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Nonlinear stability of magnetic islands in a rotating helical plasma

S. Nishimura,' S. Toda," M. Yagi,? and Y. Narushima'
'National Institute for Fusion Science, Toki, Gifu 509-5292, Japan
2Japan Atomic Energy Agency, Rokkasho, Aomori 039-3212, Japan

(Received 15 October 2012; accepted 5 December 2012; published online 28 December 2012)

Coexistence of the forced magnetic reconnection by a resonant magnetic perturbation (RMP) and
the curvature-driven tearing mode is investigated in a helical (stellarator) plasma rotated by helical
trapped particle-induced neoclassical flows. A set of Rutherford-type equations of rotating
magnetic islands and a poloidal flow evolution equation is revisited. Using the model, analytical
expressions of criteria of spontaneous shrinkage (self-healing) of magnetic islands and sudden
growth of locked magnetic islands (penetration of RMP) are obtained, where nonlinear saturation
states of islands show bifurcation structures and hysteresis characteristics. Considering radial
profile of poloidal flows across magnetic islands, it is found that the self-healing is driven by
neoclassical viscosity even in the absence of micro-turbulence-induced anomalous viscosity.
Effects of unfavorable curvature in stellarators are found to modify the critical values. The scalings
of criteria are consistent with low-f experiments in the large helical device. © 2012 American

@ CrossMark
& click for update

Institute of Physics. [http://dx.doi.org/10.1063/1.4773041]

I. INTRODUCTION

In magnetic confinement fusion with toroidal devices,
such as tokamaks and stellarators, nested magnetic surfaces
are often broken by the magnetic reconnection, and conse-
quent magnetic island structure strongly affects plasma con-
finement property.! Instability which excites magnetic
islands is called the tearing mode.”” Even if the intrinsic
tearing mode is stable, magnetic islands are produced by
external resonant magnetic perturbation (RMP) through the
mechanism of the forced magnetic reconnection.® In toka-
maks, much theoretical work has been done for influence
of plasma flows on stability of RMP-driven magnetic
islands.””"” An essential point is that island growth, in other
words, penetration of RMP, is triggered when plasma flows
are locked by RMP, otherwise, islands are damped.

In the large helical device (LHD)lg*22 and the TJ—H,23
spontaneous shrinkage of RMP-driven magnetic islands has
been observed, known as the self-healing. It has been pointed
out that the perturbed bootstrap current, the polarization current,
and the curvature-driven current are hopeless to explain the
self-healing mechanism in low-f regime,'®?*?! where f is a
ratio of the total plasma pressure and the magnetic pressure. For
this reason, by analogy with tokamaks, it has been attempted to
explain the self-healing mechanism by the screening effect of
helical trapped particle-induced neoclassical flows.**

However, a problematic point is that, historically, the
magnetic reconnection in stellarators (helical systems) has
been investigated in the context of the curvature-driven tear-
ing mode. The curvature-driven current perturbation, such as
the resonant Pfirsch-Schliiter current, is excited by normal
magnetic field line curvature, and magnetic islands are gen-
erated to sustain three-dimensional magnetohydrodynamics
(MHD) equilibria.**>* In particular, the curvature-driven
tearing mode is crucial in high-f regime. In addition, effec-
tive curvature is easily controlled in stellarators. For this rea-
son, comprehensive understanding of the RMP-driven mode
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and the curvature-driven mode is necessary to know possible
saturation states of magnetic islands, where theoretical mod-
eling is an open issue.

In this paper, we revisit the theoretical model of the mag-
netic reconnection in a helical plasma, so that RMP, plasma
flows, and the curvature-driven tearing mode are described
simultaneously. The paper is organized as follows. In Sec. II,
we introduce basic fluid models with neoclassical viscosity in
a stellarator. In Sec. III, we derive model equations for mag-
netic islands and poloidal flows. In Sec. IV, the model is ana-
lytically solved, and the self-healing and penetration thresholds
and scalings of them are derived. In Sec. V, the model is
numerically solved in a typical parameter regime in LHD. Sec-
tions VI and VII are devoted for discussion and summary.

Il. BASIC MODEL
A. Two-fluid model with neoclassical viscosity

An extended version of the two fluid model*~® for
hydrogen plasmas with the Braginskii’s classical transport
closure®” and additional neoclassical viscosity in a torus
magnetic field is written as

dil’li

o +mV V=0, (1)
d.n

;te + 1.V -V =0, )

da,V av 1
- <v : Hneo>srf7 (3)
0=—-Vpe—en(E4+VexB)+R—(V-II;%) ¢ @

3dip;
2 dt

5
—EPiV'Vi = -V .gq, ®)
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3dpe 5 B
5 dl _Epev've—_v qea (6)

with d/dt=0/0t+Vg-V, di/dt=0/0t+ V-V, d./dt
=0/0t+ V.-V,

J=vVxB, %)
4n
1 o
—R=nJy+n.J.——bb- V)T, ®)
en; e
1 5¢T,
n_iqi = —X”lb . VT] — Xli(v — b(b . V))T] +§£b X VTI,
9)
1
e = ~11eb - VTe = 71V = b(b- V)T
OCTTC SC‘Te
e 1 et Ve (10

where B = Bb is the magnetic field, b is the unit vector paral-
lel to the magnetic field, B = b - B, E is the electric field, J is
the current density, Jy =jb, jy=b-J, JL=J—J, V=
Vi+Ve is the single fluid velocity, V)= va, v = b-V,Vg
is the E x B drift velocity, Vie) = V + Vi), Viice) is the ion
(electron) diamagnetic drift velocity, n;) is the ion (electron)
density, Tj.) is the ion (electron) temperature, pj) is the ion
(electron) pressure, p = p; + Pe, H{‘(‘;‘; is the anisotropic ion
(electron) pressure tensor associated with the neoclassical vis-
cosity, I1"° = TT° 4 TI3%°, u is the perpendicular anomalous
viscosity coefficient, 1 is the parallel resistivity, n, is the per-
pendicular resistivity, () is the parallel ion (electron) ther-
mal diffusivity, y;.) is the perpendicular ion (electron)
thermal diffusivity, o = 0.71, m; is the ion mass, e is the ele-
mentary charge, and c is the velocity of the light. The bracket
() denotes the average over the magnetic surface, which
will be defined in the Subsection I B. In Egs. (8)—(10), terms
including a ratio of the gyro-frequency to the collision fre-
quency and the Larmor radius are neglected for simplicity. To
eliminate a term m;n;(d;V.;/dt) and the gyro-viscous term in
Eq. (3), the so-called gyroviscous cancellation is taken into
account.”>* Residual terms due to imperfect cancellation are
neglected for simplicity, although those appear in the model
with hot ion fluids.*®*?° In Eq. (4), the electron inertia is
neglected for simplicity. According to the large amount of ex-
perimental observations in torus plasmas, both the perpendicu-
lar thermal diffusivity y ;) and the viscosity coefficient u are
anomalously larger than those predicted by the classical and
neoclassical theories,‘“’42 which might be due to micro-
turbulence. The detailed modeling of the anomalous effects is
still an open issue.® Therefore, we treat these coefficients as
phenomenological parameters. In addition, the neoclassical
thermal transport is not considered, since that is typically
smaller than the anomalous perpendicular thermal transport.
Operating (B - Vx) to Eq. (3) eliminates the compressional
Alfvén wave, and gives the Shear Alfvén law

J
cB~(V><f—2x><f):BzB-V<E>+2€B><x-Vp,
(1D
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where f = min;(diVg + dV) /dt) — uV2V + (V- T1"°)_; and
Kk = (b - V)b is the magnetic field line curvature.

B. Stellarator magnetic field and ordering

We consider a helical plasma with the averaged minor
radius a and the major radius Ry, using the toroidal coordi-
nates (R, 0, (), where R is the major radial position, 0 is the
poloidal angle, and { is the toroidal angle. The magnetic field
is given by

Ro -
B:BOE€+Bh+BdiaC+B; (12)

where (BoRo/R)( is the toroidally axisymmetric magnetic field,
By is the toroidal magnetic field on the magnetic axis, ¢ repre-
sents the toroidal unit vector, By is the toroidally non-
axisymmetric but helically symmetric part of the magnetic field,
Bgia ~ —Bof/2 is the diamagnetic field, f§ is the total plasma
pressure normalized by the toroidal magnetic pressure B% /8m,
and B is the magnetic field perturbation which involves the exter-
nally applied RMP. The magnetic field perturbation is given by

B=VxA, (13)

where A = AE is the vector potential perturbation. In the fol-
lowing, the cylindrical coordinates (r, 0,z) are used for con-
venience, where 7 is cleﬁned by R = Ry + rcos 0, z=Ry{ and
unit vectors are {r,0,z}. Introducing B = (b,, by, Bo + b.),
the magnetic field line is determined by

drm  1rd0y dzm dly

- S (14)
br b@ BO + b: B

where (rm, Om, Zm) is the position along the magnetic field
line and /,, is the distance along the magnetic field line. The
magnetic surface average is defined by

fLa.

<f>srf = 1 (15)
J}Edlm

where f is arbitrary. We assume the so-called stellarator
expansion ordering

&~ e~ P, (16)

where ¢ = /Ry, e, = |By|/Bo, and |By| indicates the ampli-
tude of the ripple magnetic field. In order ¢,, the magnetic
field is expressed as By, = V®, where @ is a scalar variable,
since the magnetic field in the current-less limit is curl-less.
The Gauss’s law for magnetism V2® = 0 gives ® = Z/:k
®; oIy (jr /Ro)exp{i(k0 + jz/Ro)}, where I, is the modified
Bessel function. Here, a dominant component

Mr Mz
O =D, ;| — |sin| 10 + — 17
l,Ml<R0>Sln< +R0) (17

is considered, where @, is a coefficient and {/, M} are the
pole and pitch numbers of the helically winding coil,
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respectively. The so-called drift ordering, where the plasma
velocity is comparable to the diamagnetic drift velocity, is
assumed to justify a fluid model with the transport closure:>>
v ~ Vg~ V,~V,~O(¢). The assumption of the large
aspect ratio leads to 9, ~ 9y ~ O(e?) and 0, ~ O(e). The
low-f3 assumption implies p ~ p; ~ pe ~ nj ~ ne ~ T; ~ T,
~ O(p). We only focus on the slow time variation compara-
ble to the drift frequency: O, ~ Vi -V ~ V.-V ~ O(g).
The electro-magnetic fields are ordered as E~J~ A
~ O(€&). The transport coefficients are ordered as u ~ 1y ~
Ny~ L~ ~ O(e) and y; ~ 7. ~ O(g"). To include
the neoclassical viscosity, we assume [T ~ TI0% ~ TI"°
~ O(ed).

C. Reduced fluid model

Considering Eq. (17), the z; dependence is separated
into the slowly changing variable z and the rapidly changing
variable Z = Mz/R,. Therefore, the z,, derivative is sepa-
rated as 0, + 0z, where 9. ~ O(ef) and 07 ~ O(e)). The to-
roidal average is defined by***

_ 1 21
fz—Jfﬂ, (1)
27T 0

where f is arbitrary. Similarly, the radial and poloidal posi-
tions along the magnetic field are split into the average and
fluctuating parts

rm =1(0,2) + 0r(r,0,2,2), (19)
Om = 0(r,z) + 60(r,0,2,2), (20)

where o0r/r ~ 30/0 ~ O(e,). Henceforth, the coordinates
(r, 0, z) represent the position on the average magnetic field.
A reduced fluid model is given by the toroidal averaging of
Egs. (1)—(6) and (11) with the ordering shown in the Subsec-
tion IIB. In the averaging procedure, the average magnetic
field and the average magnetic field curvature are given after
the lengthy calculation.**** In particular, the careful treat-
ment of the curvature term in Eq. (11) is necessary, since the
nonlinear coupling of the curvature and the magnetic field is
explicitly included. We neglect the nonlinear coupling of By,
in the parallel thermal transport terms in Egs. (5) and (6) for
simplicity. Other parts of the derivation follow those in the
reduced fluid model in tokamaks.*® The reduced fluid model

is given by
2 D 2¢ u
Vijj+ 02 ®xV V4
4mv iDt Vig= Hj”+ z * Lp+47wA 19
+ 5.V, x (V) 1)
By
10A — 1 —— opo—  ~
= - 2 T. —nii
o = V1P o VIpe = Vi Te —
1 T
——z. (V-1 22
ono 2 (V) o (22)
D 1 )
D T T g VIRV (23)
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I
Ene = EVWH + nOVHUH, (24)
3D o T0 5
SpiPe = Vi + 5 mTw V) + 7 Vipe + 21 Vipe,
(25)
3D 5 ) )
S0P = EnOTiOVHUH +1iVipi + xuVie,  (26)

where j| = jjo +j~H,j~H = —(c/4m)V? A, ¢ is the electrostatic
potential, v, is the Alfvén velocity, and oc’T =5/2 4 ar. The
suffix “0” indicates the unperturbed equilibrium value, and
the tilde represents the perturbation with the same mode
number as A. We assumed the quasi-neutral condition
between the ion and electron densities, n; = n., and defined
nio = nep = ng. The derivatives are defined by

%:g—’—[d)a]v (27)
1% 8 {d)— Pn], (28)
Vi- et rpop ) 29)
VL:f£+é%%, (30)

where [f, g] =z -V f x Vg for arbitrary f and g. The aver-
age rotational transform normalized by 27, which is the
inverse of the safety factor ¢; 1 = 1/g, is given by****

RoBy
I'BQ ’

1=

(€2Y)

where By =0-VAgx2z, A= (1/2By)z- VO x V(D),,,

and (@), = [Z(® — ®)dZ — [/ (® — ®)dZ. Using Eq. (17)
gives

4MB} rdr

1(r) = o (32)

I07,R21d [Ld ,
1)

where x = Mr/Ry. Since the pressure-gradient term in k =

VB/B + (4n/B*)Vp vanishes in Eq. (11), an average of

VB /B is only required. Then, the average curvature is given
by

K:Vl< ROCOS0+ﬁ|V(D> (33)

Some manipulations of Eq. (32) with the modified Bessel
equation give the following relation

Bl(z)|V(D| =1 Jrﬁl(r 1+2J ridr). (34)

Finally, using Eq. (34) rewrites the average curvature as

k=V, (—I;OCOS 0) + KnF, (35)
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122510-4 Nishimura et al.
with

Kp = TR%HM — ), (36)
where s = —(r/1)(d1/dr) is the magnetic shear.

D. Neoclassical closure

The neoclassical particle transport in stellarators is
mainly due to the interaction between the passing particle
and the banana particles trapped by the ripple toroidal mag-
netic field. Note that toroidal magnetic fields by magnetic
islands are smaller than that of the ambient helical field By,.
Thus, in strongly non-axisymmetric stellarators, the neo-
classical particle flux might be well approximated by that in
the absence of magnetic islands. Radial neoclassical particle
fluxes of ions and electrons averaged over the original mag-
netic surface, I'; and I, are calculated by the drift-kinetic
equation with the drift ordering and the transport ordering,
by integrating the radial velocity weighted by distribution
function perturbation in the whole velocity space. A general-
ized expression of the particle flux is obtained by connecting
the results in many collisionality regime, depending on the
E x B drift frequency, the VB drift frequency, and the colli-
sion frequency. In this study, we employ the model in Ref.
46 in the absence of the VB drift. The neglect of the VB drift
implies that the strong E x B drift prevents the super-banana
orbit, and such parameter regime is of interest. Further, we
assume that B ~ B and the collision frequency is much
slower than the thermal velocity transit time. Then, we
obtain the neoclassical radial particle flux

00 5/2
[reo — 2 3/ V2 d Vo X / exp(_x)
o anfl X 2 2
0 ClE€n L + CoVy

n  e,E, 3\ T’
x{n—“— . +<X—§>T—a:|, 37)

for a(=1,e) species, where x is the square of the velocity
normalized by the thermal velocity, E, is the radial electric
field, the prime indicates the radial derivative,
Vie=cTy/esBor, eje) = e(—e), wg = —CE,/rBo, v, is the
collision frequency, c¢; = 1.67 (Ref. 46), and ¢, = 3.%6
Although the collision frequencies are functions of x, in gen-
eral, we replace them to those measured at the thermal veloc-
ities. Using [ drxx’/2e™ = 15/n/8 and [°dxx"/2e™
= 105./7/16, we finally obtain

neo __
I, =

M(__iﬁi) (38)

craenwp + 2 \ny, T, T,

where ¢3 = 15./m/8. Operating (Zx) to Eq. (3) and applying
the toroidal averaging, we model the neoclassical perpendic-
ular current

T = 2 x (VT = (TP —

B ) (39)

Operating (V| ) to Eq. (39) gives

Phys. Plasmas 19, 122510 (2012)

C X7 . T[neo\ _Eg, neo
B_Oz.vl X <VH >srf_rar[’(ri

), (40)
which is the neoclassical closure in Eq. (21).

For consistency with the neoclassical theory, the parallel
force balance (B-V -II") ;=0 should be taken into
account. This is why the neoclassical viscosity does not
appear in Eq. (23). In Eq. (23), only the lowest order of this
balance with the toroidal averaging

2 (V- -TI"™) =0 (41)

is important, since the neoclassical viscosity is of order
O(€?) in our ordering and the correction of order O(¢}) is
lost.

In this study, we neglect the influence of the perturbed
bootstrap current, and simply assume

| . ooy
_e_noz AV -IIE°) s =0, (42)

in the lowest order, and the equilibrium bootstrap current is
not included in jjo. The neglect of the perturbed bootstrap
current is mainly due to a fact that the stellarator equilibrium
is based on the toroidal-current-less condition in most cases.
The influence of the perturbed bootstrap current will be
briefly discussed in Sec. IITF.

lll. DERIVATION OF MODEL EQUATIONS
A. Asymptotic matching

We assume that the perturbation is dominated by a sin-
gle mode with the poloidal mode number m and the toroidal
mode number n, which is resonant at the rational surface
15 = 1(rg) = n/m, where ry is the average minor radial posi-
tion of the rational surface. There exists a boundary layer
near the rational surface, where non-ideal MHD effects
become important and the magnetic reconnection is driven
by the resonant mode. We introduce the inner-layer current
perturbation j;, = —(c/4n)V?% A;n and the outer layer cur-
rent perturbation j o, = —(c/ 41) V2 Aou. Hereafter, the sub-
scripts in/ and ‘out/ denote the inner-layer quantity and the
outer-layer quantity, respectively. Here, A;, is written as

Ain = Y cos O, (43)

© = mb — =+ AO(1), (44)
Ry

where , is the amplitude at the rational surface, ® is the
phase angle, and A® is the time dependent part of the phase
angle. We consider integrals of the current perturbation mul-
tiplied by cos® and sin® across the boundary layer. The
inner- layer 1ntegral is f dxf d® and the outer-layer inte-
gral 1sf Jdx[" de, ‘Where x = r — rs, w=4\/L /By
is the magnetlc 1s1and width, Ly = a,R /1585, 05 = sgn(ss),
and sy = s(r). Near the rational surface, it is reasonable to
approximate \% TAout — (f?/erm. Then, so-called the cosine
and sine matchings are written as’

Downloaded 23 Jan 2013 to 133.75.110.124. Redistribution subject to AIP license or copyright; see http://pop.aip.org/about/rights_and_permissions
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J de d@ﬂ‘mcos@) = ,A_C‘%A’c, (45)
—00 -
J de d® j;,sin® = —gwsA;, (46)
with
T w/2
A:: _ 1 J d@ |:6Aout:| COS@, (47)
TClﬁs - Ox —-w/2
1 (" Aoy w/2
A = J d@[ 8" ‘] sin®, (48)
Tups —T X —w/2

where the prime indicates the radial derivative.

For analytical traceability, we assume that v/, is constant
in the inner layer, i.e., the so-called constant- iy approxima-
tion. Strictly speaking, this approximation might be reasona-
ble when [wA.|, |wA| < 1 and the resistive diffusion inside
islands is much faster than the rotation frequency of islands.
Although we use the approximation throughout this study,
the extension of the theory to that in the non-constant- \ re-
gime is left as a future work.

B. Outer-layer calculation

Far from the rational surface, i.e., in the outer-layer, Ay
is given by the perturbed MHD equilibrium J x B = cVp
and Eq. (7). Operating (B-Vx) and (B-) to J x B = cVp,
and applying the toroidal averaging give Egs. (21) and (23)
in the ideal MHD limit

. 2¢, _
Vijou + Bl Ex V 1 Pout = 0, (49)
VPou = 0, (50)

where jjou = Jjjo +ﬂ‘0ut. Substituting poy in the linearized
Eq. (50) into the linearized Eq. (49) gives

10 [ 0Aoy o Amkojly  Amikdph
—_ — | k Aou - 0,
r or (r or "Bk, B t

I
&1y

where po is the unperturbed pressure, ky =m/r, and
kj = (m1 —n)/Ro. The last term on the left-hand side (LHS)
of Eq. (51) gives rise to the perturbed Pfirsch-Schliiter cur-
rent in stellarators. In the presence of magnetic islands and
RMP, A, satisfies the boundary condition: A,y (0) =0,
Aout(rs Tw/2) = cos O, and Agy(a) = ), cos(®@ — A®).
According to Ref. 7, without any loss of generality, Aqy is
separated as

Aout = W, (1) cos © 4+ (1) cos(® — A®). (52)
Equation (51) is rewritten as

19 ralpm@ e 4nk9jf|0 N dnrnkip), Vo =0
ror or 0 cBok, B3k? m(c) ’

l
(53)
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and the boundary condition becomes ¥, (0) =0, V¥,
(rs £w/2) =Yg, Ypn(a) =0, Y (0) =0, Y (rs =w/2) =0,
and . (a) = . Using ¥, and v yields

A/C = Afmde + A'COi1 cos AG, (54)
AL = A, sinAO, (55)
with
1 [9y,]""?
A:no e = |:_m:| s (56)
d l/js Ox —w/2
, 1 al// }W/2
Acoi = . : (57)
: lnbs |:8X —-w/2

In the limit of Jjo = 0 and x, = 0, general solutions of
Eq. (83) are Y, = C1#" + Cor™ and Y, = D 1" + Dor™",
where C;, C, D, and D>, in 0 <r < rgand thoser, <r <a
are determined by the boundary condition. Then, we obtain

A} oqe and Al in the limit of jjo = 0 and x, = 0
2ky
i S i
mode0 = T A Ay, (58)
>
w
coil0 = _Agw_;’ (59)

where kgs = m/rs, Ay is the tearing mode stability parameter
in the currentless and straight stallarator, and the correction
of order w/r is neglected. The vacuum island solution
w =w,, where the vacuum island width is defined by
w, = 4\/(r/a) L, /Bo), s given by A+
Alig €05 A® = 0 with A®@ = 0. In the small jj, and K
limit, we can expand VY, = Y, o + 0, Ve =Y.+ 0Y,,
Anote = Ninodeo + 0Aoqes and Ay = Aigy o+ 0AL . The
lowest order of Eq. (53) near the rational surface gives
Ymo = ¥ and . o = 0. In the first order, Eq. (53) near the

rational surface is

i - <47Tkesi'05

2
AmKnskyPos
212 .2
Bkjx

o2 Win(e) cBok!, x

[Is

)wm(c),o =0, (60)

where jﬂos :j/H()("s), Khs = Kh(rs), P6s = Pf)(rs)» kﬂs = k‘l‘ (rs),

and k| ~ k"‘sx is used. Operating Jﬂfé 52 dx to Eq. (60) yields

170 ¥/2 2D
SN =— =6 = 61
mode = {/ [ o lﬂm} W ) (61)
1[0 w/2
SN =—|=96 =0 62
coil lps |:8X lpc:| w2 ’ ( )
with
8micnsL2p!
D = — s, (63)
0
where k|/\s = —aykgs/Ls is used. Note that D is an approximate

value of the conventional resistive interchange mode parame-
ter Dg or E 4+ F**°32 in the sense of the toroidal averaging.
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122510-6 Nishimura et al.

C. Inner layer calculation

The parallel derivative Eq. (29) near the rational surface
is given by

_ gt 0 —ka?l/jssin@2 =-0 @xi
"L,70O®|, By oxlg L 00Oy

(64)

where Q is the helical flux function normalized by o,

8 2
Q=" 1 5,cos®. (65)
w

The O-point and separatrix of magnetic correspond to
Q=—-1 and Q=1, respectively. Using the Jacobian

= 10(x,0)|/|0(Q, ®)| = o,w?/16x, the cosine and sine
integrals in the (x, ®) -coordinates are transformed into those
in the (Q, ®)-coordinates as

J dxj d@fcos@:ﬂj dQ (fcos®),,  (66)
- ~1

e V2
00 T L e}
J de A0 gsin® = 2 J dQG; +§ )
IV kos J_1 Qx>0 JQx<o
X V“ing d@, (67)

where f and g are arbitrary, and (9x/9@)|g = (w?/16x)
sin ® and Eq. (64) are used in Eq. (67). The contour integral
along the constant- Q in Eq. (66) is defined by

1 oh
h —d0O 68
(o = 4n G; x>o)+£z(x<0>) VQ—o,c0s0 (%)

where o, =sgn(x) and & is arbitrary. It is confirmed
(Vijinf)q = 0 for arbitrary f. Then, the cosine and sine
matching Eqs. (45) and (46) are rewritten as

> ~ ey, /
dQ{j. cos @)y = — A 69
J—l </H1n >Q 2\/§7TW ( )
o g GkaQ‘v')b /
ini; AOVinf 1 = — A (70)
J—l Q “ ﬂ]H 4Lv

Using Eqgs. (22), (42), (43), and (44) gives

16% v, [dA® .
<o al 0s® — ol ar + ké)i(vf) + U*€)|; =rq sin®
< ~ Or .
= —V|m( +eTe>‘ = N fins

m

(71)
with ¢~
vy = B_Od)(]a (72)
~ ~
b = < (’E n —“TTe‘)) . (73)
By \ eny e

where ngs = no(rs) and {q~50, Deos feO} are the perturbed equi-
librium electrostatic potential, electron pressure, and electron
temperature, respectively. Operating ( ), to Eq. (71) gives

Phys. Plasmas 19, 122510 (2012)

10y ~
p 8[5 (cos®)q = =1 {jjin) - (74)
where the constant-y approximation and (sin®), = 0 are
used. Separating the inner layer current as
Jjin = J0(Q) +1, (75)

where Jj is the component constant on the € contour and J;
is the residual component, Eq. (74) yields

ﬂ\in _ 1oy (cos ®>Q+J N

'1\\6 o (Dg e

(76)

Substituting Eq. (76) into Eq. (69), the cosine matching
is written in the form of a modified Rutherford equation

N _ 1 Ay
ht= g AL+ el (77)
with -~ 62
I = \/EJ 10 %@ (78)
i (1)
I= \/EJOO aQ {(Jl cos @), — <JI>Q<<IC>OS®>Q , (79)
—1 Q

where /] ~ 0.8273 and J is specified in Subsection III D.
Substituting j [lin in Eq. (71) into Eq. (70), we obtain an
island phase evolution equation

0AO o) c?
12{ % +k()s(U()+U*e>|,~,~S:| = VJ Al
4cLg (> ~ P T,
_ 4 J dQﬂ; d®| Vi [ ¢+ L1 22) | (80)
kosyw ) _4 enps e )

with

I, = \/EJ dQ% dO® o/ Q — 0,cos O cos O. (81)
Q

In Eq. (80), I, diverges as 032 for Q — co. The divergence
of I, implies that the relation

0AO

8 + kOS(v() + v*e)|’.:r< == O (82)

might be satisfied. More precisely, this anticipation is
]ustlﬁed since the ideal MHD equations imply that
m(d) +p./enos + otTTe/e)m is an odd function of x in the
large Q regime, therefore, the right-hand side (RHS) of Eq.
(80) might converge to a finite value.
Substituting Vjj in Eq. (21) in the inner layer into Eq.
(70) gives another version of the sine matching, which corre-
sponds to a force (torque) balance equation

o 2 D 2C
dQop dO - v
R e

_ ckostl,
- —Z Vi X <V ’ Hneo)srf == :L!// .

(83)

Evig

47w 4

where V /o vanishes.
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D. Modified Rutherford equation

Following Refs. 2, 47, and 48, the ion and electron pres-
sure profile in the inner layer are assumed to be determined
by the local heat balance

11NV iPa + 11,V p2 = 0, (84)

for o = 1,e. Equations (25) and (26) are well approximated
by Eq. (84) when the perpendicular thermal transport is
dominated by the anomalous effect, the parallel thermal
transport is much faster than any other parallel dynamics
in the island region and the density perturbation is negligible.

A typical scale length of Eq. (84) is we, = (;(M/XHO()I/8
\/8L;/kys. Then, Eq. (84) is written as?’

L w* 0 \/———————— 0
Q ovcos(-)a@‘

4wi,00 |
J Q- oxcos@aaQ

Qg
in the (Q, ®)-coordinates, and
2 2

1 8 +w m®8 5‘_
X0, Tz, Oax ) P oxa| P

in the (X, ®) -coordinates, where X = 4x/w,. In the limit
of w/we, > 1, the first term on LHS of Eq. (85) is domi-
nant, and an approximate solution is

=0, (85)

»=0, (86)

Ps = const.

/
_Vom Tby05 (1<Q), (88

4 {) Q — 06,c0s OdO
Q(x>0)

(—1<Q<1), (87)

Ops
Q|

where pl,,. = plo(rs) and p,o is the unperturbed equilibrium
pressure of the o species at the rational surface. In the limit of
w/We, < 1, a small parameter w? /w?  is used for an expan-
sion parameter, and a perturbative solution of Eq. (86) is

Pa = Pons +[7;QSX + Pyt €Os O, (89)
ospl o WX

pa = LT (90)
1632 + o

which is a connecting version of Eqs. (37) and (38) in
Ref. 47.

The influence of the polarization current, the anomalous
viscosity, and the neoclassical viscosity on the island width
evolution is typically smaller than that of the curvature-
driven current. Impacts of them will be discussed in Sec. IIIF.
Further, the toroidal curvature is of order O(r/R%), which is
typically smaller than ky, by a factor of //M < 1. Then, the
parallel current perturbation is determined by a simplified
version of Eq. (21)

~ 2c . N
Vi jin = =~ g2 (KnsX) X (ViP)in (91)

Phys. Plasmas 19, 122510 (2012)

) ; 92)

where a term V i,/ is neglected since it does not contribute
to the inner-layer integral.

In the limit of w > w ,, substituting Eqgs. (87) and (88)
into Eq. (92) yields

which is rewritten as

O jin
20 |,

_ 205cKpsLy @
" mBox 00

J1=0 (-1<Q<1), (93)
J— 47rc;c;SLsp6S 0/ Q — g,c0s O @ 1),
0 ﬁ; VQ — g,cos OdO
Q(x>0)
%94)

where we have considered Opp|, ~ 0pQ|,0aple in the
region of Q > 1. Substituting Egs. (93) and (94) into Eq.
(79) gives

CKnsLsp 65
4By

(cos @)

<1>Q+ VQ — 0,cos OdO
Qx>0

I =1 (95)

13:16fznj aQ . (96)
1

where I3 ~ 6.35.* In the limit of w < W 4, substituting Eqs.
(89) and (90) into Eq. (92) yields
cKnsLspl, cos ©

WZ b)
Bo Q4

Ji =

O7)

where we have considered w? / w? > |cos ©|. Substituting
Eq. (97) into Eq. (79) gives

CKhs spos w
1= I 98
Z 4 480 Wc,fx7 ( )

a=i,e

o 1

! Q+ 0.6n7

<<0032 0)q

where I, weakly depends on w,,/w but is typically I ~ 6.6
for 1 < wey/w ~ 102,
Finally, the modified Rutherford equation is given by

4 Ow ,
e ar ol
)| paryd \/wz + (I /1) w2,
with
87khsPlo L2
D, = —— a0 101
B2 (101)

where I, = 6.6. Note that D = D; + D.. The tokamak ver-
sion of the third term on the RHS of Eq. (100) is first derived
in Ref. 48, which formally agrees with our result except the
detailed value of 1.
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E. Flow evolution equation

In principle, Eq. (83) determines the flow evolution
equation. However, to evaluate the integral in Eq. (83), ¢
and p in the inner layer should be specified by some models.
Since we only require perturbed equilibria of these variables,
following Ref. 8, the integral in Eq. (83) is interpreted as an
average inside magnetic islands.

Using Eqgs. (21) and (40) for perturbed equilibria gives

? 2 [~ b ~ 1
- 7v2 )
01V = e |9 e V3| T
2
(Y 4 7 10 neo neo
—471'1)%‘ Vﬁbo—l—e;ar(rio —Feo )7
(102)

where the bracket [, |, indicates (0,0) components of non-
linear couplings of Fourier modes and I"}{’ indicates the neo-
classical particle flux of the o species in the perturbed
equilibria. On the RHS of Eq. (102), the first term is the
Reynolds stress and the second term is the so-called Maxwell
stress. In the following, we neglect the Reynolds stress, since
the Maxwell stress plays a dominant role in the presence of
RMP. Considering that [, ], , is interpreted by an averaging
(1/47R¢)$ d0§ dz, the second term on the RHS of Eq. (102)
operated by —(Bo/r) |y drr is expressed in the form of the
J x B force (/l\B")o,o’ where B, = —dyA. The average J x B
force near magnetic islands is

LR ok A, ]
_ d d®—j: Byin~—=| dOsin®
ZRWJ_W/Q xJ_n Cme " 8n 2 J—ﬂ: s |: Ox :|w/2

kHs 3 /
1
72048 L2 (10

where j~”m = —(c/4m) > Ain, Bin = —(m/r )y, sin®, the

. . +14/2 +w 2
constant-/ approximation, [0A;,/0x]")"5 = [0Aou/0x] "
and Eq. (48) are used. Operating — c/rBo jo drr to Eq
(102) and using Eq. (103), an evolution equation of the
poloidal flow velocity is given by

0 kath a1a
o' T 752" WA 1 [ ar (”’9)}

£ DUV — ),

a=ie

(104)

with 3200
oo _ ISﬁr_; €€, VL;V“ 7 (105)
8 pi creen(ve/r)” + a2

~ - ~1
yneo — _CT;“U (n_é) 4 2?10)
” e.Bo ﬁo ) ,
where {ﬁo,fxo} are the perturbed equilibrium density and
temperature of the o species, respectively, vag is the Alfven
velocity at the rational surface, 7, = 1, 7. = T;/T,, and 0 = 1
for —w/2 < x < w/2 and ¢ = 0 for other cases. Considering

the toroidal component of the E x B drift velocity, the toroi-
dal flow velocity is given by

(106)

Phys. Plasmas 19, 122510 (2012)
(107)

Equation (104) is also written by the toroidal flow velocity
using Eq. (107).

F. Summary of model equations

Collecting Egs. (82), (100), and (104), the modified
Rutherford equation, the island phase evolution equation and
the poloidal flow evolution equation are

47‘[[1 8w /
17“(/2 at 'mode

LD,

a=i,e \/W2 + (]3/14)2W2a
(108)

+ Al

COo1

1Cos AO +

0AO

o (109)

= kos(vp + Vee)|,—,. s

e kesvig 3, . of1a
5—0512LA2W Acoi]S1nA®+:u5 ;E(VUO)

+ ZV;eO(V:eO _ U()),

a=ie

(110)

where {A] ..,A.;} are calculated by Egs. (53), (56), and
(57), and {D,,, V*°, V°} are given by Egs. (101), (105), and
(106), respectively.

The correction of the RHS of Eq. (108) due to the polar-
ization current is roughly Ap ~ 8B.p2L2 /riw?, where f; is
the ion beta value. We have evaluated A, for typical experi-
mental parameters in LHD, and found that the influence is
negligibly small in comparison with the other terms in Eq.
(108). Similarly, the influence of the anomalous viscosity
and the neoclassical viscosity on Eq. (108) is negligible. The
toroidal direction of the equilibrium bootstrap current in stel-
larators is mainly in the opposite direction in comparison
with that in tokamaks (so does the sign of the bootstrap cur-
rent perturbation),*>*’ therefore, the perturbed bootstrap cur-
rent has the stabilizing effect on the island stability. As
discussed in the Introduction, the influence of the perturbed
bootstrap current does not play an essential role in low-f
stellarators. Therefore, these effects are neglected in our
model for simplicity. However, the extension of the model
might be required in an advanced parameter regime with
high a f value and a larger ion Larmor radius.

IV. CRITERION OF ISLAND STABILITY

In the following, we consider that the ion temperature
and the electron temperature in the equilibrium are compara-
ble. In this case, the ion neoclassical viscosity dominates the
electron neoclassical viscosity, and /{°° is assumed to show
the 1/v; dependence, i.e., 1] =~ vj5° = 1{*°[, _,. The poloi-
dal flow profile outside magnetic islands is determined by
the viscous force balance

82

0 _ _|_ neO(vneo _ U())

o (111)

The solution of Eq. (111) is approximately given by
— VP o exp(—|x|/4), where
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u
b= (112)
Vio

is the typical scale length of flows. In the limit of 2 >> w/2,
the flow gradient is widely formed outside magnetic islands.
While, in the limit of 1 < w/2, the gradient is sharply
formed close to the separatrix. In both limits, the gradient is
relaxed inside magnetic islands with the scale length w/2.
Therefore, Eq. (110) at the rational surface is reduced to a
zero dimensional equation

Ovgl,_,. ko3 W 2u
r=re _ R0s A+ 25 (yneo _ )
ot 512z M g Vi~ w0l
+ U5 (VR = vol,—), (113)
with
(A (> w/2)
d= {w (1< w/2), (114)

where VI = VI'(ry) is the perturbed neoclassical flow ve-
locity at the rational surface and Vii° is the unperturbed neo-
classical flow velocity at the rational surface. It is easily
confirmed that the second term dominates the third term on
the RHS of Eq. (113) if A <« w/2, and vice versa. Therefore,
it is convenient to define

anomalous viscosity — dominant regime: 4 > w/2,
neoclassical viscosity — dominant regime: 1 < w/2.

Then, simplified and normalized model equations are

2 A

aw AW D
2 T os A =
SdT Ag—&-wzcos G)—i—w, (115)
dA® |
ar w, (116)
dv N ,a 5 ~ vy
— = —Mww,sinA® +-— (Vo —v) + (Vs —v), (117)
dT wd
with
. i w)2)
d = . 118
{W (A< w/2), (118)

where variables are normalized as w = w/rs, Wy = wy /Ty,
A=2AJrs, and T =t/ta, and parameters are defined by
TA =15/UA, U= 0pl, [va, L = 2u(za/r?), Vo = Vi /va, Vs
=V va, @ = 0ta, © =kos(ViX® + vie(15)), U = V5T,
S =1(tr/7a)/(rsAy), and M = (—Agkgsrd) /(512L2). Here,
D and A’ include the curvature effects, and we will specify
these parameters in the following subsections.

A. Self-healing threshold

To evaluate a criterion of the self-healing, i.e., the spon-
taneous shrinkage of locked magnetic islands, we assume
that the following conditions are satisfied: w ~ w¢; > wee,
@ =0, v=0. The model equations for large magnetic
islands in the steady state are reduced to

Phys. Plasmas 19, 122510 (2012)

A, w? D
0=—"L+ %Y cosA® + =, (119)
Ay W w
0= —Miw2sinA® + Vo + 0V, (120)
wd
with
A, = A), (121)
. (24L)D
D, :%7 (122)
(= ors)

where we have considered Eqgs. (58) and (61). Using Egs.
(119) and (120), we obtain

At the critical value of wy, below which magnetic islands
start to rotate and shrink, the condition dF/dw = 0 is also
satisfied since the minimal value of w, is on the w-axis. To
approximately solve F =0 and dF /dw = 0, D, is used for a
small parameter, and the variables are expanded as
w=wo+wi, A® = AOy + A®{, and w, = Wy + Wy1.

In the anomalous viscosity-dominant regime, where
the fourth term on the RHS of Eq. (123) is negligible, solutions
are given by wg = wv0/21/4, Wﬁ =3D,/16, A®, = n/4,
A®, =20, /3o, wyo = 24 (i Vg /M?)"E, and by, = —21/4
D, /4. The self-healing criterion is written by the RMP ampli-
tude at the edge boundary Bryip = kga ¥, /a, where kg, = m/a,
such that

B}lieMalP _Bll;ei\/[alPO _|_B}ll§3[11’1 (124)

By  Bo By

“oN 1/4

Bheal ~ IA/VZ
S = oL (”Mz(’ : (125)
o\ 1/8
Bheal . ~ ﬁvz

L = —oollD, (“ ] (126)

where L = (1/16)(kgar? /L) (a/rs)", o = 2%, 0 = 2712,

In the neoclassical viscosity-dominant regime, where
the third term on the RHS of Eq. (123) is negligible, solu-
tions are wo = Wy/3"4, W, = D, /4, A®y = cos ' (1/1/3),
A®; =220 31y, i = (3V4/2Y0) 2V /M), and
Wyl = —31/ 4ﬁ1/ 6. Again, the self-healing criterion is writ-
ten by the RMP amplitude such that

B}ﬁel\'/ldll’ —_ Blllﬁ\?[lpo 4 B}liel\/[alPl (127)
By By By ’
s 2)3
Bheal V;
Poul@) o
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A 1/3

Bl _ 5 (Vs
By M ’

(129)

where oz = 271332 and oy = 271/0373/4,
Above results clearly show that the self-healing thresh-
old is shifted by the curvature effect.

B. Penetration threshold

To evaluate a criterion of the penetration RMP, i.e., the
back transition of the self-healing, we assume w ~ wc,
<Wei, O =do+kv, Vi=V,, where @y= takos(Vig°
+ Use0)s k = kgsrs = m, and v, is the unperturbed electron
diamagnetic drift velocity. The model equations for healed
magnetic islands are reduced to

dw A, w? D>
S—=——"24 Y cosAO® + —= 130
o7 AE)—FWZCOS +W’ (130)
dA® .
ar = o + k(v —"V)y), (131)
P i sinae + (L 15 (Vo —v) (132)
dT v wd o
with
D. D
A;2:A()+I4( + ) (133)
Wee Wei
. 2D
Dz == VR (134)
(— ors)

where we remind D = D, + D;. If the RMP amplitude is
small enough, Eqgs. (130)—(132) describe small oscillating
(rotating) islands with unlocked flows. When the RMP ampli-
tude reaches a critical value, the J x B force starts to damp
flows, which slows down the island rotation and triggers the
sudden island growth. To evaluate the criterion, we consider
that the time average of v is VO, then the time-average island
phase evolves as (T If magnetic islands are stable in the ab-
sence of the RMP even for the island width close to the linear-
layer width dyin, i.e., AL /A) 4+ Dy/dyn < 0, the second term
on the RHS of Eq. (130) is dominant for the island evolution,
and islands approximately evolves as

W =W lsin(weT)|"?, (135)
where w,, = (312/5/5600)1/3.
In contrast, if magnetic islands are unstable even in the
absence of RMP, the time-average island width becomes

(136)

In the following, the force balance is discussed in the
different viscosity regime. First, we consider the anomalous
viscosity-dominant regime. The locking of flows is triggered
when the maximum J x B force overcomes the maximum
viscous force. Substituting Eq. (135) into Eq. (132) gives the
penetration threshold

Phys. Plasmas 19, 122510 (2012)

goen oy 10

RMPO __ & \2/5 [ MYV o

B, asL(Sao) <M2> ) (137)
where o5 = 3725 and the subscript “0” of BRyp, indicates

that the threshold is reproduced in the case of D =0. Simi-
larly, substituting Eq. (136) into Eq. (132) gives

2 N 1/2
Bhaw _, (Ao \ (Ve
BO D2A6 M?

Next, we consider the neoclassical viscosity-dominant
regime. Substituting Eq. (135) into Eq. (132) gives

(138)

en AY 3/4
BRwmro _ 174 (PVo
= el (So) () (139)

where o5 = 37'/4. Finally, substituting Eq. (136) into Eq.
(132) gives
Bﬁel\[/lﬂ) —— LA/*Z L‘}O ) (140)
BO Dz(—AE)) M

It is remarkable that the penetration threshold is essen-
tially modified when magnetic islands are nonlinearly desta-
bilized by the curvature effect. Note that such modification
is effective when wp overcomes w,,.

C. Hysteresis characteristics

Figure 1 shows the schematic stability diagram of RMP-
induced magnetic islands in the space of D and Bgryp, using
the various thresholds derived in Subsections IV A and IV B,
where D, = D; = D/2 is assumed for simplicity. The dia-
gram is almost the same for the anomalous viscosity-
dominant regime and the neoclassical viscosity-dominant re-
gime. In Fig. 1, D = D, is determined by wp = w,,. In Fig.
1, hysteresis characteristics of the island state is clearly
observed, i.e., once locked magnetic islands are healed, suffi-
ciently larger RMP amplitude is necessary to excite locked
magnetic islands. In opposite, the self-healing does not take
place even below the penetration threshold. In the presence
of the strong curvature effect, the self-healing tends not to
take place, while the penetration tends to occur.

Bryp A
penetration
BESieo ‘
heal
Briipro
self-healing :
O D, D

FIG. 1. Schematic diagram of nonlinear states of magnetic islands regime in
a (D, Brmp) space.
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In the following, to evaluate the magnitude for the hyster-
esis, we only consider the low-f limit in the following, where
the curvature effect is negligible. In the anomalous viscosity-
dominant regime, coupling Eq. (125) to Eq. (137) gives

~2 6/5
BRateo — o $*og B}ﬁei\/[‘ﬂpo
B, L Bo ’

_—6/5 . . . .
where o7 = o, "~ s, whereas, in the neoclassical viscosity-
dominant regime, coupling Eq. (128) to Eq. (139) gives

n A 3/4 Lo 1/8 9/8
BPRCMPO o Vo / Szwg / B}ﬁelvlalPO / (142)
By s 174 L By ’
S

where og = a;9/ goc(, Note that \70 / V > 1. If the factor
Sza)(z) /L is much larger than unity, BRyp, is larger than
Bhstl . Tt is remarkable that 2@ /L is independent from the
detailed modeling of the viscosity. Here, we assume T, = Tj,
scale lengths of the density and the temperature gradients are

/ ~neo
of order ry, Ay ~

1/5

(141)

—2kgs, rs/a is of order unity, V?:o ~ Vi
and the anomalous viscosity coefficient is approximated by
the Bohm-type diffusion coefficient (f,/16)(cTi/eBy) or
gyro-Bohm-type diffusion coefficient (f,,/16)(p;/rs)(cT;
/eBy), where f, is a fitting parameter. We introduce dimen-
sionless parameters: the normalized ion collisionality v,
= v;(rs/vy), the normalized ion Larmor radius p, = p;/rs,
and the normalized ion skin depth ¢ = ¢/(wyirs), where vy is
the ion thermal velocity and wy; is the ion plasma oscillation
frequency. Each parameter is measured at the rational sur-
face. The index of the hysteresis scales as

520

122154
L

= V&V, TS

(143)

where y; = 0.0229 x n~'A and A is the mass number of the
hydrogen. The self-healing and penetration thresholds of the
RMP amplitude in the anomalous viscosity-dominant regime
are rewritten as

Bg?)[lPO 1/4 3/8p1/2 —1/4 k/4+3/4 0

B—Oz/zet & Biv. s, (144)
Biwro 1/10 1/20 9/20 ~7/10 3k/10+1 —~1/5 s—1/5
Rt =mel e BP0 3015 5715 (145)

where 7, = 1.06 x f1/4, y; = 0.170 x n~'/SAVS£310, and
k=0(k=1) indicates the Bohm-type (gyro-Bohm-type)
modeling of the anomalous viscosity. Whereas, those in the
neoclassical viscosity-dominant regime are rewritten as

Bheal 5
RBMPO =7, eehﬁ/ —2/3 2/3 71/3 (146)
cn 0
BlgMPO 1/4 9/8[313/4 ;1 —1/25—1/2 (147)

By

where y, = 4.86 x n~'/3 and 5 = 1.96 x n~'/2A'/8_ Criteria
of arbitrary dimensionless parameters for the self-healing
and penetration for the fixed RMP amplitude are easily
obtained by solving the Egs. (144)—(147) for the requiring
parameters.
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Figure 2 shows the stability diagram of RMP-induced
magnetic islands in the space of f§; and v, using Eqs. (144)—
(147). The transition from the anomalous viscosity-dominant
regime to the neoclassical viscosity-dominant regime occurs
at 2 =W /2. For the suppressed islands, w = (3w?/Sad )13
and 1 =w v/2  give the tralhsmon pomt vy = 2.46
x 1007241 ‘y‘e,ez/zp* 3#=55-25" (Brap/Bo)*. Whereas, for
locked magnetic islands comparable to the vacuum islands,
w=w, and A1=w/2 give the transition point
Vi = 5v/af, FWup,F! Here, By (Bi) is evaluated by substi-
tuting v, (v4) into Eq. (145) (Eq. (144)) for the fixed RMP
amplitude and solving for f;. In Fig. 2, hysteresis character-
istics of the island state and the change of f§ dependency are
observed. In the small v, regime, the 5 dependence is due to
the direct influence of the neoclassical viscosity, while, in
the large v, regime, which is due to the anomalous viscosity
coupling to the neoclassical viscosity, as shown in Egs. (120)
and (132). In particular, the [ dependence for the self-
healing threshold is strongly enhanced in large ff regime.

V. NUMERICAL ANALYSIS

Here, Eqgs. (53), (56), (57), (101), (108), (109), and
(110) are numerically solved for the typical parameters in
the LHD: Ry=3.6lm], «=07m], [=2, M=10,
Bo = 1.5[T], en = ena(r/a)’, ema = 0.4, 1 =04+ 12(r/a)",
ny =2 x 107[m3], Ty = Tey = To[1 — (r/a)’] with Ty =
1[keV] and B = 0.10[%], where f; is the f value at the
rational surface. The boundary condition of the poloidal flow
velocity is vg(r = 0) = vg(r = a) = 0. In our parameters, the
ion neoclassical viscosity dominates the electron neoclassi-
cal viscosity in Eq. (110), i.e., 1/ > 12*°, and poloidal
flows are in the direction of the ion neoclassical flows.>
Moreover, v*° shows the 1/v; dependence, which is consist-
ent with the assumption made in Sec. IV. The rational sur-
face 13 =1 is located at r;/a = 0.84 and magnetic islands
and RMP have mode numbers (m,n) = (1,1). The anoma-
lous diffusivities are ¢ = x| = 3[m?/s], which are typical
values in the experiments in LHD.'” For these parameters,
alAy = —8.2, the tearing mode is in the visco-resistive re-
gime,8 where the visco-resistive linear-layer width is given
by Syr/a =63 x 1072, w.; = 6.8 x 1072, and w,. = 3.1
x1072. To evaluate the perturbed equilibrium temperature
T,0, the local heat balance near magnetic islands Eq. (84)

I/* A
penetration
YN
Vy2 -——————-\ —————————— / !
O</6i3/4 \
y i self-healing
*1 i \ ;
x B :

P

O B ﬂliz Bi

FIG. 2. Schematic diagram of nonlinear states magnetic islands in a (f;, v..),
where D =0 is considered as a typical low-f case.
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should be solved, however, this is quite time-consuming.
The solution equations (87) and (89) indicate that the tem-
perature profile of the o species is flattened near magnetic
islands if w > w¢,. Therefore, we consider

~ T ,x w2
o0s
Ty =Ty —

148
1+ (2x/w)’ 2wP2 +why’ (148)

for o =1i,e, where T} = T,\(rs), p1 =4, and p, =2 are
chosen. The anomalous viscosity and the RMP amplitude are
used for parameter scan. We set w = dyg in case of
w < Jyr, since the nonlinear theory is applicable to cases
with w > dyr.

First, we examine simulations with ramp-up/down RMP
amplitudes. In the ramp-up phase, Brmp/Bo is linearly
increased from zero to 1073, then, in the ramp-down phase,
Bgrmp/By is linearly decreased from 1073 to zero, where the
total time of the change in Bryp/By is 10[s] for each phase.
Since 10[s] is sufficiently longer than the time scale of the
island growth and rotation, results might reproduce satura-
tion states in many simulations with fixed RMP amplitudes.

Figure 3 shows the RMP amplitude dependence of the
magnetic island width. In the early ramp-up phase, magnetic
islands are rotating and the island growth is suppressed by
the time-periodical phase shift between the islands and vac-
uum islands. In the suppressed state, the magnetic island
width rapidly grows and damps to the linear-layer width, and
this cycle is repeated as described in Eq. (135). When the
RMP amplitude reaches a sufficiently large value, the pene-
tration suddenly occurs and large locked islands comparable
to vacuum islands are excited. In the present parameters, the
curvature parameter is D = 0.028, which is small to excite
the curvature-driven magnetic islands. Therefore, the curva-
ture hardly affects the suppressed state and the penetration
threshold. In the early ramp-down phase, large locked
islands are maintained. When the RMP amplitude becomes
sufficiently small, the viscous force overcomes the J X B
locking force, and the locking of poloidal flows is not sus-
tained. Then, islands start to rotate and transit to the sup-
pressed state, which is the self-healing of islands by poloidal
flows. Extended view of Fig. 3 is shown is Fig. 4.

0.2 T T T T
D=0. 028

0.15 [ .
vacuum island

0 210* 410" 610* 810* 1103
Brwe/Bo

FIG. 3. RMP amplitude dependence of the saturated magnetic island width,
where the curvature parameter is D = 0.028 and the anomalous viscosity
coefficient is ¢ = 3[m?/s]. The dashed line shows the magnetic island width
in the vacuum limit.
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0.2 0.2 o
E (b)
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b » ]
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6.2 10 6.4 104 2.2 10° 2.3 107
Brir/Bo Brur/Bo
2 ©1 24 (d) ;
= 1 5 E
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© © ;
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6.2 107 6.4 10* 2.2 10* 2.3 10

Brue/Bo Brur/Bo

FIG. 4. Extended view of Fig. 4. (a) Island width and (b) island phase in the
ramp-up phase, and (c) island width and (d) island phase in the ramp-down
phase.

Figure 5 shows the radial profile of poloidal flows near
magnetic islands for D = 0.028 and u = 3[m?/s], where the
initial island width is given by w = w,. In Fig. 5, to demon-
strate the self-healing mechanism by poloidal flows, we
amplify the neoclassical velocity in Eq. (110) as

VIO — Ve, (149)
for o = i,e, where fi, is the amplification factor. In the cases
with fy = 0.5, 1, 1.5, poloidal flows are damped by the J x B
force near magnetic islands, and the damped poloidal flows and
the large locked islands are maintained. While, in the case with
fv = 2, the poloidal flow velocity is large enough so that the
viscous force overcomes the J x B force, and the final state is
characterized by unlocked flows and small rotating islands.
Figure 6 shows the stability diagram of magnetic islands
in a space of the anomalous viscosity coefficient and the RMP
amplitude, where D = 0.028. It is remarkable that the self-
healing occurs in the small anomalous viscosity limit. In the

8 T T T T T T T
fv=2.0
/
6 4
/
i 1.5
E 4 F - ]
= /
1.0
fes)
2F i
> /
0.5
0 \_4
>
0.6 0.7 0.8 0.9 1
r/a

FIG. 5. Radial profile of the poloidal flow velocity near magnetic islands for
D = 0.028, u = 3[m?/s], and fy = 0.5, 1, 1.5,2.0, where f; is the amplifica-
tion factor of the neoclassical flow velocity. Island regions for the locked
flows and an unlocked flow are shown by the long and short double-headed
arrows, respectively.
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T T T T

penetration
8 10 [ E

410 -

Brwmp/Bo

self-healing

0 2 4 6 8 10
o [m’/s]

FIG. 6. Stability diagram of magnetic islands in a space of the anomalous
viscosity coefficient yu and the RMP amplitude Bgryvp/Bo, where D = 0.028.

preceding works,” the viscous force is assumed to be driven
by the anomalous viscosity coupling the flow gradient just
outside the separatrix, which indicates that the self-healing
does not occur in the small anomalous viscosity limit. While,
in our model, the radial profile of poloidal flows across mag-
netic islands is taken into account, in consequence, the neo-
classical viscosity inside magnetic islands works as a restoring
force and triggers the self-healing. This mechanism is consist-
ent with the discussion in Sec. IV, where the self-healing and
penetration thresholds in the neoclassical viscosity-dominant
regime, Eqs. (127), (139), and (140), are independent from the
anomalous viscosity.

To examine the influence of the curvature, we amplify
the curvature in Egs. (53) and (101) as

Kn — fikh, (150)

0.2 . T T T
(a) D=0.056 (f«=2)
-
0.15 [ _ ]
vacuum island -
T o1 T ]
=
0.05 E
0 . . ) .
0 210* 410* 610* 810* 110°
0.2 ; T T T
(b) D=0.112(f«=4)
0.15 | ///
N
© ~
= 0.1 T - vacuum island ]
Ve
Vd
0.05fF / N
/
/
0 . . . .
0 210*% 410* 610* 810* 110°

Brur/Bo

FIG. 7. RMP amplitude dependence of the saturated magnetic island for (a)
D = 0.056 and (b) D = 0.112, where u = 3[m?/s] and f, is the amplification
factor of the average curvature.
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D(original) J )
0 ‘ self-heal ing

0 0. 04 0.08 0.12
D

FIG. 8. Stability diagram of magnetic islands in a space of the amplified cur-
vature parameter D and the RMP amplitude, where & = 3[m?/s]. The origi-
nal value of D is indicated by an arrow.

where f. is the amplification factor and f, = 0 — 5 is consid-
ered. The average radial curvature Eq. (36) is given in the
limit of the helical symmetry. The operation Eq. (150)
mimics the inward and outward shifts of the magnetic axis
position and the control of the effective curvature. For f,, = 2
and f,. = 4, the RMP amplitude dependence of the magnetic
island width is shown in Fig. 7. In these cases, the curvature-
driven magnetic islands are excited even in the absence of
RMP, and the self-healing and penetration thresholds are
shifted from that in the case of f. = 1 in Fig. 3. Figure 8
shows the stability diagram of magnetic islands in a space of
the curvature parameter and the RMP amplitude. Figure 8 is
similar to Fig. 1 and is consistent with the discussion in Sec.
IV, i.e., the self-healing threshold monotonically depends on
D, while, the penetration threshold weakly depends on D in
the small D limit but becomes sensitive to D when the width
of the curvature-driven islands overcomes the maximum
width of oscillating islands by RMP.

VI. DISCUSSION

Our model of poloidal flows Eq. (110) is based on the
balance between the J x B force (torque) and the viscous
force (torque). The modeling of the J x B force and the
anomalous viscosity are basically the same as those in toka-
maks.”” A different point is that the neoclassical viscosity
due to the helical trapped particles is taken into account.?*~>®
In tokamaks, the non-axisymmetric magnetic field perturba-
tion by RMP drives the so-called neoclassical toroidal
Viscosity.5 ! While, in stellarators, the ambient magnetic
field has the considerable non-axisymmetric component
(|By|/Bo ~ 107"), which dominates the influence of RMP.
As a result, neoclassical damping rate due to RMP in toka-
maks depends on the magnetic island width, while, that in
stellarators is independent from the island width but depends
on the magnitude of the helical ripple. Therefore, although
the force (torque) balance is commonly formulated in both
tokamaks and stellarators, the parameter dependence of crite-
ria is different. In this study, the average curvature effect is
newly considered, where the effect is stabilizing in toka-
maks, while, that is destabilizing in stellarators. Since the av-
erage radial curvature typically dominates the average
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toroidal curvature in stellarators, the influence of the curva-
ture is more important than that in tokamaks.

In the following, our results are qualitatively compared
with the experimental observations in LHD. The locking
(unlocking) of poloidal flows and the excitation (annihila-
tion) of magnetic islands are simultaneously observed,'®*
and these facts support that the locking of poloidal flows by
RMP-induced J x B is essential for the island stability. The
phase flip of the magnetic diagnostics indicates that magnetic
islands start to rotate and shrink at the onset of the self-
healing (Fig. 8 in Ref. 21). According to the theoretical pre-
dictions, Eqgs. (144) and (146), the critical RMP amplitude
for the self-healing shows the weak positive dependence on
the f value, which is consistent with the experimental results
(Fig. 4 in Ref. 20). In the experiments, the self-healing
threshold in a parameter space of the f§ value and the normal-
ized collisionality with a fixed RMP amplitude shows mono-
tonic positive dependence (Fig. 8 in Ref. 21), which is also
consistent with our results. Our numerical results in a typical
parameter regime of LHD show that the magnetic island
width at the penetration is of order 10[cm], which is the
value often observed in experiments. Moreover, the island
width after the penetration is often larger than the vacuum
island width,?! which might be explained by the unfavorable
curvature effect in our model. All of these similarities might
justify our modeling. However, concerning the hysteresis
characteristics and the curvature effect, experimental data
are not sufficiently accumulated to check our modeling. In
addition, an extended analysis with finite toroidal current is
necessary to discuss the island bifurcation phenomenon in
the low magnetic shear.”?

Vil. SUMMARY

In this study, a nonlinear theoretical model of magnetic
islands and poloidal flows in a sterallator plasma is revisited.
We first introduce a fluid model with neoclassical viscosity
and effective curvature in stellarators, where the neoclassical
viscosity is calculated by radial particle fluxes due to helical
trapped particles, and the effective curvature is given by the
conventional toroidal averaging method. The asymptotic
matching method gives generalized Rutherod equations of
the magnetic island width and phase angle in the presence of
RMP and the curvature effect. An evolution equation of the
poloidal flow across magnetic islands includes the RMP-
induced J x B force, the neoclassical viscosity, and the
anomalous viscosity.

Using the model, we obtain criteria of the self-healing
of locked magnetic islands and the penetration thresholds of
RMP. Scalings of them with dimensionless parameters are
also derived. The difference between two criteria gives rise
to hysteresis characteristics. In analyses, the poloidal flow
profile is categorized into those in the anomalous viscosity-
dominant regime and the neoclassical viscosity-dominant
regime. In the former regime, the coupling of anomalous
momentum diffusion and the poloidal flow originally excited
by the neoclassical viscosity forces locked magnetic islands
to rotate and triggers the self-healing. In the latter regime,
it is newly found that the self-healing can be driven by the

Phys. Plasmas 19, 122510 (2012)

neoclassical viscosity even in the absence of the anomalous
viscosity. The self-healing mechanism without the anoma-
lous viscosity is due to the neoclassical viscosity inside mag-
netic islands. In each regime, the penetration occurs when
the RMP amplitude is sufficiently large so that the RMP-
induced J x B force dominates the viscous force. In the pres-
ence of the unfavorable curvature, the maximum island
width is increased and the criteria of the self-healing and the
penetration are modified, where the self-healing tends not to
take place, while the penetration tends to occur. The self-
healing threshold is monotonically shifted by the curvature
effect. The penetration threshold is less-sensitive to the cur-
vature effect in the small curvature limit, while that becomes
sensitive when the curvature-driven tearing mode becomes
unstable.

The model is also numerically solved in a typical param-
eter regime in the LHD. Using ramp-up/down simulations of
RMP, the sudden penetration of RMP and the self-healing of
magnetic islands are observed, where existence of the hyster-
esis characteristics is identified. A parameter which charac-
terizes the magnitude of the hysteresis is found. The
influence of the curvature effect is checked by increasing
effective curvature. The simulation results are consistent
with the theoretical prediction.

Finally, difference between our model in stellarators and
the standard model in tokamaks is discussed. Our results are
also qualitatively compared with the experimental observa-
tions in LHD.

In future works, detailed comparison with the experi-
mental observations are necessary. The poloidal flow profile
should be analyzed to check the viscosity regime. The influ-
ence of the average curvature is desired to be checked, by
controlling the magnetic axis position, for example.
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