REVIEW OF SCIENTIFIC INSTRUMENTS 78, 063502 (2007)

Reconstruction method of local density fluctuation for heavy ion beam

probe measurements

H. Nakano, A. Fujisawa, A. Shimizu, S. Ohshima, H. Iguchi, Y. Yoshimura, and T. Minami
National Institute for Fusion Science, Oroshi-cho, Toki 509-5292, Japan

(Received 14 March 2007; accepted 7 May 2007; published online 12 June 2007)

Heavy ion beam probe (HIBP) is an excellent diagnostic to measure the density and potential
fluctuations simultaneously in magnetically confined plasmas. However, it has been well known that
the density fluctuation measured with the HIBP is not local but contains the fluctuations along the
beam orbits. In this article, a method is proposed to evaluate local density fluctuation in the HIBP
measurements by removing the well-known path integral effects. The reconstructed density
fluctuation amplitude and power spectrum are shown, for example, by applying the proposed
method on the density fluctuation measurement data obtained in a toroidal helical plasma, Compact
Helical System. © 2007 American Institute of Physics. [DOI: 10.1063/1.2745233]

I. INTRODUCTION

Precise measurement of turbulence is a key issue for
understanding anomalous transport in magnetic confinement
plasma since the anomalous transport is caused by fluctua-
tions of density, temperature, and potential. Many diagnos-
tics have been developed to investigate properties of plasma
turbulence to understand, and possibly control the transports
in a magnetic confinement plasma, such as Langmuir probes,
reflectometory, beam emission spectroscopy, electron cyclo-
tron emission spectroscopy, etc.

Heavy ion beam probe2 (HIBP) is one of the diagnostics
used for the turbulence measurements. The advantages of the
HIBP are that it can measure simultaneously the density and
potential fluctuations even in the interior of high temperature
plasmas with high temporal (~us) and spatial (~mm) reso-
lutions. Owing to the advantages, the HIBPs have been in-
stalled on many of magnetic confinement devices, e.g., Im-
purity Study Experiment Tokamak-B (ISX-B),> Torus
Experiment for Technology (-U) (TEXT(-U)),* Japanese In-
stitute of Plasma Physics Torus-1I Upgrade (JIPPT-IIU),” and
JAERI Fusion Torus-2 Modified (JFT—2M)6 in Tokamak; Ad-
vanced Toroidal Facility (ATF),” Compact Helical System
(CHS),? and Large Helical Device (LHD)’ in helical device;
and GAMMA-10" in mirror device.

It is well known, however, that the density fluctuation
measured with the HIBP is not completely local, but is con-
taminated with the density fluctuation along the beam orbit.
Several papers have been published on this path integral ef-
fect. These works evaluate how the path integral fluctuation
affects the measurement of a wave number spectlrum,1 12 and
how the measured fluctuation amplitude is different from the
real local density fluctuation amplitude.13 In contrast to these
works, a preliminary method was proposed to infer the real
local density fluctuation amplitude from the measured one."
The present article proposes an extended method to recon-
struct the local density fluctuation in the HIBP measure-
ments, and provides the obtained results of the local density
fluctuation using the proposed method applied on density
fluctuation data in CHS.
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Il. RECONSTRUCTION METHOD OF LOCAL DENSITY
FLUCTUATION

A. Brief description of density fluctuation
measurements of HIBP

The HIBP system consists of an accelerator, an energy
analyzer, and beam sweepers. In principle, a singly charged
heavy ion beam, termed primary beam, is injected into a
plasma. In the plasma, the beam ions are ionized to doubly
(or higher) charged ions through the collisions with plasma
particles, usually electrons. The doubly charged ions, called a
secondary beam, come out from the plasma, and are detected
with the energy analyzer.

The detected beam current [, is expressed in the follow-
ing form:

1r2) = 2ol (re) 120 eXp<— f ner Xl ;)
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where r: is an ionization position, /; is the initial primary
beam current, [, is the sample volume length, v, is the elec-
tron thermal velocity, v, is the beam velocity, n, is the elec-
tron density, o, is the electron impact ionization cross sec-
tion from singly charged ion to doubly charged ion at the
sample volume, o; (i=1,2) is the cross section from
i-charged ion to higher charged ion, and d/; and dl, are the
infinitesimal length elements of primary and secondary or-
bits, respectively. A bracket { ),, means the average with the
Maxwellian velocity distribution. Hence, the detected beam
current is dependent on the electron density at the ionization
point and the attenuation along the beam orbit. According to
the expression, the detected beam current is proportional to
the local density and attenuation along the primary and sec-
ondary beam orbits.

By taking variations of Eq. (1), the detected beam cur-
rent fluctuation is described in a normalized form,
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- - formulas. The integral variable is converted from the path
p«) = Ep) — | Ep)Si1(p)wi(p1)dp, length to the normalized radius by introducing w;(p;)
h = 0dl,(p;)/ dp;. In deriving Eq. (2), two assumptions are made:
~ (i) the temperature fluctuation leading to the fluctuation of
- &(p2)S2(p2)wa(pa)dps, (2)

)
where p=r/a is the normalized minor radius, S;(p)
=(n,(p){ov.(p))ya)/vg is the normalized ionization rate,
7(p)=L(p)—{I,(p))p)/{Ip))r is the normalized fluctua-
tions of the detected beam current, and g(p) =(n,(p)
—(n(p))p)/{n,(p))g is the normalized fluctuations of the lo-
cal density. The ionization rate S;(p) is a function of the
density, temperature, and beam velocity. The ionization rates
are derived from atomic and molecular database or empirical

(T (p)p=(E(p))p—2

Iy

<E(P*)S(P1)>E51(Pl)Wl(Pl)dpl -2

ionization rate is neglected, and (ii) the density fluctuation is
homogeneous on the same flux surface, although poloidal
asymmetry in density fluctuation has been found in some
experiments.

B. Derivation of integral equation of local density
fluctuation

By taking ensemble averages of Eq. (3), the fluctuation
power of the detected beam current is expressed as

(&(p)E&(p2))£S2(p2)w(po)dp,

)

+f (EP)EPDES1(p)S1(pDW1(p)w1 (p))dpidp]

0

+f @(Pz)apé)>E52(Pz)Sz(Pé)Wz(Pz)Wz(Pé)dpzdpé

bl

+2 f (&P &(p))S1(p1)S2(p2) w1 (p)wa(pa)dpydp,, (3)
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where a bracket ( )5 denotes the ensemble average. The sec-
ond and third terms represent the first order path integral
effect, while the other integral terms from the fourth to sixth
do the second order path integral effect. The physical mean-
ings of these two kinds of path integral effects are explained
in Appendix A. The correlation terms <§(p,-)5(pj)>5 can be
expressed as

@(Pi)g(l’j))b‘ = <|E(Pi)|>E<|E(Pj)|>EF(Pian) (i=12,j
=1,2) (4)
using the correlation function I'(p;,p;). Then the measured

density fluctuation with the path integral terms, as is shown
in Eq. (3), is represented by the integral equation for the

local density fluctuations. The local density fluctuation can
be obtained as a solution of the integral equation if the cor-
relation function is known. In other words, the integral equa-
tion can be solved if the two-point correlation property of
local density fluctuations I'(p;,p;), and the density and tem-
perature profiles are known.

C. Extention of integral equation to Fourier
components

The integral equation, Eq. (3), is easily extended to the
relationship between the Fourier components of local fluc-
tuation and the one with path integral effect, as

Downloaded 05 Aug 2007 to 133.75.139.172. Redistribution subject to AIP license or copyright, see http://rsi.aip.org/rsi/copyright.jsp



063502-3 Fluctuation reconstruction for HIBP

<| ﬁF(P*)P)E = <|"::F(P*)|2>E -2
h

<§r(P*)gF(P1)>551(Pl)W1(P1)dP1 -2

Rev. Sci. Instrum. 78, 063502 (2007)

(Ep(p)Ex(p2))Sa(p2)wa(pa)dps

b

f (Ep)EP))ES1(p)S (pD)W1(p1)wy(p})dpydp)

i

+J ,@;(Pz)EF(PE)>552(Pz)Sz(Pﬁ)Wz(Pz)Wz(Pé)dpzdpé

Ll

+f <g;(P1)gF(P2)>E51(P1)52(P2)W1(Pl)Wl(Pz)dpldpzs (5)
Ly

where subscript F' means Fourier component of fluctuation,
and the correlation terms can be expressed, in a similar way
to Eq. (4), as

@‘;(Pz) EF(pj)>E = <|EF(pi)|>E<|EF(pj)|>E’)/F(pi’ Pj)

XCOS[()DF(pi’pj)]7 (6)
where yr(p;,p;) and @g(p;,p;) are the coherence and phase

difference between &x(p;) and Ep(pj) at the frequency w, re-
spectively. Therefore, the power spectrum of the local den-

sity fluctuation can be obtained by solving Eq. (5) for &x(p).

lll. EXAMPLES OF THE RECONSTRUCTION USING
EXPERIMENTAL DATA

A. Application of proposed method on CHS data

CHS,'® which generates a toroidal plasma with the major
and minor radii being 1.0 and 0.2 m, has two HIBPs in-
stalled. Here, we have applied the proposed reconstruction
method on the data of the HIBP density fluctuation measure-
ments in electron cyclotron resonance (ECR)-heated dis-
charges of two different density regimes, i7,=4.7 X 10'® m™3
(low density) and 72,=9.5X 10" m™ (high density). The
measurements were performed on the discharges. In the mea-
surement, the cesium beam of ~70 keV is used for the ex-
periments with magnetic field strength of 0.9 T.

In order to solve the integral equation, Eq. (3), it is nec-
essary to evaluate the ionization rate and correlation function
['(p;.p;). The 10nlzat10n rate is estimated using Lotz’s em-
pirical formula'” since the density and temperature profiles
are known from a multipoint Thomson scattering system, as
is shown in Fig. 1. In contrast, although the correlation func-
tion I'(p;, p;) is rather difficult to estimate since it requires a
wide range of the fluctuation measurement over a whole
plasma region, we assume here that the correlation function
F(pl,pj) should be described as I'(p;,p;)=exp[-(p
-pj)*/ 21g,0ba,(p,,pj 1, where lyopa(p) signifies the normalized
correlation length. Under this assumption, the problem to
obtain the correlation function can be ascribed to determin-
ing the correlation length.

The HIBP on CHS has three channels to observe the
fluctuations at the adjacent points in the plasma simulta-
neously. The neighboring observation points are located
~1 cm apart from each other according to a trajectory cal-

culation. From the correlation between these neighboring
two channels, the normalized local correlation length can be

estimated in the following way, I'(p,p+dp)=(&(p)&(p

+0p) i |E(p)) e|E(p+ 8p) D p=expl=8p*/ 2L, (p)]. By tak-
ing the symmetric characteristic into consideration, the glo-
bal correlation length can be possibly assumed as
l/lglobul(pi7pj)=[1 /llocal(pi) +1 /llocal(pj)]/2~ In this expres-
sion, the global correlation length [lyona(p;,p;) becomes
closer to [yeq(p;) When p;— p;.

Figure 2 shows the evaluation of the local correlation
length using this approximation as a function of normalized
radius. Here, the measured density fluctuation is used instead
of the local density fluctuation for the estimation of the local
correlation length practically. In other words, the local cor-
relation length is estimated in the zeroth order approxima-
tion, from T(p,p+dp)=exp[-8p*/ 2L (p)]=(7(p) 7 (p
+6p)) e/ {| 7(p) ) | 77(p+ Op)|) - The result shows that the cor-
relation length increases toward the edge, which is 5 mm in
the center and more than 15 mm near a last closed flux sur-
face. In addition, the local correlation length in high density
plasma tends to be slightly longer than that in low density.

The results of the reconstructed local density fluctuation
are shown in Fig. 3 for the two density regimes. The open
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FIG. 2. The local correlation lengths in the zeroth order approximation as a
function of normalized minor radius. The open and filled circles represent
the correlation lengths in the low (iz,=4.7 X 10'® m~3) and high density plas-
mas (77,=9.5% 10" m~3) in Fig. 1, respectively.
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circles represent the amplitude of the measured density fluc-
tuation containing the path integral effect {|7|)z. The solid
line shows the reconstructed local density fluctuation, while
the dashed line is a fitting curve for the experimental data. In
the lower density case, the profile of local density fluctuation
amplitude (|&); is everywhere within the range of statistical
error bars [Fig. 3(a)]. In contrast, the amplitude of the local
density fluctuation is significantly smaller than that of the
measured density fluctuation [Fig. 3(b)] in p<<0.6, although
no significant difference of amplitude between the local den-
sity fluctuation and the measured density fluctuation in p
>0.6 can be seen for the case of high density plasma. Here,
the amplitude of the measured density fluctuation reaches up
to 1.5 times larger than that of the local density fluctuation
owing to the path integral effect.

B. Reconstruction of power spectrum

The reconstruction of local power spectrum of density
fluctuation can be performed as a straightforward extension
of that of the local fluctuation amplitude in the previous sub-
section. The reconstruction of power spectrum can be per-
formed using Eq. (5) by estimating the correlation length for
each frequency from coherence yx(p;,p;), with assuming
the phase cos[@(p;,p;)]=1. As is similar to the previous
procedure,

YF(pi’pj) =exp[- (p; - pj)z/zlélobal,F]’ (7)
where 1/lglobal,l":[l /llocal,F(pi) +1 /llocal,F(pj)]/z’ where
Lytobar,r and i are Fourier components of global and local
correlation lengths, respectively.

For the previous reconstruction of the local density fluc-
tuation amplitude, the zeroth order approximation of the cor-
relation length is sufficient to obtain a significant solution of
Eq. (3). However, for the reconstruction of the power spec-
trum, particularly for a lower frequency range, first order

correction of the correlation length is necessary (see Appen-
dix B). The =zeroth order estimation, yq(p;.p;)
~ () me(p) ! <|7~]F(Pi)|>E<|7IF(Pj)|>E’ gives a falsely long
correlation length, due to the path integral effect on the cor-
relation length, so that a negative power density is often
obtained. Figure 4 shows the difference between the zeroth
order correlation length and one with the first order correc-
tion in the low density plasma. The difference of correlation
lengths between before and after the correction tends to be
larger in low frequency. The corrected correlation length be-
comes shorter in smaller radii (p<<0.6), while the length
slightly longer in large radii (p<<0.6), as is similar to the
amplitude reconstruction of the local density fluctuation.
Figure 5 shows the measured and the reconstructed
power spectra of the local density fluctuation at p=0.23 and
p=0.73 in the low and high density plasmas. Here we define
a parameter to indicate the degree of distortion, as Djy

= (|7(p) = |&(p))£)/{|&(p)| ). In the low density case, the
difference between the measured and reconstructed power
spectra is not significant except the region of less than
~15 kHz at p=0.23. It should be notified that the power
spectrum of the measured density fluctuation is smaller than
that of the local density fluctuation (i.e., Diy ~—10%) in
less than 15 kHz at p=0.73 due to the first order path integral
effect or the screening effect (see Appendix A). On the other
hand, in the high density case, the power spectrum is
strongly distorted due to the path integral effect; D;y r can
reach up to 55% at p=0.23. All examples show that the path
integral effect becomes small with high frequency owing to
the shorter correlation length.

IV. DISCUSSION

Here, we propose a method to reconstruct the local den-
sity fluctuation from the one with the path integral effects. In
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this method, the local density fluctuation can be recon-
structed if the spatial characteristics of fluctuations and the
ionization cross sections are given. In the presented ex-
amples, spatial characteristics of fluctuations can be de-
scribed by a single parameter, that is, the correlation length.

In this article, quite simple assumptions are adopted for
the Gaussian form of the correlation length, which always
gives a positive value. Similarly in the treatment of fre-
quency domain, the simplest phase relation cos[¢g(p;,p;)]
=1 is also assumed. These assumptions should maximize the
path integral effect. Actually, in the case of the fluctuations
driven by magnetohydrodynamics (MHD) modes, the phase
information should give a large impact on the evaluation of
local density fluctuation amplitude. In this case, the phase
information or mode structure can be evaluated from mag-
netic field measurements. In contrast, in the case of the fluc-
tuation or turbulence driven by the microinstabilities, the
correlation length should be short, compared to the minor
radius, not to give the serious impact on the reconstruction
results. In the presented examples, no sign of MHD instabili-
ties are found in such a low density ECR-heated plasma.

On the other hand, the reconstructed amplitude of local
density fluctuation could be sensitive to the correlation
length estimation. In order to investigate the sensitivity, we
have calculated the local amplitude of density fluctuation
using the longest and shortest correlation lengths within the
error bars in Fig. 2 in the high density plasma in Fig. 1. The
results in Fig. 6 demonstrate that approximately 20% differ-
ence is caused by choosing the longest and shortest correla-
tion lengths within the error bars. The precise estimation of
the correlation length is one of the important aspects of the
reconstruction of the local density fluctuation amplitude.

In the present examples, the ionization cross sections are
assumed to obey Lotz’s empirical formula. However, it has

been known that the formula gives a rather low ionization
cross section in larger atoms. Moreover, at present it is dif-
ficult to find the precise experimental data of the ionization
cross section for the heavier ions, such as cesium, rubidium,
thallium, and so on, which are usually used for HIBP mea-
surements. Therefore, the precise estimation of the ionization
cross section is another important factor for precise evalua-
tion of the local density fluctuation amplitude. The present
method shown in this article is in principle useful and correct
in inferring the local density fluctuation; however, there are
several uncertainties in essential quantities in order to give
accurate evaluation. Finally, the reconstruction method can
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FIG. 6. Uncertainty of the reconstructed density fluctuation amplitude due
to the estimation of correlation length. The dotted, dashed, and dashed-
dotted lines show the reconstructed density fluctuation amplitudes in the
high density plasma using the average, the shortest, and the longest corre-
lation lengths within the error bars of the filled circles in Fig. 2.
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FIG. 7. The evaluated path integral
coefficients as a function of the den-
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(a) cesium and (b) rubidium beams in
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be applied to other beam probe diagnostics, e.g., lithium
beam probe and beam emission spectroscopy.

APPENDIX A: DETAILS OF PATH INTEGRAL EFFECT

In order to understand the physical meaning of the path
integral terms in Eq. (3), the correlation of the fluctuations is
assumed to obey the form of 6 function as

(Epa) &) = N2 Epa) V| Ep1) Dl () S
_ph)(s(li’lj)5 (A])
where [, is the normalized correlation length. &(/;,1)) is the
Kronecker delta, which is introduced for the assumption that
no correlation exists between the fluctuations on primary and

secondary orbits. Using the assumed correlation function,
Eq. (3) is reduced to

<7~72(P><)>E = [1 - SC(P*)]@Z(P*»E + Ac(ll ’lz) ) (AZ)
where
S(ps) = 22711 (ps)[S1(ps) + Sx(p)], (A3)
Al b) = \2m | (@(p))elp)S pwi(p1)dpy
[
27| (E(p))l(p2)S2p)wa(p2)dps.
b

(A4)

The term A (/,,1,) is derived from the fourth, fifth, and sixth
terms in the right-hand side of Eq. (3), and expresses the
integrated fluctuations along the beam orbits. Therefore, this
term is called accumulation effect. On the other hand, the
term S,(p-) is called screening effect. If the density fluctua-
tion nearby the observation point is positively correlated
with the fluctuation at the observation point, the attenuation
of the beam due to the neighboring fluctuation gives an out-
of-phase contribution to the measured fluctuation, and works
as the screening of the local density fluctuation.

Further reduction of Eq. (A1) is possible under the as-
sumption that plasma and density fluctuations are homoge-
neous. The reduced form of Eq. (Al) is expressed in the
following form:

?: (1 _§c+g(‘)§s (AS)

S.=2\271,(8, +85,), (A6)

A, = 27 (S’L, + S3L,), (A7)
where the overline represents constant in the plasma, and L,
and L, represent the primary and secondary beam orbit
lengths normalized by minor radii, respectively.

Here, we can define a path integral coefficient / to
roughly indicate the degree of the path integral effects,

[=S.+A,. (A8)

Figure 7 shows the dependencies of the path integral
coefficients on electron temperature and density for the cases
using cesium and rubidium beams in CHS geometry. In the
calculation, it is assumed that [.=0.05, L;=L,=1, and that
the beam energies of cesium and rubidium are 70 and
111 keV, respectively. Both the path integral coefficient of

cesium ¢, and that of (g, are dependent strongly on electron
temperature in the low temperature range of less than 50 eV.
However, in the higher temperature regime, the coefficients,
independently of temperature, are almost determined with
the density. In comparison, the critical density where the path
integral effect becomes significant is higher in rubidium than

that in cesium; the density value at which {z,=1 is n,=1.7

X 10" m™, while the density value at which /~=1 is n,
=1.1x10" m=.

APPENDIX B: PATH INTEGRAL EFFECT
ON CORRELATION LENGTH

The correlation length should also suffer from the path
integral effect. If there is sufficiently large fluctuation at the
edge, the inside fluctuations should contain the edge fluctua-
tion. Therefore, the correlation length appears to be longer
than the pure correlation length due to the contamination of
the edge fluctuations. Particularly, the effect should be large-
for the low frequency fluctuations whose wavelength is ex-
pected to be longer. The distortion of the correlation length
can be evaluated as follows.

The Fourier components of the measured density fluc-
tuation at two locations p, and p,, are represented by

ﬁF(pu) = EF(pa) - Jl EF(pal)Sl(pal)Wl(pal)dpal

- f EF(paZ)SZ(paZ)W2(paZ)dpa2’ (Bl)
]aZ
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7r(py) = Expy) — Er(pp1)S1 (P W1 (pp1)dpy,

Ip1

| &) S2(ps)walpy2)dpyy- (B2)
Iy
Therefore, the cross correlation of the measured density fluc-

tuation is expressed as

Bel&r(pa).Er(py)] = -

Ipy

<T§7r(pa)gF(pbl)>E51(pbl)wbl(pbl)dpbl -

Rev. Sci. Instrum. 78, 063502 (2007)

<77;(Pa) Te(pp)) e = @;(Pa) EF(pb»E + ﬁF[EF(pa)’ gF(ph)] >
(B3)

where B &x(p,). &x(py)] is the path integral term described
as

@;(Pa) gF(sz))ESz(sz)sz(sz)dez

Iy

- f <g;“(pb) EF(pal»ESl (pal)wa 1 (pal)dpal - f <g;(pb) EF(pa2)>ES2(pa2) Wa2(pa2)dpa2
al la2

1.,
1)
1)
1)

a2l
atlp2

a2l

The relationship of Fourier components between the cross
correlation and the local correlation function is expressed as

(pa—pp)’ )

yF(pa’ pb) = CXP(—
2llzocal(pa’ pb)

_ {Tpa) 7)Y = BLEHpo). E6py)] |
<|EF(pa)|>E<|EF(pb)|>E

The expression shows that the first order correction of the
local correlation length can be made by evaluating the path

(B5)

integral term B &x(p,),&r(p,)] using the measured density
fluctuation instead of the local density fluctuation. The first
order correction was essential to reconstruct the local density
fluctuation spectrum shown in Fig. 4. Further correction may
be possible if the corrected local density fluctuation is sub-
stituted into Eq. ((B5))
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