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Electromagnetic microinstabilities in helical systems are studied by numerically solving integral
eigenmode equations, which are derived from the ion gyrokinetic equation, the quasineutrality
equation, the Ampe`re’s law, and the massless electron approximation. The stellarator expansion
technique is used to evaluate finite-beta effects on the guiding-center drift in the helical
configuration, where the toroidal plasma shift and the magnetic shear strongly influence the
magnetic curvature and accordingly the stability of both magnetohydrodynamics~MHD! and kinetic
modes. The kinetic integral equations are shown to reduce to the ideal MHD ballooning mode
equation in the fluid limit, from which the Mercier criterion is obtained. For helical geometry like
the Large Helical Device~LHD! @Motojima, et al., Nucl. Fusion43, 1674~2003!#, it is confirmed
that, when increasing the beta value, the ion temperature gradient mode is stabilized while the
kinetic ballooning mode~KBM ! is destabilized due to the unfavorable geodesic curvature resulting
from the negative magnetic shear combined with the toroidal plasma shift. Also, dependencies of
these kinetic-mode properties on the poloidal wave number and the magnetic shear are investigated.
It is found that the KBM-unstable parameter region is narrower than the Mercier-unstable region in
the LHD-like configuration. ©2004 American Institute of Physics.@DOI: 10.1063/1.1730294#

I. INTRODUCTION

Microinstabilities in magnetically confined plasmas have
been studied extensively as a key mechanism for producing
plasma turbulence and resultant anomalous transport.1 Above
all, ion temperature gradient~ITG! modes and turbulence
driven by them have been most actively investigated by nu-
merous theories and simulations in recent years.2 The ITG
mode is essentially an electrostatic instability, which is more
unstable for lower-beta plasmas, and electromagnetic micro-
instabilities such as the kinetic ballooning mode~KBM !3 are
anticipated to become an active source of turbulence and
transport in high-beta regimes. For the ITG mode, electrons
are often assumed to adiabatically respond to electrostatic
fluctuations while, in the electromagnetic case, it is neces-
sary to include more complicated nonadiabatic electron dy-
namics due to magnetic fluctuations. So far, for helical sys-
tems, theoretical studies of microinstabilities have also been
concerned with electrostatic modes mainly4–6 and those of
electromagnetic modes have not been done sufficiently com-
pared with tokamak cases. Since, recently, helical systems
such as the Large Helical Device~LHD!7 have succeeded in
producing high-beta plasmas, understanding the physical
mechanism of their anomalous transport requires
electromagnetic-microinstability analyses. Also, electromag-
netic microinstabilities are deeply related to the ideal mag-
netohydrodynamics~MHD! interchange and ballooning
modes with short wavelengths. In the LHD, a large pressure
gradient is observed even in the Mercier-unstable region.7,8

Therefore, it is interesting to examine how the stability cri-
terion based on the ideal MHD is modified by the microin-
stability analysis, which takes account of kinetic effects such
as the Landau damping and the finite gyroradii.

In the present work, we investigate electromagnetic mi-
croinstabilities in helical systems with the LHD-like mag-
netic configuration. Recently, the KBM in the LHD was also
studied by Yamagishiet al.9 using the ordinary differential
eigenmode equation derived by Tanget al.,3 in which the
poloidal wavelength is assumed to be much larger than the
ion thermal gyroradius. Here, in order to fully take account
of the finite-gyroradius effect on the electromagnetic mode,
we use the kinetic integral eigenmode equations similar to
those by Donget al. for tokamaks,10 which are derived from
the ion gyrokinetic equation,11,12 the quasineutrality condi-
tion, Ampère’s law, and the massless electron approximation.
Our numerical solution to the kinetic integral eigenmode
equations utilizes procedures by Sugama13 for proper ana-
lytic continuation of the dispersion relation in the complex
frequency plane, by which we can calculate both positive
and negative growth rates so as to accurately determine the
critical condition for the marginal stability.

Helical ripples and safety-factor profiles in the LHD-like
configuration present a striking contrast to those in toka-
maks. The ideal MHD ballooning mode in tokamaks is stable
for the negative magnetic sheardq/dr,0 (q: the safety fac-
tor, r : the minor radius! while, as shown by Nakajima,14 the
unfavorable geodesic curvature resulting from the negative
shear combined with a toroidal~Shafranov! shift of the
finite-beta helical plasma destabilizes the ballooning mode in
the LHD configuration. Here, we employ the stellarator ex-
pansion method15 to evaluate the finite-beta toroidal shift,
which critically affects local magnetic shear, magnetic cur-
vature, guiding-center drift, and resultantly stability of both
MHD and kinetic modes. In fact, Nakamuraet al.16 showed
that the stellarator expansion well describes beta dependence
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of the magnetic axis position and the magnetic well depth in
the heliotron-type configuration by comparison with results
from three-dimensional equilibrium calculations. The kinetic
eigenmode equations are shown to reduce to the ideal MHD
ballooning equation in the fluid limit, from which the
Mercier criterion for the helical plasma is obtained. Then, we
can make a comparison between kinetic results from the mi-
croinstability analysis and the Mercier criterion.

The rest of this paper is organized as follows. In Sec. II,
equilibria of helical plasmas are treated by the stellarator
expansion technique to derive useful formulas for evaluation
of the toroidal plasma shift and the magnetic drift for the
finite-beta case. The kinetic integral eigenmode equations for
electromagnetic microinstabilities are derived in Sec. III A
and the ideal MHD ballooning equation is obtained from
them in the fluid limit in Sec III. B, where we also derive the
Mercier criterion which takes account of the finite-beta heli-
cal configuration by using the formulas in Sec. II. In Sec. IV,
the kinetic integral eigenmode equations are numerically
solved to investigate dependencies of electromagnetic-mode
properties on the plasma beta, the magnetic shear, and the
poloidal wave number. There, the relation of the kinetic re-
sults to the Mercier parameter is also examined. Finally, con-
clusions are given in Sec. V.

II. EQUILIBRIA OF HELICAL PLASMAS

Here, we use the toroidal coordinates (r ,u,z), wherer ,
u, andz denote the minor radius, the poloidal angle, and the
toroidal angle, respectively, and they are related to the con-
ventional cylindrical coordinates (R,f,Z) with

R5R01D~r !1r cosu, f52z, Z5r sinu. ~1!

Here the point defined byR5R0 and Z50 represents the
geometrical center of the poloidal cross section of the wall
boundary~or the external helical coils!, andD(r ) is defined
later.

In the stellarator expansion,15 the lowest-order poloidal
flux function c[2(4p2R0)21*B"“udV is independent of
z, and is written asc5A1ch . Here A is the toroidal~z!
component of the magnetic vector potential associated with
the plasma current andch represents the contribution from
the external helical fields. The functionA is determined by

¹'
2 A524pV

dp

dc
1G~c!, ~2!

where ¹'
2 denotes the two-dimensional Laplacian in the

plane perpendicular to the toroidal direction, the equilibrium
pressurep(c) andG(c) are flux functions, andV is given
by

V5
2~R2R0!

R0
1Vh . ~3!

Here, Vh is associated with the contribution of the helical
field to the averaged magnetic curvature. Hereafter, we as-
sume that there is no net toroidal current and thatch

5ch(r 0) and Vh5Vh(r 0) are functions ofr 0[@(R2R0)2

1Z2#1/2.r 1D(r )cosu only, wherer 0 is the minor radius
measured from the center~or magnetic axis! of the vacuum

helical field. Now, we takec5c(r ) so that the poloidal
cross section labeled byc is a circle with the radiusr , the
center of which is shifted fromR5R0 by D(r ) (!r ). Ne-
glecting small terms;(D/r )2, Eq. ~2! is rewritten as

¹'
2 @c~r !2ch~r !2D~r !ch8~r !cosu#

.24p
p8~r !

c8~r ! F2r

R0
cosu1Vh~r !G1G~r !, ~4!

where8[d/dr and the pressure gradientp8 is regarded as a
small quantity of O(D/r ). We obtain G(r )
54pVh(r )p8(r )/c8(r ) from the no net toroidal current
condition,^¹'

2 A&50, where^•& denotes the flux surface av-
erage. Then, separating Eq.~4! into theu-averaged part and
the u-dependent part, we findc(r )5ch(r ) and

~Dc8!91
~Dc8!8

r
2

Dc8

r 2 54p
p8

c8

2r

R0

, ~5!

respectively. Defining the safety factor q(r )
[2rB0 /(R0c8(r )) and the local plasma beta valueb(r )
[8pp(r )/B0

2, and using Eq.~5! yield

D~r !5R0q~r !E
0

r dx

x3 E
0

x

y2q~y!b8~y!dy1
q~r !D~0!

q~0!
,

~6!

where the toroidal shiftD(0) of the magnetic axis can ex-
perimentally be controlled by the external vertical field.
@Equation ~6! is equivalent to Eq.~7.112! in Freidberg.17#
From Eq.~6!, we can show

D8~r !5
R0q~r !

r 3 E
0

r

x2q~x!b8~x!dx1 ŝ~r !
D~r !

r
, ~7!

and

rD9~r !52a~r !1@2ŝ~r !23#D8~r !

1@2ŝ~r !2 ŝ2~r !1rŝ8~r !#
D~r !

r
, ~8!

where the magnetic shear parameterŝ(r )[rq8(r )/q(r ) and
a(r )[2R0q2(r )b8(r ) are defined. The toroidal force bal-
ance for the finite-beta case causes the toroidal axis shift and
the poloidal field compression, which are taken into account
by Eqs. ~6!–~8!. In the well-known s-a model, uD9u
@uD8u/r;uDu/r 2 is used and only the first term2a on the
right-hand side of Eq.~8! is retained by assuming that the
pressure profile has a steep gradient only around the surface
considered~see Sec. 10.5.5 in Freidberg17!. This term is re-
sponsible for the second stabilization of the ballooning mode
in high beta regimes. However, it was pointed out by
Nakajima14 following the high beta model by Coppiet al.18

that, in the helical system, the second group of terms
(2ŝ(r )23)D8(r ) on the right-hand side should also be kept
and combined with the geodesic curvature in order to explain
the destabilization mechanism of the ballooning mode for the
case of the negative magnetic shearŝ,0. Using the expres-
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sion for D9 in Eq. ~8!, we can naturally unify the conven-
tional s-a model based on the assumption of the steep pres-
sure gradient and the high beta model by Coppiet al.18 and
Nakajima14 who used the near-axis expansion.

In the ballooning representation,19,20we treat the fluctua-
tion which varies rapidly across the field lines and has the
wave number vector perpendicular tob[B/B denoted by

k'5kn

“r

u“r u
1kt

bÃ“r

u“r u
. ~9!

In the present case, the componentkt tangential to the flux
surface is approximately equal to the poloidal wave number,
kt.ku5nq(r )/r , wheren is the toroidal mode number. The
ratioS of the normal componentkn to the tangential onekt is
written as

S[
kn

kt
. ŝ~u2uk!1@D8~11 ŝ!1rD9#sinu, ~10!

whereO(D8) terms are neglected except for the termD8(1
1 ŝ)sinu that significantly affects the ballooning mode sta-
bility. From Eqs.~9! and ~10!, we have

k'
2 5ku

2@11S2#. ~11!

When evaluating the guiding-center drift which is re-
sponsible for ballooning-type instabilities, we take into ac-
count effects of helical ripples in the magnetic field strength
by usingB5B0@12e00(r )2e t(r )cosu2eh(r)cos(Lu2Mz)#,
whereL andM are the poloidal and toroidal period numbers
of the helical fields, respectively (L52 andM510 for the
LHD!. Here, e t5r /R0 and eh(r ) (}r L) represent the tor-
oidicity and helicity parameters, respectively. The stellarator
expansion technique is used to givee00(r )5 1

2@^V&1b(r )#,
which is associated with the averaged normal magnetic cur-
vature and the diamagnetic effect. Then, the magnetic drift
frequency for the particle speciesa with the massma and the
chargeea is given by

vD52env* a~v i
21v'

2 /2!vTa
22Gc~u!, ~12!

where en5Ln /R0 is the ratio of the density gradient scale
lengthLn[2(d ln n0 /d ln r)21 to the major radiusR0 , v* a

[2kucTa /(eaLn) is the diamagnetic frequency,v i (v') is
the parallel~perpendicular! velocity, andvTa[(2Ta /ma)1/2

is the thermal velocity. Also, the dimensionless curvature
factor Gc(u) is defined along the field line labeled witha0

5z2qu by

Gc~u![R0@~b"“ !bÃb#•~k' /kt!

5R0^V&8/21cosu1L~eh /e t!cos$~L2Mq!u

2Ma0%1S~u!@sinu1L~eh /e t!sin$~L2Mq!u

2Ma0%#. ~13!

Unfavorable~favorable! curvature is indicated byGc.0
(,0). On the right-hand side of Eq.~13!, the first term is
derived from the averaged normal curvature, the second and
third terms correspond to the normal curvature due to the
toroidicity and the helicity, while the fourth and fifth terms
with the coefficientS contain effects of the toroidal and he-

lical geodesic curvature, respectively. From Eqs.~1! and~3!,
the averaged normal curvature term^V&8 is written as

^V&85Vh8~r !1
2

R0
^D1r cosu&8. ~14!

Here, from Ref. 21, the averaged helical curvature is ex-
pressed in terms ofq and ŝ as

Vh8~r !5
M

L

~r 4/q!8

R0
2r 2

5
M

L

r

R0
2q

~42 ŝ!. ~15!

The contribution of the toroidal plasma shift to the normal
curvature is represented by

2

R0
^D1r cosu&85

@~r 2D!8/r #8

R0

5
1

R0
F2a~r !12ŝD8

1~2ŝ2 ŝ21rŝ8!
D

r G , ~16!

where Eqs.~6!–~8! and ^•&.r•(11D8 cosu)du/(2p) are
used. We see from Eqs.~8!, ~10!, ~13!, ~14!, and ~16! that
a.0 included inD9 reducesGc and accordingly contributes
to stabilization by entering both the averaged normal curva-
ture term^V&8 and theS term combined with the geodesic
curvature. In helical systems with negative magnetic shear
ŝ,0, destabilization occurs from an increase inGc due to
ŝD8.0 that also appears in both^V&8 andS.

In Sec. III, the gyrokinetic analysis of electromagnetic
microinstabilities in helical plasmas is carried out based on
the geometrical expressions shown in this section.

III. EIGENMODE EQUATIONS

Here, the kinetic integral eigenmode equations are de-
rived and the ideal MHD ballooning equation is obtained
from them in the fluid limit.

A. Kinetic integral eigenmode equations

The distribution function in the (x,v) phase space for the
speciesa5 i ~ion! or e ~electron! is divided into the equilib-
rium and perturbation parts asf a5n0FMa1d f a wheren0 is
the equilibrium density andFMa[p23/2vTa

23 exp(2v2/vTa
2 ) is

the Maxwellian distribution function. In the magnetic field
B, the perturbation partd f a with the perpendicular wave
number vectork' is written as

d f a52
eaf

Ta
n0FMa1hae2 ik'•ra, ~17!

wheref represents the electrostatic potential,ra[bÃv/Va

denotes the gyroradius vector, andVa[eaB/(mac) is the
gyrofrequency. Here, the first and second terms on the right-
hand side of Eq.~17! represent the adiabatic and nonadia-
batic parts, respectively. The nonadiabatic distribution func-
tion ha is independent of the gyrophase and is described in
the collisionless linear electromagnetic case by the gyroki-
netic equation,11,12
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F v i

R0q

]

]u
2 i ~v2vDa!Gha

52 i ~v2v* Ta!n0FMaJ0~k'ra!
ea

Ta
S f2

v i

c
Ai D , ~18!

whereAi5dA"b is the parallel component of the vector po-
tential for the magnetic field perturbation,vDa is given by
Eq. ~12!, and

v* Ta5v* aF11haH S v
vTa

D 2

2
3

2J G . ~19!

Here, J0 is the Bessel function of order zero andha

[d ln Ta /d ln n0 is the ratio of the temperature gradient to the

density gradient. In Eq.~18!, we have neglected the parallel
magnetic field perturbation and used the ballooning represen-
tation to regard the poloidal angleu as a coordinate along the
magnetic field line which forms the so-calledcovering space
(2`,u,1`).19,20

Throughout this work, following Donget al.,10 effects of
magnetic geometry in helical systems are considered only
through the magnetic drift and the perpendicular wave num-
ber vector described in the previous section. Trapped particle
effects and variation in the parallel velocityv i along the field
line are neglected because such instabilities as the ITG mode
and the ballooning mode treated here are driven by passing
particles mainly. Then, the solution of Eq.~18! with the
boundary conditions limu→6`ha(u)50 is given by

ha55 2 i E
2`

u

du8~R0q/uv iu!ei za(u,u8)~v2v* Ta!n0FMaJ0~k'8 ra!
ea

Ta
S f2

v i

c
Ai D for v i.0

2 i E
u

1`

du8~R0q/uv iu!e2 i za(u,u8)~v2v* Ta!n0FMaJ0~k'8 ra!
ea

Ta
S f2

v i

c
Ai D for v i,0,

~20!

wherek'8 is given by Eq.~32! and

za~u,u8!5E
u8

u

du9~R0q/uv iu!@v2vDa~u9!#. ~21!

In the ballooning representation, the boundary conditions
limu→6`f(u)5 limu→6`Ai(u)50 are also employed. Us-
ing the solution given by Eq.~20!, we can calculate the den-
sity perturbation, dna[*d3v d f a52n0eaf/Ta1*d3v
3J0(k'ra)ha , and the parallel current perturbation,dJi

[(a5 i ,eea*d3v J0(k'ra)hav i .
In the same way as in Donget al.,10 we here take the

limit of the small electron-ion mass ratio,me /mi→10.
Then, we see that, in Eq.~18! for electrons (a5e), the terms
proportional to the parallel velocity (v i;vTe) are dominant
and their balance yields the constraint for the lowest order of
Ai in the (me /mi)

1/2-expansion,

E
2`

1`

dk Ai~k!50, ~22!

where k[uŝkuu(u2uk) is used as an independent variable
instead ofu. Equation ~22! implies that the electric field
integrated along the field line*Eidl5 i (v/c)*Aidl should
vanish in order to forbid unlimited acceleration of massless
electrons. The quasineutrality condition(a5 i ,eeadna50 is
rewritten as

~11te!f~k!5E
2`

1` dk8

A2p
FK11

i ~k,k8!f~k8!

1$K12
i ~k,k8!1K12

e ~k,k8!%
vTi

c
Ai~k8!G ,

~23!

where te[Te /Ti . From the Ampe`re’s law k'
2 Ai

54pdJi /c, we obtain

]

]k S 1

2te
k'

2 vTi

c
Ai~k! D

5
]

]k S E2`

1` dk8

A2p
F $K21

i ~k,k8!1K21
e ~k,k8!%f~k8!

1$K22
i ~k,k8!1K22

e ~k,k8!%
vTi

c
Ai~k8!G D . ~24!

When using the Ampe`re’s law to determine the lowest order
of Ai in the (me /mi)

1/2-expansion, there simultaneously ap-
pear terms including an unknown low-order part ofAi which
are not negligible. However, these terms are independent of
k so that, in Eq.~24!, they are eliminated by taking differen-
tial with respect tok.

In Eqs.~23! and~24!, the integral kernels due to ions are
defined by
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FK11
i ~k,k8! K12

i ~k,k8!

K21
i ~k,k8! K22

i ~k,k8!
G52 i E

0

1`

v* edt
A2eivt

Aal~11a!
e2(k2k8)2/4lG0~k' ,k'8 !F v

v* e

te112
3

2
h i1

h i~k2k8!2

4al

1
2h i

~11a!
S 12

k'
2 1k'8

2

2~11a!te

1
k'k'8

~11a!te

I 1

I 0
D GF 1 2

~k2k8!

2Aal

b i

te

~k2k8!

2Aal
2

b i

te

~k2k8!2

4al

G , ~25!

and those due to electrons are given by

K12
e ~k,k8!5 i

Ap

2&

Ateq

uŝuen
S v

v* e

21D ~k2k8!

uk2k8u
,

K21
e ~k,k8!52

b i

te
K12

e ~k,k8!, ~26!

K22
e ~k,k8!5b i

Ap

4&
S q

ŝen
D 2

uk2k8uF2
v

v* e
S v

v* e

21D
12uŝkuuenS v

v* e

212heD ~k2k8!

uk2k8u

3E
u8

u

du9Gc~u9!G .

Here, following Donget al.,10 we have used variables de-
fined by

t5Rquu2u8u/uv iu, ~27!

l5
t2

tea
S ŝ

q
enD 2

v
* e
2 , ~28!

a511
2i env* it

~u2u8!
E

u8

u

du9Gc~u9!, ~29!

k5uŝkuu~u2uk!, k85uŝkuu~u82uk!, ~30!

G0~k' ,k'8 !5I 0S k'k'8

te~11a!
DexpS 2

k'
2 1k'8

2

2te~11a!
D , ~31!

k'
2 5ku

2@11S2~u!#, k'8
25ku

2@11S2~u8!#. ~32!

In Eqs. ~23!–~32!, the wave numbersku , k' , and k are

normalized byrs
21 with rs[A2Te /mi /V i , and I n is the

modified Bessel function of ordern. The integral parameter
t in Eqs.~25! and~29! has the opposite sign to that in Dong
et al.10 Equations~22!–~24! form coupled integral eigen-
mode equations which determine the dispersion relation and
the mode structure of the electromagnetic instabilities in he-
lical systems. Instead of using the second integral eigenmode
equation by Donget al. @see Eq.~13! in Ref. 10#, we have
employed its derivative with respect tok and the constraint
given by Eqs.~24! and ~22!, respectively, although their
eigenmode equations and ours both give the same result for
uk50 becauseAi for the most unstable mode is an odd func-

tion of k for the unstable mode as shown later.@There seem
to be typos in Eqs.~16! and~17! of Donget al., too.# Also, it
is shown in Sec III B that, in the fluid limit, the ideal MHD
ballooning mode equation is naturally derived from Eqs.
~22!–~24!, which indicates the validity of our eigenmode
equations.

B. Ideal MHD ballooning mode equation

Here, we consider the fluid limit of Eqs.~22!–~24!, in
which ukivTi /vu;u(vTi /R0qv)(]/]u)u!1, k'

2 rTi
2 !1, and

uvDi /vu!1. It can be shown that, in the fluid limit, the in-
tegrals including the ion kernels are approximately written
by

E
2`

1` dk8

A2p
K11

i ~k,k8!f~k8!

.F te1
v* e

v
2S 11~11h i !

v* e

tev
D

3S k'
2

2
12enGc

v* e

v
1

tevTi
2

2R0
2q2v2

d2

du2D Gf, ~33!

E
2`

1` dk8

A2p
K12

i ~k,k8!Ai~k8!

. i S 11~11h i !
v* e

tev
D tevTi

2R0qv

dAi

du
, ~34!

E
2`

1` dk8

A2p
K21

i ~k,k8!f~k8!

.2 i S 11~11h i !
v* e

tev
D b ivTi

2R0qv

df

du
, ~35!

E
2`

1` dk8

A2p
K22

i ~k,k8!Ai~k8!

.2S 11~11h i !
v* e

tev
D b i

2
Ai . ~36!

Using Eqs.~33!–~36!, we can rewrite Eqs.~23! and ~24! as
ordinary differential equations,
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S 12
v* e

v
D S f2 i

R0qv

2c
E

2`

1`

du8
~u2u8!

uu2u8u
Ai~u8!D 1S 11~11h i !

v* e

tev
D F S k'

2

2
12enGc

v* e

v
D f

1
tevTi

2

2R0qv2

d

du
S 1

R0q

df

du
2 i

v

c
Ai D G50, ~37!

and

]

]u
S 1

2te

k'
2

vTi

c
Ai D 1 i S 11~11h i !

v* e

tev
D b ivTi

2v

d

du
S 1

R0q

df

du
2 i

v

c
Ai D 1 i

b iR0qv

tevTi
S 12

v* e

v
D S f2 i

R0qv

2c

3E
2`

1`

du8
~u2u8!

uu2u8u
Ai~u8!D 22enGc

b iR0qv* e

tevTi
S 12~11he!

v* e

v
D R0qv

2c
E

2`

1`

du8
~u2u8!

uu2u8u
Ai~u8!50, ~38!

respectively. Multiplying Eq.~38! with i tevTi /(b iR0qv)
and adding it to Eq.~37!, we obtain

S 11~11h i !
v* e

tev
D S k'

2

2
12enGc

v* e

v Df

1 i
vTi

b iR0qv

d

du S 1

2te
k'

2 vTi

c
Ai D

22i enGc

v* e

v S 12~11he!
v* e

v D R0qv

2c

3E
2`

1`

du8
~u2u8!

uu2u8u
Ai~u8!50. ~39!

For low betab i!(kivTi /v)2, we find from Eq.~39! that
uvAi /cu!u]f/]uu/(R0q). Then, in this electrostatic case,
terms withAi are neglected in Eq.~37!, and we have

tevTi
2

2R0qv2

d

du
S 1

R0q

df

du
D 1Fk'

2

2
12enGc

v* e

v

1S 12
v* e

v
D S 11~11h i !

v* e

tev
D 21Gf50, ~40!

which gives the dispersion relation in the fluid limit for elec-
trostatic modes such as the slab and toroidal ITG modes and
the electron drift wave.

Next, let us consider the electromagnetic high-beta case.
It is found from Eq.~40! that, in the electrostatic fluid limit,
(12v* e /v)/(11(11h i)v* e /(tev)) is as small as terms
of first order in (kivT /v)2, k'

2 , and uvD /vu. For the elec-
tromagnetic case, in which the above electrostatic condition
for the eigenfrequency is not satisfied, the lowest-order rela-
tion betweenf andAi is obtained from Eq.~37! as

f2c i[f2 i
R0qv

2c
E

2`

1`

du8
~u2u8!

uu2u8u
Ai~u8!50, ~41!

where c i[ i (R0qv/2c)*2`
1`du8Ai(u8)(u2u8)/uu2u8u is

defined (c i should not be confused with the poloidal flux
functionc in Sec. II!. Taking the derivative of Eq.~41! with
respect tok yields

1

R0q

d~f2c i!

du
5

1

R0q

df

du
2 i

v

c
Ai50, ~42!

which represents zero parallel electric fieldEi50 as in the
ideal MHD. We also note that, because of the boundary con-
ditions limu6`f(u)50 and limu6`c i(u)50 derived from
Eq. ~22!, the relation in Eq.~41! is also derived from inte-
grating Eq.~42! without an arbitrary integral constant. Thus,
the conditions written in Eqs.~41! and~42! are equivalent to
each other. We now use these conditions to eliminateAi in
Eq. ~39! and obtain

]

]u
F ~11S2!

df

du
G1FR0

2q2

vA
2 ~11S2!$v21~11h i !

3~v* e /te!v%1aGcGf50, ~43!

where we have defined the Alfve´n velocity vA

[B0 /(4pn0mi)
1/2 and used Eq.~11! and the normalized

pressure gradient parametera[2R0q2db/dr with b[b i

1be[8pn0(Ti1Te)/B0
2. In Eq. ~43!, v* i(11h i)

[2(v* e /te)(11h i) represents the diamagnetic frequency
associated with the ion pressure gradient. If the magnitude of
the eigenmode frequency is much larger than this ion dia-
magnetic frequency, Eq.~43! reduces to

]

]u
F ~11S2!

df

du
G1FR0

2q2

vA
2 v2~11S2!1aGcGf50,

~44!

which coincides with the ideal MHD ballooning mode equa-
tion.

So far, we have confirmed how the ideal MHD balloon-
ing mode equation shown in Eq.~44! is derived from the
kinetic integral eigenmode equations in the fluid limit. Then,
the interchange stability criterion, namely, the Mercier crite-
rion can be derived from examining the asymptotic behavior
of the solution to Eq.~44! for the case ofv50 ~see Sec.
10.5.4 in Freidberg17!. When deriving the Mercier criterion
for equilibria of helical plasmas described in the previous
section, we adopt detailed expressions ofS andGc given by
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Eqs.~10! and~13! with help of Eqs.~8!, ~14!, and~16!. The
resultant Mercier stability criterion is written as

DM[
a

ŝ2 FR0

2
Vh82

a

2
S 11

L~eh /e t!

Mq2L
D

1S 5

2
ŝ21DD81~2ŝ2 ŝ21rŝ8!

D

r
G

,
1

4
. ~45!

In Eq. ~45!, the term proportional toL/(Mq2L)(!1) may
be ignored as a higher-order term in the stellarator expan-
sion. The well-known stabilization due to the magnetic shear
is recognized in the denominator ofDM . The normal curva-
ture termR0Vh8/2 associated with the external helical field is
a main source of the interchange instability in the helical
system. We find that the term proportional toa
[2R0q2db/dr is stabilizing because the Shafranov shift
caused by increasinga acts favorably on both normal and
geodesic curvatures as seen in the previous section.@It
should be noted that the Mercier criterion shown in Eq.~45!
contains both normal and geodesic curvature effects.# Also,
for typical q profiles in the helical system, we have 2ŝ2 ŝ2

1rŝ8,0 and therefore the term proportional toD leads to
more stability for largerD. On the other hand, for negative

magnetic shearŝ[(r /q)(dq/dr),0, the term (52ŝ21)D8
becomes positive due to the Shafranov shift (D8,0) and
thus causes destabilization, which is becauseŝD8.0 acts
unfavorably on both normal and geodesic curvatures@see
Eqs. ~8!, ~10!, ~13!, ~14!, and ~16!#. These qualitative prop-
erties described by Eq.~45! agree well with results from
more accurate numerical calculations of the Mercier criterion
based on the three-dimensional MHD equilibria.22

IV. NUMERICAL RESULTS

In this section, the coupled integral eigenmode equations
shown in Eqs.~22!–~24! are numerically solved to obtain
linear growth rates, real frequencies, and mode structures of
electromagnetic microinstabilities in a helical system. Em-
ploying procedures by Sugama13 for proper analytic continu-
ation of the dispersion relation in the complex frequency
plane, our numerical code can calculate both positive and
negative growth rates, which is useful for accurately deter-
mining the critical condition for the marginal stability.

In order to check the validity of our code, we have done
a benchmark test using the Cyclone parameters for the Dou-
blet III-D tokamak~see Fig. 1 in Dimitset al.2!. Then, it was
found that, in spite of our neglecting trapped ions, growth
rates and real frequencies obtained by our code are in good
agreement with those by other kinetic codes within deviation
of about five percent.

Following the study of electrostatic ITG modes by
Kurodaet al.,4 we consider a system like the LHD and use
L52, M510, q52, ŝ521, uk50, a050, h i5he53.5,
en[Ln /R050.3, te[Te /Ti51, and eh /e t51 as standard
parameters. Here,eh /e t51 corresponds to the magnetic sur-

face r /a.0.6. Also, usingh i5he53.5 anden50.3 com-
bined with R053.6 m and a50.6 m gives the density and
temperature gradient scale lengths asLn51.08m and LTi

5LTe50.36m.
Here, we investigate especially how the plasma beta and

the magnetic shear affect linear properties of the microinsta-
bilities through geometrical variation of the helical plasma
equilibrium. In the LHD, by applying the vertical field, the
vacuum magnetic axis is shifted inward in order to realize
good particle confinement. In the presence of the pressure
gradient, the Shafranov shift works so as to cancel the in-
ward shift by the vertical field. In the present study, we put
D(r )50 for simplicity, which represents that, because of the
counterbalance between the effects of the vertical field and
the pressure gradient, the central axis of the magnetic surface
considered coincides with that of the external helical coils.
We should note that effects of the toroidal plasma shift due to
finite beta are still retained through includingD8(r ) and
D9(r ). The pressure profile inside the flux surfacer is nec-
essary in order to evaluateD8(r ) as shown in Eq.~7! al-
though, in numerical calculations here, we follow Coppi
et al.18 and Nakajima14 to use a simple expression

FIG. 1. Normalized growth ratev i /v* e and real frequencyv r /v* e as a
function ofb for the ITG mode~a! and the KBM~b!. Parameters used here
are L52, M510, q52, ŝ521, uk50, a050, h i5he53.5, en[Ln /R0

50.3, te[Te /Ti51, eh /e t51, andkurTi50.5 ~for the ITG mode!, 0.35
~for the KBM!.
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D8~r !52
a~r !

4
, ~46!

which is a good approximation to Eq.~7! with D(r )50 es-
pecially for smallr . The normalized pressure gradient pa-
rameter is rewritten asa[2R0q2b85(q2b i /en)@(11h i)
1te(11he)#.

The normalized real frequencyv r /v* e and growth rate
v i /v* e obtained by numerical calculations using the stan-
dard parameters described above are plotted as a function of
b in Fig. 1. Figures 1~a! and 1~b! correspond to the ITG
mode forkurTi50.5 and the KBM forkurTi50.35, respec-
tively. Here,kurTi50.5 andkurTi50.35 are the normalized
poloidal wave numbers for which the growth rates of the
ITG mode and KBM become almost maximum, respectively.
Stabilization of the ITG mode and destabilization of the
KBM by increasingb are seen in the helical system in the
same way as observed in the tokamak case10 in spite of the
opposite sign of the magnetic shear. The eigenfunctionsf~u!
andc i(u) of the ITG mode forb50.008 and the KBM for
b50.04 are shown in Figs. 2~a! and 2~b!, respectively. We
see that the ITG mode is essentially electrostatic (ufu
@uc iu) while the KBM approximately satisfiesf5c i and
accordingly the ideal MHD conditionEi50.

For reference, the averaged normal curvatureR0^V&8/2
and the Mercier parameterDM21/4 are shown as a function
of b in Figs. 3~a! and 3~b!, respectively. Here, we should

note that, in Figs. 1 and 3, the magnetic configuration is fixed
by the standard parameters. In this case, asb increases, the
averaged normal curvatureR0^V&8/2 monotonically de-
creases although the Mercier parameterDM21/4, which in-
cludes effects of both normal and geodesic curvatures as well
as the magnetic shear, monotonically increases. It is con-
firmed in this helical system that the beta value for the mar-
ginal stability of the KBM (b.0.01) is larger than that for
the Mercier marginal stability (b.0.006). We also numeri-
cally verified that the KBM is completely stabilized forb
>0.17~not shown in Fig. 1! where the helical system is still
Mercier-unstable. Thus, in the present case, the KBM-
unstable region is narrower than the Mercier-unstable region.
This is a contrast to the tokamak case that is generally
Mercier-stable even when the KBM becomes unstable.

Figure 4 shows that the normalized real frequency
v rkurTi /v* e and growth ratev ikurTi /v* e are plotted as a
function of the normalized poloidal wave numberkurTi .
Here, we employ thev* e /(kurTi) as the normalization unit
in order to remove the wave number dependence from the
unit. Figures 4~a! and 4~b! correspond the ITG mode forb
50 and the KBM forb5 0.02, 0.04, and 0.08, respectively.
It is seen that the KBM can have much larger growth rates

FIG. 2. Eigenfunctionsf~u! andc i(u) of the ITG mode forb50.008 ~a!
and of the KBM forb50.04~b!. Other parameters used here are the same as
in Fig. 1.

FIG. 3. Averaged normal curvatureR0^V&8/2 ~a! and Mercier parameter
DM21/4 ~b! as a function ofb for the same parameters as in Fig. 1.
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and real frequencies and wider unstable wave number re-
gions than those of the ITG. Therefore, the KBM is consid-
ered to be a candidate which causes anomalous transport for
high beta values.

Figure 5~a! shows the normalized real frequency
v r /v* e and growth ratev i /v* e of the KBM as a function
of the magnetic shear parameterŝ for kurTi50.35 andb
50.01, 0.02, 0.04, and 0.08. For reference, the averaged
normal curvatureR0^V&8/2 and the Mercier parameterDM

21/4 are shown as a function ofŝ in Figs. 5~b! and 5~c!,
respectively. As seen in Figs. 5~b! and 5~c!, the stronger
negative magnetic shear gives the larger normal curvature
but it also leads to the Mercier stability for the low-beta case
(b50.01) by the field-line-bending stabilization of the ideal
interchange mode. For the high-beta case (b50.08), the
Mercier stability is obtained in the weak magnetic shear re-
gion (ŝ*20.3), where both normal and geodesic curvatures
become favorable. We find from Fig. 5~a! that the stronger
magnetic shear brings about stabilization of the electromag-
netic microinstability for the lower-beta case, where the
mode structure is closer to that of the interchange mode. On
the other hand, for higher beta values, the ballooning struc-
ture of the kinetic mode becomes more striking and the

stronger~negative! magnetic shear enhances destabilization.
Thus, low magnetic shear is expected to be favorable for the
high-beta plasma confinement. Comparison between Figs.
5~a! and 5~c! shows some correlation between the stability of
the kinetic mode and the Mercier criterion although we find
again that the KBM-unstable region is narrower than the
Mercier-unstable region.

V. CONCLUSIONS

In the present paper, collisionless electromagnetic micro-
instabilities in helical systems are investigated by using the
kinetic integral eigenmode equations derived from the ion

FIG. 4. Normalized growth ratev ikurTi /v* e and real frequency
v rkurTi /v* e as a function ofkurTi for the ITG mode~a! and for the KBM
~b!. Here,b50 for the ITG mode andb50.01, 0.02, 0.04, 0.08 for the
KBM are used. Other parameters are the same as in Fig. 1.

FIG. 5. Normalized real frequencyv r /v* e and growth ratev i /v* e of the
KBM for kurTi50.35 ~a!, averaged normal curvatureR0^V&8/2 ~b!, and
Mercier parameterDM21/4 ~c! as a function of the magnetic shear param-
eter ŝ. Here,b50.01, 0.02, 0.04, and 0.08 are used. Other parameters are
the same as in Fig. 1.

3076 Phys. Plasmas, Vol. 11, No. 6, June 2004 H. Sugama and T.-H. Watanabe

Downloaded 22 Apr 2007 to 133.75.139.172. Redistribution subject to AIP license or copyright, see http://pop.aip.org/pop/copyright.jsp



gyrokinetic equation, the quasineutrality equation, Ampe`re’s
law, and the massless electron approximation. Finite-beta ef-
fects on the toroidal force balance in the helical systems are
taken into account by the stellarator expansion method. The
ideal MHD ballooning mode equation is shown to be derived
from the kinetic eigenmode equation in the fluid limit. Also,
the Mercier criterion obtained from the ideal MHD balloon-
ing equation confirms that, in the helical systems, the nega-
tive magnetic shear combined with the Shafranov shift has a
destabilizing effect by making both normal and geodesic cur-
vatures unfavorable.

The kinetic integral eigenmode equations are numeri-
cally solved to obtain the real frequency, the growth rate, and
the mode structure of the electromagnetic microinstability at
the core region (r /a.0.6) in the LHD-like configuration
with no net current. Their dependencies on the plasma beta
b, the poloidal wave numberku , and the magnetic shear
parameterŝ are clarified. Stabilization of the ITG mode and
destabilization of the KBM by increasingb are verified. The
KBM at the high beta (b*0.02) has larger growth rates and
wider unstable wave number regions than the ITG at the low
beta (b&0.01). Therefore, the KBM is expected to cause the
anomalous transport in the high-beta case. In the low-beta
case (b,0.03), the KBM is stabilized by the strong~nega-
tive! magnetic shear while, in the high-beta case (b
.0.03), it is stabilized by the weak magnetic shear. These
tendencies also correlate with the Mercier parameter, which
contains effects of the field-line bending and the normal and
geodesic curvatures. It is found under the present conditions
that the KBM-unstable regions inb and ŝ are narrower than
the Mercier-unstable regions. Thus, kinetic effects such as
the Landau damping and the finite gyroradii are considered
to play a role of stabilization of the electromagnetic modes
so that, for short wavelengths, their stability is better than
predicted from the Mercier criterion based on the ideal
MHD. This is consistent with the experimental result of the
LHD plasma confinement in the Mercier-unstable region.

Since, in the conventional heliotron-type configuration,
the stellarator expansion technique describes very well the
finite-beta effects on the magnetic hill and on the toroidal
plasma shift, which strongly affect stability, the results ob-
tained here are expected to be at least qualitatively valid as
well for the case using more complete magnetic geometry
given by three-dimensional equilibrium calculations. Also,
the single-helicity model of the magnetic field strength used
in this paper gives a good approximation to the field strength
at r /a.0.6 in the standard LHD configuration for the low-
beta case, where the multiple-helicity effects are small. How-
ever, the large magnetic axis shift can be accompanied by
increase in the multiple-helicity field components, which in-

fluences the distribution of unfavorable curvature regions
along the field line. Such multiple-helicity effects are taken
into account in the electrostatic microinstability analyses by
Kuroda and Sugama23 and by Rewoldtet al.5 although it
seems that there still exist some difficulties in theoretical
explanation for the LHD experimental results which show a
better confinement for the inward magnetic axis shift with
unfavorable magnetic curvature.7,8 In addition to the
multiple-helicity effects, trapped particles and collisions are
not considered in the present electromagnetic analysis. These
remain as future problems.
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