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Abstract. The reflection of an obliquely incident electromagnetic pulse from a
moving plasma half-space is studied. Using the Lorentz transformations, covariance
of Maxwell’s equations and the principle of phase invariance to transform between
the rest frame and the moving frame, calculations can be conveniently performed
in the moving frame. An analytical formula for the linear reflected waveform as a
function of the incident angle shows temporal compression and pulse amplification
at relativistic velocities of relevance for the generation of ultra-short laser optical
pulses.

1. Introduction
An interaction between time-dependent electromagnetic (EM) pulses with a dis-
persive medium and plasma, the so-called transient EM wave phenomenon, has
been a classical problem in applied electrodynamics for over three decades. For
example, the transient reflection and transmission of an obliquely incident EM pulse
at the steady (non-moving) plasma–vacuum interface has been solved analytically
in a closed form by Chabris and Bolle [1] and Stanić and Škorić [2, 3]. A growing
interest in nonlinear relativistic plasmas [4] in the last decade has been followed
by an upsurge of activity in laser optical and ultra-fast plasma phenomena in a
relativistic regime. In particular, a generation of ultra-short (attosecond range) light
and relativistic particle bunches is of importance in various applications (see [5,6]
and references therein). This gave a special motivation to revisit the problem of the
transient EM pulse interaction with a relativistic plasma [7]. Here, we consider a
general problem of a linear reflection of a time-dependent EM pulse from a plasma
half-space moving at the relativistic velocity. A similar study that inconsistently
applied the relativistic electrodynamics had obtained the incorrect result [8].

2. Formulation
A time-dependent EM plane wave pulse is incident at the moving cold plasma–
vacuum interface. The incident angle is θi and the plane of incidence is Oxz, as
shown in Fig. 1. The incident electric field (S-polarization) of the EM pulse in the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by National Institute for Fusion Science (NIFS-Repository)

https://core.ac.uk/display/72808084?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


112 M. M. Škorić et al.

Figure 1. Geometry of the problem.

time domain, by inverse Fourier transformation, is

Ey i = (1/2π)
∫ +∞

−∞
E0 exp[j(ωit − kir)] dωi

≡ E0δ(t − (x/c) sin θi + (z/c) cos θi), (2.1)

where δ(t) is the Dirac function and ωi and ki are the angular frequency and
the wavenumber vector in the observer’s rest frame K, respectively. The uniform
plasma half-space is moving with the velocity v, where we have two special cases:
(i) v = exv and (ii) v = ez v. The rest frame of the moving plasma is K ′.

3. Analytical theory
Making use of the Lorentz transformations, the covariance of Maxwell’s equations
and the principle of phase invariance, to transform between the rest (laboratory)
frame and the moving frame (see, e.g., [9, Ch. 7]); the incident electric field in the
moving frame K ′, can be represented as

E ′
y i = (1/2π)

∫ +∞

−∞
γ(1 − kiv/ωi)E0 exp[j(ωit − kir)] dωi

= (1/2π)
∫ +∞

−∞
γ(1 + k′

iv/ω′
i)E

′
0 exp[j(ω′

it
′ − k′

ir
′)] dω′

i, (3.1)

with physical quantities with the ‘prime’ superscript corresponding to the moving
frame K ′, and where

ω′
i = γ(1 − kiv/ωi)ωi, γ = (1 − v2/c2)−1/2 = (1 − β2)−1/2 , (3.2)

k′
i = ki − γωiv/c2 + (γ − 1)(kiv)v/v2 , and (3.3)

E ′
0 = γ(1 − kiv/ωi)E0 , E ′

01 = γ(1 + k′
iv/ω′

i)E
′
0 . (3.4)

An analogous procedure is followed to reduce the oblique incidence case to a normal
incidence in laser plasmas with clear savings in computational expense [5,10].
With the exp(jω′

it
′) time-dependence suppressed, the incident electric field in the

frequency domain in the moving frame is given by

E′
y i = E ′

01 exp(−jk′
ir

′), (3.5)



Reflection of an electromagnetic pulse 113

and the frequency domain expression for the reflected field (see [2,3,9]) is simply

E′
yR =

1 − N ′

1 + N ′ E
′
01 exp(−jk′

rr
′), (3.6)

where the well-known index of refraction for cold plasma at rest in K ′ is

N ′ = |1 − (ω′
p/ω′ cos θ′

i)
2 |1/2 , ω′

i = ω′
r = ω′

t ≡ ω′.

The vacuum dispersion relation ω
(′)
i,r = k

(′)
i,r c is valid in the K and K ′ frames.

The time domain expression for the reflected field (in the K ′ frame) is

E ′
yR = (1/2π)

∫ +∞

−∞
E′

yR exp(jω′t′) dω′. (3.7)

Using again the Lorentz transformations, the covariance of Maxwell’s equations
and the principle of phase invariance to transform back from the moving frame K ′

to the laboratory frame K, the time domain reflected field becomes

EyR = (1/2π)
∫ +∞

−∞
γ(1 + k′

rv/ω′
i)E′

yR exp(jω′t′) dω′

= γ(1 + k′
rv/ω′

i)E
′
yR. (3.8)

The expression for E ′
yR found by the standard method of contour integration (see,

e.g., [3, 11]) appears in the following form:

E ′
yR = −(2E ′

0/τ ′)J2(a′τ ′)U(τ ′), (3.9)

where

τ ′ = t′ − k′
rr

′/ω′, a′ = ω′
p/ cos θ′

i, (3.10)

and U(τ ′) is the Heaviside unit step function, while J2(x) is the Bessel’s function
of the first kind of second order. We note that (3.9) is the Green’s function solution,
while a linear solution to another incident pulse profile is found by a straightforward
convolution integration.
Further, we shall discuss two special cases of the moving plasma half-space: (i) v =

exv (parallel to the interface) and (ii) v = ey v (normal to the interface). By making
use of the Lorentz transformations, the following results are obtained.

(i) For v = exv we have

EyR = −(2E0/τ)J2(aτ)U(τ), (3.11)

where

τ = t − krr/ωr = t − (x/c) sin θi − (z/c) cos θi, (3.12)

and

a = ωp/ cos θi,

where ωp is the standard (rest frame) electron plasma frequency.
The reflected field is identical to the case of a non-moving plasma half-

space [1–3]; as expected, the normally incident wave does not ‘observe’ the
plasma motion across the surface, in the x-direction.

(ii) In the case v = ez v, the reflected field is

EyR = −(2E0α0/ξ)J2(α1ξ)U(ξ), (3.13)
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Figure 2. Reflected EM field in time as a function of the plasma velocity γ.

where

α0 = γ2(1 + 2β cos θi + β2), α1 = |ωp/γ(β + cos θi)|, (3.14)

and

ξ = α0t − (x/c) sin θi − (z/c)γ2 |(1 + β2) cos θi + 2β|. (3.15)

4. Results and discussion
It is now apparent that the plasma motion strongly modifies both the amplitude
and the oscillatory phase of the reflected field (3.13), with, at the same time, a
departure from the classical Snell’s law (θi �= θr), where the reflected wave angle
equals the incident angle. More precisely, from (3.15) one readily calculates

tan θr = sin θi/γ2 |(1 + β2) cos θi + 2β|,

which, for large β > 0, predicts θr < θi, i.e. the reflection angle closer to normal
incidence. We note that earlier authors [8], by using the known steady-state ω-
domain reflection coefficient for a moving plasma, to find the time-dependent solu-
tion, erroneously performed inverse Fourier transform over the incident ωi, instead
of integrating over the reflected frequency ωr (Doppler shifted) which would yield
a correct result identical to (3.13).
The reflected waveforms for EyR, as functions of time and the plasma velocity

v(v = ez v) for normal incidence (θi = 0), are plotted in Fig. 2. For β = v/c < −0.5,
the reflected field is not given, since the amplitude becomes small; obviously, for
β → −1, EyR → 0. The time delays in terms of the inverse plasma frequency of
the maximum positive and negative reflected amplitude, as a function of plasma
velocity β, deduced from Fig. 2 are shown in Fig. 3. Large compression and amp-
lification of the reflected pulse (by a factor of ∼2γ) at highly relativistic plasma
motion reveals a remarkable feature and some potential of this linear mechan-
ism for ultra-short (attosecond) pulse generation by low-intensity high-repetition-
rate femtosecond laser pulse scattering by counter-propagating relativistic electron
beams [5, 12]. For example, a short green laser light pulse (λ ∼ 0.5 μm) reflected
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Figure 3. Time period of the first and second peaks in the reflected wave versus the
plasma velocity.

from 5 MeV electrons (γ ∼ 10) at critical density gives a main reflected pulse width
of around 60 attoseconds. Another important point is that the reflected pulse width
is basically determined by the relativistically upshifted electron plasma frequency
which can be high in laser–solid density plasmas.
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