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Influence of external resonant magnetic perturbation (RMP) on a helical plasma is numerically investigated,
using a set of reduced magnetohydrodynamic equations. Coexistence of the resistive interchange mode and
RMP is simulated. In nonlinear simulations, saturated magnetic islands by the RMP typically show two states:
oscillating small islands and locked large islands. In the former state, rotation of magnetic islands by neoclassical
transport-driven poloidal flows disturbs growth of islands. On the other hand, in the latter state, locking of
poloidal flows due to the RMP and growth of islands occur simultaneously. It is found that the curvature driven
current enhances magnetic reconnection, and width of the large islands overcomes that of vacuum islands.

© 2012 The Japan Society of Plasma Science and Nuclear Fusion Research

Keywords: magnetic island, external magnetic perturbation, plasma flow, resistive interchange mode, Pfirsch-

schliter current
DOI: 10.1585/pfr.7.2403107

1. Introduction

Externally imposed resonant magnetic perturbation
(RMP) by a set of external current coils or error fields
is of great interest in magnetic fusion plasmas. In heli-
cal devices, such as the Large Helical Device (LHD) and
the TJ-II, the RMP produces magnetic islands in the vac-
uum magnetic field (vacuum islands), and plasma response
modifies island state. As an extreme example of the plasma
response, bifurcation of equilibria between with and with-
out islands has been observed in the helical devices, where
spontaneous shrink of islands is called ‘self-healing’ [1].

Numerical simulations using reduced fluid equations
have been developed to investigate influence of the RMP
on helical plasmas. It is pointed out that size of the islands
is affected by the resistive interchange mode [2, 3] and/or
island-driven poloidal flows [4]. However, influence of
neoclassical transport has not been discussed so far. In our
previous study, using a theoretical model, it is shown that
the self-healing of islands is clearly reproduced, when the
neoclassical transport-driven poloidal flows is taken into
account [5]. In this paper, we report that such mechanism
is actually observed in reduced fluid simulations.

2. Model Equation

We introduce a conventional set of reduced magne-
tohydrodynamic (MHD) equations, that model torus plas-
mas with large aspect ratios by cylindrical plasmas includ-
ing additional three-dimensional effects. In our previous
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work, the similar model is used to simulate the interaction
between the resistive ballooning mode with the RMP in
tokamak plasmas [6]. Because of difficulties in multi-scale
simulations with parallel thermal transport, ion and elec-
tron temperatures are assumed to be constant and equal to
each other. In addition, we neglect electron and ion dia-
magnetic drifts and electron inertia for simplicity. The dia-
magnetic drifts which are the same order as the neoclassi-
cal flows might modify our results. The vorticity equation,
the Ohm’s law, the continuity equation, and the equation
of parallel ion motion are given respectively by

%Vi¢ = Vji + [2, p] + uV? o, (1)
%—? ==V +m (i = Jio) » @
% = B([2.¢] - Vo +n.Vip), (€)
% = =Vip + iy Vi, )

with jj = =V2A, d/dt = /0t + [, 1, V) = 8/9z - [A, ]
and V, = #0/0r) +0(1/r)(0/96), where the bracket is
defined by [f,g] = Z - Vf X Vg for arbitrary variables f
and g. The cylindrical coordinate variables (r, 6, z) corre-
spond to the minor radial length, the poloidal phase an-
gle, and the toroidal length in the torus coordinate, respec-
tively, and (7, 9, Z) are unit vectors. The time and lengths
are normalized as t/to — t, r/la — r, z/Ry — z, with
Ta = Ro/va, where v, is the Alfvén velocity, a is the minor
radius, and Ry is the major radius of the torus. The vari-
ables {¢, A, p,vy} denote the normalized electrostatic po-
tential, vector potential parallel to the ambient magnetic
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field, electron pressure and plasma velocity parallel to the
ambient magnetic field, respectively. [ is the ratio be-
tween the kinetic pressure and the magnetic pressure at
the plasma center and 8 = B/(1 + ). The transport co-
efficients {u,, ), m, 7.} denote the perpendicular viscos-
ity, the parallel viscosity, the parallel resistivity and the
perpendicular resistivity, respectively, where those coeffi-
cients are assumed to include both classical transport and
anomalous effects due to microscopic turbulence. The de-
tailed modeling of the anomalous effects is still an open
issue [7]. Using the averaging method [8], Q2 gives the
normalized average magnetic field line curvature of heli-
cal plasmas such that Q/0r = (eN/D)(4rt + r’t"), where
€ = a/Ry, 2m is the rotational transform and {/, N} are
the pole and pitch numbers of helical winding, respec-
tively. We neglect the toroidal curvature for simplic-
ity. The arbitrary variable f = f(r,0,z,t) is expanded
as fo(r) + Xun fm,,,(r, 1) exp {i (m6 — nz)}, where m is the
poloidal mode number and r is the toroidal mode number.
The boundary conditions for the perturbation amplitudes
are basically given such that fm,,,(O, 1 = f:n,,,(l, 1) = 0 for
(m,n) # (0,0) and fo0(0,7) = (3f00/07)|=1 = 0. To in-
troduce the RMP, an edge boundary condition is imposed
on the vector potential such that Amr,nr(l, t) = ¥, where
(m’,n’") are the poloidal and toroidal mode numbers of the
RMP, respectively. The detail of the modeling of the RMP
is described in Ref. [6]. Radial integral of the (0, 0) com-
ponent of Eq. (1) gives an evolution equation of poloidal
flows such that

61)9 1 2 1 :
il fr[(ﬁ, Vlfﬁ]op dr + - f"[A’JII]o,o dr

Jd|lo
+ iz [ == (rug)

ar[rar +v* (Vo —vg), (5)

where vy = 6(})0,0/6r is the poloidal flow velocity, v"°
is the normalized ion neoclassical damping rate, Vo =
—26(dpo/dr) is the normalized ion neoclassical flow veloc-
ity where 9 is the normalized ion skin depth and the sub-
script 0, 0 indicates a summation of (0, 0) components. In
addition, the neoclassical viscosity might be well approx-
imated by that without RMP when the toroidal magnetic
field ripple produced by magnetic islands are much smaller
than that by the main helical coils. In Eq. (5), the electron
neoclassical viscosity is neglected, where such simplifica-
tion is reasonable when ion and electron temperatures are
equal to each other. Considering Eq. (5), a source term is
implemented in the right-hand side of Eq. (1) for the (0, 0)
mode such that v*[(1/r)0,(rVy) — Vi(fﬁo,o]. In the simula-
tions, default parameters are chosen such that 8 = 0.01, 6 =
102, e=0.2,1=10"% 17 = 1075, Bn, = 1075, gy = 1075,
(m',n") = (2,1), ¢, = 5x 107, (I, N) = (2, 10). The initial
profiles are given by ¢« = 0.4 + 1.2¢%, po = (B/e)(1 - 72),
vp = 0 and jj = d(r%1)/dr, and ¢y is specifized in the
following sections. For the initial profile, resonant modes
satisfy 5/8 < m/n < 5/2, and the m/n = 2 rational surface
is located at r = 0.54. Fourier modes with —20 < m < 20
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Fig.1 Toroidal mode number dependence of linear growth rate
of the resistive interchange mode with m/n = 2. Three
cases with different values of the perpendicular viscosity
are plotted.

and —10 < n < 10 are solved in the simulations. Note that
our model is not applicable to modes with n > N = 10,
because of the averaging method.

3. Linear Stability

Firstly, we numerically solve the linearized Eqgs. (1)-
(4), where ¢ is set to satisfy d¢o/dr = V. Using the
default parameters, the linear interchange mode is unsta-
ble for many resonant modes in the core region where the
magnetic shear (cc de/dr) is small. On the other hand, the
modes are stable in the outer region, because of the large
magnetic shear. In addition, it is observed that some non-
resonant modes with 5/2 < m/n are also weakly unstable.

Here, we focus on resonant modes with m/n = 2,
since the RMP is imposed at the m/n = 2 surface. Figure 1
shows the linear growth rate of the resistive interchange
mode with m/n = 2. Using the default value of the per-
pendicular viscosity, u = 1073, the growth rate has a peak
at n = 3. In Fig.1, the cases with u = 107% and u = 107
are also plotted, and it is found that the increase of u tends
to stabilize the mode. Similarly, we confirmed that the in-
crease of y and Bn. stabilize the mode, on the other hand,
the mode is destabilized when 7 and § are increased. In
addition, the mode stability is not sensitive to the value of
0, i.e., the magnitude of the ion neoclassical flow velocity.

It is necessary to mention that eigenfunction of the
(m,n) = (2,1) does not have purely odd or even parity
around the rational surface. For example, we expect A~2,1 is
an odd function in the slab geometry, but there exists even
component in the cylindrical geometry [2]. As a result,
growth of the (2, 1) interchange mode produces magnetic
islands in the nonlinear phase, as shown in the next section.

4. Nonlinear Simulation

In the next step, the nonlinear Egs. (1)-(4) are numer-
ically solved with the default parameters, where we set
¢o = 0. Poloidal flows are driven by the ion neoclassical

2403107-2



Plasma and Fusion Research: Regular Articles

Volume 7, 2403107 (2012)

Fig. 2 Bird’s-eye views of the electrostatic potential at an early
stage (¢ = 300) for (a) v* = 1073 and (b) v* = 1072, and
those at a nonlinearly saturated stage (r+ = 2000) for (c)
v = 1073 and (d) v = 1072,

drag force as shown in Eq. (5), and ¢y ¢ is expected to have
parabolic profile in the absence of other force. To avoid
a numerical problem at the core region, the poloidal flow
source is set to zero in the range of 0 < r < 0.1. Nonlinear
simulations with different values of v"° are shown in the
following part.

Figure 2 shows time evolution of the electrostatic po-
tential, Re Y, $m.n exp (imf) for two cases with v* =
1073 and v™ = 1072. At an early stage (Figs. 2 (a) and (b)),
the excitation of the resistive interchange mode is observed
near the core region. In the nonlinear growing stage, un-
stable modes collapse the pressure profile, where the con-
vective heat transport by the (m,n) = (2,5) mode plays a
dominant role, and the pressure becomes flat near the core
region. For this reason, the interchange mode loses most
of the instability source, then saturates at low level. It is
clearly observed that structure of the electrostatic poten-
tial in the nonlinearly saturated stage depends on the value
of v*. Concentric structure is formed around the m/n = 2
surface for the small v case (Fig. 2 (c)), but such structure
does not appear for the large v"° case (Fig.2 (d)).

Figure 3 shows the nonlinearly saturated radial profile
of poloidal flows and magnetic island region for the cases
with v = 1073 and ™ = 1072. It is found that poloidal
flows are damped near the central axes of magnetic islands
close to the m/n = 2 surface, when large islands are ex-
cited. The damping of poloidal flows indicates that the ro-
tation of large islands is locked. The concentric structure of
the electrostatic potential shown in Fig. 1 (¢) corresponds
to the damping of poloidal flows in Fig.3. On the other
hand, poloidal flows are not strongly affected when islands
are small and rotating. To check the structure of magnetic
surface, we introduce a normalized helical flux function
defined by hy 1 = (r(de/dr))l, (r—r)?/2+Re[As 1 exp (i20)],
where Vh, ; is perpendicular to the magnetic field lines per-
turbed by the (2, 1) mode at z = 0. Note that the helical
flux function maps only the magnetic field perturbation by
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Fig. 3 Radial profile of poloidal flow source (dashed line) and
nonlinearly saturated poloidal flows (¢ = 5000) for v" =
1073 and v™ = 1072 (solid lines). The bars with arrows
indicate magnetic island region for each case.

Fig. 4 Contour plots of the nonlinearly saturated helical flux
function (¢ = 5000) for (a) v* = 102 and (b) v** = 1072.
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Fig.5 v dependence magnetic island width in the nonlinearly
saturated stage.

magnetic islands. Figure 4 shows contour plots of the heli-
cal flux function, where magnetic island structure is iden-
tified in the case with (a) v = 1073, whereas that is not
clearly distinguished in the case with (b) V" = 1072.
Figure 5 shows v* dependence of the nonlinearly
saturated magnetic island width, where we fix Az,](r =
1) = ¥,. Two initial conditions are examined: simulations
started from the vacuum field limit w = wy (A,,1(r) = Y 1°
for 0 < r < 1) and those started from the no island limit
w =0 (Ay(r) = 0for 0 < r < 1). In Fig.5, the ‘vac-
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uum island width’ is defined by wy = 4 \[yy,r2" /(de/dr)|,,,

the island width is w = 4,/AZJI,S/(dL/dr)I,S. It is found
that the saturated island width drastically changes around
Vv = 3 x 1073, Moreover, hysteresis nature is observed
around v* = 3 x 1073, It is remarkable that large mag-
netic island width in the low v" regime is larger than that
of vacuum islands.

Cases without the average magnetic field line curva-
ture are also simulated and the increase of the magnetic
island width is found to be due to the curvature effect.
Moreover, it is found that the shrink threshold of mag-
netic islands is affected by the curvature effect. The cur-
vature driven current estimated by the ideal MHD equi-
librium, Vj; + [2,p] = 0 and Vp = 0, is the (reso-
nant) perturbed Pfirsch-Schliiter current, which drives the
curvature driven tearing mode. In addition, the curvature
driven current might be affected by non ideal effects. Based
on the analytical theory [5], the shrink threshold of is-
lands in the absence of the curvature effect is estimated as
Vae = 1.8 x 107, where the balance between the neoclas-
sical force and the Lorentz force is essential in our param-
eters. This estimation is consistent with the simulations
without the curvature effect.

5. Summary

Linear stability analysis of the resistive interchange
mode and nonlinear simulations of the mode with reso-
nant magnetic perturbation (RMP) are investigated using
a reduced magnetohydrodynamic equations for a helical
plasma. In nonlinear simulations, it is confirmed that neo-
classical transport-driven poloidal flows work as damping
mechanism of magnetic islands by the RMP.

Acnowledgements
This work is partially supported by Grant-in-Aid for

JSPS Fellows. We also acknowledge a collaboration pro-
gram of Research Institute for Applied Mechanics.

[1] Y. Narushima et al., Nucl. Fusion 51, 083030 (2011).

[2] K. Saito et al., Phys. Plasmas 17, 062504 (2010).

[3] T. Unemura et al., Phys. Plasmas 11, 1545 (2004).

[4] L. Garcia et al., Nucl. Fusion 43, 553 (2003).

[5] S. Nishimura et al., Plasma Fusion Res. 5, 040 (2011).

[6] S. Nishimura and M. Yagi, Plasma Fusion Res. 6, 2403119
(2011).

[7]1 A. Ishizawa and N. Nakajima, Phys. Plasmas 17, 072308
(2010).

[8] H.R. Strauss, Plasma Physics 22, 733 (1980).

2403107-4



