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Solitary radial electric field structure in tokamak plasmas
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The solitary structure solution of the radial electric fi#ldin the tokamak plasmas is obtained. It

is shown to be stable under an external power supply, like a biased electrode at the edge. The radial
gradient is governed by the ion viscosity and the nonlinearlity of the perpendicular conductivity.
The radial structure oE, and reduction of turbulent transport, which belong to key issues of the
high confinement modé€H-Mode) [F. Wagneret al, Phys. Rev. Lett.49, 1408 (1982], are
self-consistently determined. A bifurcation from a radially-uniform one to a solitary one occurs at

a certain applied voltage, and a hysteresis is associatedl998 American Institute of Physics.
[S1070-664X98)01312-3

The finding of the high-confinement mod-modse in ion polarization current is kept ia, , because we are inter-
tokamak plasmdss one of the first experimental demonstra- ested in a time change that is much slower than the ion
tions of the structural transition in confined plasmas, whichcyclotron frequency.The radial current is composed of two
are in the far-nonequilibrium state. An electric field bifurca- components)Ne'=J,— ege, V- u;VE, . The first termJ, is
tion has been proposed for the mechanism of the H-modthe “local current,” which is determined by the radial elec-
transition? and the important role of the structure of the ra-tric field at the same radial location. The second is caused by
dial electric field E, on the plasma confinement is now the shear viscosity of iong;, and includes the diffusion
widely recognizedsee review, e.g., Refs. 3,)/Related to  operator Note that the evaluation of, , is performed by
the electric field, the impact on the micro turbulence hassolving the Newton equation for the toroidal plasniase,
been investigated most intensivély. The interface between €.9., Refs. 3, 12-14The equation oE; in a stationary state
the regions with different electric polarity was discus&é&d, is a nonlinear diffusion equation, as
and spatio-temporal evolution &; in the case of improved 1
confinements has attracted attention, e.g., Refs. 9, 10. The V., VE,— —— (J,— Jex) =0. )
experiment has been done by use of the biased electrode near €o€L

the plasma peripher¥, to study the turbulent suppression The |ocal current), and E, is related through the perpen-
and the nonlinear relation between the radial currentnd  gicular conductivity J, = o(E,)E, . In this article, we study
The data constitutes a basis to understand the plasma nonlifhe case that the neoclassical curterig dominant ind, .
earlity that induces the electric field bifurcation. Several at-This is because we are interested in the situation that the
tempts at analysis have been ddhept the physics mecha- plasma is away from the condition that may allow spontane-
nism that determines the gradient Bf is left unresolved ous bifurcations, for which the contribution of other mecha-
there. nisms toJ, is known to be importarit.(Associated with this

In this article, we study the spatial structure of the radialsimplification, the diamagnetic velocity and neoclassical po-
electric field in the presence of the radial current across thiidal velocity are neglectedWe are interested in the very
magnetic field. It is found that there exists a solution of thesteep gradient oE,. Compared to the structure &, the
solitary structure of, . The gradient and its impacts on the other plasma parameters are slowly varying in space, so that
turbulence suppression are self-consistently determined. Thie other plasma parameters are treated as constant for sim-
ion viscosity, coupled with the nonlinearity in the perpen-plicity.
dicular conductivity, governs the gradient of the radial elec-  First, we study the case that the ion viscogityis con-
tric field. It is shown that the bifurcation d&, takes place stant. The dependence of the conductivitynis symboli-
from a radially-homogeneous one to the solitary structure atally written aso(E,)=o(0)f(X), whereE, is normalized

a threshold voltage imposed on the electrode. as X=epyE, /T (p,: ion poloidal gyroradius[T: ion tem-
The charge conservation relation combined with theperatur¢. The neoclassical theory has giveri(X)
Poisson’s relation govern&, as (@/t)E,=—(1llege)) =exp(—X? in the collisionless limit andf(x)~—~1/(v,2c

X(INET=J4,0, whered'ET is the net radial current in the +X?) in a collisional casé? The essential thing is th&(X)
plasmaJ.,. is the current that is driven into the electrode by satisfies the relation§(0)=1 and Xf(X)—0 as|X|— .

the external circuiteg is the vacuum susceptibility, ared is  For this analytic study, we consider the radially-thin shell
a dielectric constant of the magnetized plasfithe effect of  structure, and introduce the normalization in space and cur-
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rent density asx=(r—rg)/l and I=(ep,/Ta(0))Jex, 2 ; . ,
wherel =/u;/o(0). (The radiusr is chosen at the middle X(x)/ X« X,/ Xx=0.6
between two electrodgsThen Eq.(1) is rewritten as 15 _

(92

WX—]‘(X)X-H:O. 2

The solitary solution of the electric field, which has cylindri-

cal symmetry, is searched for. The solution is much more
localized than the distance between the two magnetic sur-
faces, on which the electrodes are located. The boundary

condition is chosen agX/dx—0 (i.e., X—X;) at |x|—c.
We choosex=0 at the surface of the symmetry.

The stationary solution is obtained. Equati(®) has a
trivial solution, which is constant in space, ¥s- X;, where
X, is the solution of the equatiof(X;)X;=1. [The equation
f(X)X=1 has two solutionsX; andX,. X; is chosen by the
condition|X;|<|X,|.] Besides this trivial solution, there is a
nontrivial solution with the solitary radial electric field.
Equation (2) is integrated as 21(dX/dx)2=f§1Xf(X)dX
—1X+consteF(X). Function F(X) takes the minimum at
X=X; and the maximum aX=X,, respectively, and is a
decreasing function oX in the region ofX>X,. The inte-
gral constant is chosen &4 X;) =0, to satisfy the boundary
condition at|x|—o. The solutionX(x) is given as

X
x=f {2F(X)} Y X. (3)

This solution gives the solitary structure of the radial electric_

field.

The solution is studied near the critical currehtl .,
where the local currenXf(X) takes the maximum with re-
spect toX at X=X, . ExpandingF(X) in the vicinity of |
=1, asF(X)=C{(X, —X1)(X—Xy)?=(X=X)%3}+---,
we have the solution as

2
m) , @

where a=C Y41, —NY and C=(—1/2)(s°/X?)
X[Xf(X)]x-x, . The peak height scales as, (1) and
the width scales likel(, —1) Y4

To study the voltage—current relation quantitatively, let
us take a model fronf(X)=1—X?/3X2(|X|<v3X,) and
f(X)=0(|X|>v3X,). This model keeps an essential feature
of the conductivity, i.e.f gradually becomes smaller|X| is
small, andf<1 holds in the largéX| limit. This form of f
provides an exact analytic solution for the solitary radial
electric field structure. Figure 1 illustrates the solitary solu-
tion in the case o, /X, =0.6. By performing the integral
v=[%2,X(x)dx, the voltage difference between the elec-
trodes is calculatedd is a distance between the electrgde.
In the asymptotic limity;d>1, one has explicit relations:
V=46 w/2— arctang; *(V1— X2/3XZ +v2X; IV3X,)) 1X,
+X,d for the case of X, /V3<X;<X,, and V
= (4V213)CIA3 172 + 2\2C,(V3X, — X)X, ~1+4\6
X[ wl2—arctanCyy,/2+ X1 [V3X, y1) X, +X;d  for  X;
<X, V3. Here, coefficients are given g5= \/1—X21X;2,
Co=(Co+tVea)(1-X1/V3X,) ™Y, Cp=Ca(vV3—X1/X,)?%
8,  Cp=2(1+X /V3X,)(1—2X,/V3X,)(1—X3X,?) 4,

eaCX_l
X(x)=X, +3a’—3a?
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FIG. 1. Solitary structure of the radial electric field. Model fofifX) is
taken asf(X)=1-X%3X2(]X|<v3X,) and f(X)=0(|X|>v3X,). The
parameter isX; /X, =0.6 (I/1,=0.792). The dotted line shows the trivial
solution X=X, .

and  c3=2(1+ X1 /V3X,)(1—V3X1 /X, )(1—X3X %) 71,
Figure 2 illustrates th&—I curve in the case ai=20. The
voltage differenceV is rewritten asV=V e+ X1d, where
Vpeakis due to the deviation of the solitary solution from the
constant one. For the trivial solutioix=X;, the voltage
difference is given by = X,d.

The solitary structure is characterized by the peak value
of the radial electric fiel&(0) and the radial widtlA. In the
small | limit, asymptotic forms hold generally aX(0)
X217 AxX, /1, and Vyea=X3172. In the case of
l,, it is explicity calculated asVpeq=12C~ (1,
|)1/4+ cee

The bifurcation is described by the voltage—current rela-
tion. TheV-1 curve is a multi-valued function, as is shown
in Fig. 2. For a fixed value of current, two solutions\6fare
given. For a fixed value d¥, one, or three solutions dfare
available. In the experimental condition, the external circuits
are often composed of the power supply \f,; and the
internal resistance. Then the applied voltage between the
electrodeV and the current density is constrained a¥/
=V Til (the coefficient’; is proportional to the internal
resistancg as is shown by the solibr dashedllines in Fig.

2. The cross-points of the—I curve and the constrainig
=V,ex— il give the solutions. In the cases of high and low
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FIG. 2. The relation between the voltageand the current for the solitary
structure ofE, (thick solid line and that of the homogeneols (thick

dashed ling A constraint by the external circuit,=V,,,—f;l, as is shown
by the thin lines. Bifurcation to the solitary structure takes plac&’atand

the back transition occurs &t'.
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V eyt (thin solid lines, solutions are given b or C and are In summary, the solitary-ring structure of the radial elec-

stable. Bifurcation from the constant one to the solitaryt”C field in the tokamak plasmas is obtained. The stable soli-

structure takes place &', and the back transition occurs at tary structure is sustained by the external steady power sup-

C’. When three roots are givea thin dashed—dotted line ply. The radial structure and the suppression of the turbulent

the second solutioB is unstable. We see a hysteresis of thetransport are self-consistently obtained. Comparisons of the

electric field structure as a function of the voltage in thetheoretical results(e.g., bifurcation condition and radial

power supply. Depending on the characteristics of the exteShape OfE;) with experimental observations allow us to

nal circuit, this system also shows the limit cycle oscillation,€valuate fundamental parameters, such as of the nonlinear

The details will be reported in a separate article. J—E relation, ion viscosity, or decorrelation rate of fluctua-
Finally, the influence of the radial electric field inhomo- tons.. S

geneity on the ion viscosity is investigated. The shear viscos- I this article, several simplifications are made due to

ity of ions has two origins: one is the collisional transport, @nalytic transparency. The pressure-driven radial current in

we, and the other is the turbulent transpqef, . The turbu-  the limit of E,=0 and the neutral particle effects are ne-

lent transport could depend on the electric field gradient, anglected. In addition, the turbulent transport can aftgctand

the ratio |wg/yqed iS the key parameter, whereg, I (anomalousdepends orE, as well asE; (see Ref. 3 and

=(dE, /dr)B~! and y4e. is the nonlinear decorrelation rate references thereinThe influence of such an effect is consid-

of the fluctuations that cause the turbulent transpidrana-  ered in relation with improved confinemefitThe E; term

lytic formulas have been derived agy=pu\(0)(1  could appear in Eq2), and a radially-moying sqlitary struc-

+ w2 y2.)"t (when |wgi/vged is smal) and w, ture ofE, is allpwe.d.[lf_ we have a term likexX' in Eq. (2),

% un(0)| wg1 ! Yaed ~* (When|wgr /yqed is large,v<1). We then the solution is given a&(x— a7) where r=t/ty and

chose, as an interpolation formulg,y= un(0)(1+(2/v)  tn=€o€, /o(0). It has avelocity o] The solution of Eq(2)
X(we1!v4ed?) "2 The explicit form of the coefficient also includes the one in which multiple solitary structures are

Ydec IS given in, e.g., Ref. 3. Introducing normalized coeffi- confined between the electrodes. These corrections and
cients as Hy=(eT/yqeBlpp)? o= pi(X—0)= uy(X variations will be reported in a separate article.

—0)+pe, and p=un(X—0)/uijg, we rewrite as w;

= wioll— 7+ n(1+(2/v)H (dX/dx)?) ~*"2}. Lengthl is de-  ACKNOWLEDGMENTS

fined asl = Ju;o/c(0). Equation(2) is integrated as
v 1 1-v 2H, (dX\?\172
4H1{1—V/2+1—V/2< (_ )

dx
( 2H1<dx)2>"’/2
2|1+ — | —
v | dx
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Equation(5) provides a self-consistent solution fé&,
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