the Shafranov shift' €0) and
thus causes destabilization, which is becag4é>0 acts .

. FIG. 1. Normalized growth rate;/w, . and real frequencw, /w, . as a
unfavorably on both normal and geodesic qur\_/att[m function of B for the ITG mode(a) and the KBM(b). Parameters used here
Egs.(8), (10), (13), (14), and(16)]. These qualitative prop- areL=2, M=10, q=2, =—1, 6,=0, ag=0, 7;= 7.=3.5, €,=L,, /R,
erties described by Eg45) agree well with results from =0.3, 7e=T./Ti=1, ey/€=1, andkypr;=0.5 (for the ITG modg, 0.35
more accurate numerical calculations of the Mercier criterior{fr the KBM).
based on the three-dimensional MHD equililfia.

IV. NUMERICAL RESULTS facer/a=0.6. Also, usingn;=n.=3.5 ande,=0.3 com-

In this section, the coupled integral eigenmode equationgined with Ry=3.6 m anda=0.6 m gives the density and
shown in Egs.(22)—(24) are numerically solved to obtain temperature gradient scale lengthslas=1.08 m and L;
linear growth rates, real frequencies, and mode structures af L1,=0.36m.
electromagnetic microinstabilities in a helical system. Em-  Here, we investigate especially how the plasma beta and
ploying procedures by Sugahidor proper analytic continu- the magnetic shear affect linear properties of the microinsta-
ation of the dispersion relation in the complex frequencybilities through geometrical variation of the helical plasma
plane, our numerical code can calculate both positive anequilibrium. In the LHD, by applying the vertical field, the
negative growth rates, which is useful for accurately detervacuum magnetic axis is shifted inward in order to realize
mining the critical condition for the marginal stability. good particle confinement. In the presence of the pressure

In order to check the validity of our code, we have donegradient, the Shafranov shift works so as to cancel the in-
a benchmark test using the Cyclone parameters for the Dowvard shift by the vertical field. In the present study, we put
blet 11-D tokamak(see Fig. 1 in Dimitet al?). Then, itwas A(r)=0 for simplicity, which represents that, because of the
found that, in spite of our neglecting trapped ions, growthcounterbalance between the effects of the vertical field and
rates and real frequencies obtained by our code are in godtie pressure gradient, the central axis of the magnetic surface
agreement with those by other kinetic codes within deviatiorconsidered coincides with that of the external helical coils.
of about five percent. We should note that effects of the toroidal plasma shift due to

Following the study of electrostatic ITG modes by finite beta are still retained through including’(r) and
Kurodaet al,* we consider a system like the LHD and use A”(r). The pressure profile inside the flux surfaces nec-
L=2, M=10, g=2, 5=-1, 6,=0, ag=0, 5,=7.=3.5, essary in order to evaluat®’(r) as shown in Eq(7) al-
e,=L,/Ry=0.3, 7.=T./T;=1, ande,/e,=1 as standard though, in numerical calculations here, we follow Coppi
parameters. Here;, /e,= 1 corresponds to the magnetic sur- et al!® and Nakajim&® to use a simple expression

Downloaded 22 Apr 2007 to 133.75.139.172. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp



Phys. Plasmas, Vol. 11, No. 6, June 2004 Study of electromagnetic microinstabilities . . . 3075
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FIG. 2. Eigenfunctionst(6) and ¢,(6) of the ITG mode for3=0.008(a) 0
and of the KBM for3=0.04(b). Other parameters used here are the same as ‘ L .
in Fig. 1. 0 0.02 0.04 0.06 0.08

FIG. 3. Averaged normal curvatuf,(Q)’'/2 () and Mercier parameter
Dy—1/4 (b) as a function ofg for the same parameters as in Fig. 1.

a(r)
1
which is a good approximation to E¢7) with A(r)=0 es-
pecially for smallr. The normalized pressure gradient pa-note that, in Figs. 1 and 3, the magnetic configuration is fixed
rameter is rewritten asr=—R,q°B' =(q°B;/e)[(1+ 7;) by the standard parameters. In this caseBascreases, the
+1o(1+ 7). averaged normal curvatur®q(2)'/2 monotonically de-
The normalized real frequenay, /w, . and growth rate creases although the Mercier paramddgr— 1/4, which in-
w;lw, . Obtained by numerical calculations using the stan-<ludes effects of both normal and geodesic curvatures as well
dard parameters described above are plotted as a function aé the magnetic shear, monotonically increases. It is con-
B in Fig. 1. Figures (a) and Xb) correspond to the ITG firmed in this helical system that the beta value for the mar-
mode forkyp1i=0.5 and the KBM fork,p1i=0.35, respec- ginal stability of the KBM (8=0.01) is larger than that for
tively. Here,kyp1;i=0.5 andk,p1;=0.35 are the normalized the Mercier marginal stability £=0.006). We also numeri-
poloidal wave numbers for which the growth rates of thecally verified that the KBM is completely stabilized fg
ITG mode and KBM become almost maximum, respectively.=0.17 (not shown in Fig. 1where the helical system is still
Stabilization of the ITG mode and destabilization of theMercier-unstable. Thus, in the present case, the KBM-
KBM by increasingp are seen in the helical system in the unstable region is narrower than the Mercier-unstable region.
same way as observed in the tokamak thsespite of the This is a contrast to the tokamak case that is generally
opposite sign of the magnetic shear. The eigenfunctifii®s  Mercier-stable even when the KBM becomes unstable.
and ¢, (0) of the ITG mode for3=0.008 and the KBM for Figure 4 shows that the normalized real frequency
B=0.04 are shown in Figs.(d and 2Zb), respectively. We o kyp1i/w, and growth ratev;kypti/ 0w, . are plotted as a
see that the ITG mode is essentially electrostafi¢| ( function of the normalized poloidal wave numblegpr;.
>|yy|) while the KBM approximately satisfiegg= 4, and  Here, we employ the, ./(kypti) as the normalization unit
accordingly the ideal MHD conditioi,=0. in order to remove the wave number dependence from the
For reference, the averaged normal curvafRge))’'/2  unit. Figures 4a) and 4b) correspond the ITG mode fq8
and the Mercier parameté@ry,,— 1/4 are shown as a function =0 and the KBM forg= 0.02, 0.04, and 0.08, respectively.
of B in Figs. 3a) and 3b), respectively. Here, we should It is seen that the KBM can have much larger growth rates

Al(r)=-— (46)
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FIG. 4. Normalized growth ratewkypri/w,. and real frequency
w.kgptilw, e as a function ok,p+; for the ITG mode(a) and for the KBM
(b). Here, B=0 for the ITG mode ang3=0.01, 0.02, 0.04, 0.08 for the
KBM are used. Other parameters are the same as in Fig. 1.

and real frequencies and wider unstable wave number re-

gions than those of the ITG. Therefore, the KBM is consid- .

ered to be a candidate which causes anomalous transport for 2 s A 05

high beta values.
Figure Fa) shows the normalized real frequency FIG. 5. Normalized real frequenay, /w, . and growth rates; /w, . of the

w,lw, . and growth rataw;/w, . of the KBM as a function KBM-for kgep1i=0.35 (a), averaged normal curvatuﬁo(ﬂ)_’/z (b), and

of the ‘magnetic shear parameteror kpr,=0.35 ands  Mee PR Lis(c o & et of e megpetc she v

=0.01, 0.02, 0.04, and 0.08. For reference, the averagelq;fe same as in Fig. 1.

normal curvatureRy(Q))’'/2 and the Mercier parametér,

—1/4 are shown as a function &fin Figs. 5b) and Sc),

respectively. As seen in Figs(§ and Hc), the stronger stronger(negativé magnetic shear enhances destabilization.

negative magnetic shear gives the larger normal curvaturghus, low magnetic shear is expected to be favorable for the

but it also leads to the Mercier stability for the low-beta casehigh-beta plasma confinement. Comparison between Figs.

(B=0.01) by the field-line-bending stabilization of the ideal 5(a) and Fc) shows some correlation between the stability of

interchange mode. For the high-beta cage=0.08), the the kinetic mode and the Mercier criterion although we find

Mercier stability is obtained in the weak magnetic shear reagain that the KBM-unstable region is narrower than the

gion (5= —0.3), where both normal and geodesic curvaturesviercier-unstable region.

become favorable. We find from Fig(a that the stronger

magnetl_c shear b_n_ngs about stabilization of the electromag\-/_ CONCLUSIONS

netic microinstability for the lower-beta case, where the

mode structure is closer to that of the interchange mode. On In the present paper, collisionless electromagnetic micro-

the other hand, for higher beta values, the ballooning strucinstabilities in helical systems are investigated by using the

ture of the kinetic mode becomes more striking and thekinetic integral eigenmode equations derived from the ion

0 0.01
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gyrokinetic equation, the quasineutrality equation, Anejse  fluences the distribution of unfavorable curvature regions
law, and the massless electron approximation. Finite-beta e&long the field line. Such multiple-helicity effects are taken
fects on the toroidal force balance in the helical systems argto account in the electrostatic microinstability analyses by
taken into account by the stellarator expansion method. Th&uroda and Sugania and by Rewoldtet al® although it
ideal MHD ballooning mode equation is shown to be derivedseems that there still exist some difficulties in theoretical
from the kinetic eigenmode equation in the fluid limit. Also, explanation for the LHD experimental results which show a
the Mercier criterion obtained from the ideal MHD balloon- better confinement for the inward magnetic axis shift with
ing equation confirms that, in the helical systems, the negaunfavorable magnetic curvatufé. In addition to the
tive magnetic shear combined with the Shafranov shift has aultiple-helicity effects, trapped particles and collisions are
destabilizing effect by making both normal and geodesic curnot considered in the present electromagnetic analysis. These
vatures unfavorable. remain as future problems.
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