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Nonlinear stability of magnetic islands in a rotating helical plasma

S. Nishimura,1 S. Toda,1 M. Yagi,2 and Y. Narushima1

1National Institute for Fusion Science, Toki, Gifu 509-5292, Japan
2Japan Atomic Energy Agency, Rokkasho, Aomori 039-3212, Japan

(Received 15 October 2012; accepted 5 December 2012; published online 28 December 2012)

Coexistence of the forced magnetic reconnection by a resonant magnetic perturbation (RMP) and

the curvature-driven tearing mode is investigated in a helical (stellarator) plasma rotated by helical

trapped particle-induced neoclassical flows. A set of Rutherford-type equations of rotating

magnetic islands and a poloidal flow evolution equation is revisited. Using the model, analytical

expressions of criteria of spontaneous shrinkage (self-healing) of magnetic islands and sudden

growth of locked magnetic islands (penetration of RMP) are obtained, where nonlinear saturation

states of islands show bifurcation structures and hysteresis characteristics. Considering radial

profile of poloidal flows across magnetic islands, it is found that the self-healing is driven by

neoclassical viscosity even in the absence of micro-turbulence-induced anomalous viscosity.

Effects of unfavorable curvature in stellarators are found to modify the critical values. The scalings

of criteria are consistent with low-b experiments in the large helical device. VC 2012 American
Institute of Physics. [http://dx.doi.org/10.1063/1.4773041]

I. INTRODUCTION

In magnetic confinement fusion with toroidal devices,

such as tokamaks and stellarators, nested magnetic surfaces

are often broken by the magnetic reconnection, and conse-

quent magnetic island structure strongly affects plasma con-

finement property.1 Instability which excites magnetic

islands is called the tearing mode.2–5 Even if the intrinsic

tearing mode is stable, magnetic islands are produced by

external resonant magnetic perturbation (RMP) through the

mechanism of the forced magnetic reconnection.6 In toka-

maks, much theoretical work has been done for influence

of plasma flows on stability of RMP-driven magnetic

islands.7–17 An essential point is that island growth, in other

words, penetration of RMP, is triggered when plasma flows

are locked by RMP, otherwise, islands are damped.

In the large helical device (LHD)18–22 and the TJ-II,23

spontaneous shrinkage of RMP-driven magnetic islands has

been observed, known as the self-healing. It has been pointed

out that the perturbed bootstrap current, the polarization current,

and the curvature-driven current are hopeless to explain the

self-healing mechanism in low-b regime,18,20,21 where b is a

ratio of the total plasma pressure and the magnetic pressure. For

this reason, by analogy with tokamaks, it has been attempted to

explain the self-healing mechanism by the screening effect of

helical trapped particle-induced neoclassical flows.24–29

However, a problematic point is that, historically, the

magnetic reconnection in stellarators (helical systems) has

been investigated in the context of the curvature-driven tear-

ing mode. The curvature-driven current perturbation, such as

the resonant Pfirsch-Schl€uter current, is excited by normal

magnetic field line curvature, and magnetic islands are gen-

erated to sustain three-dimensional magnetohydrodynamics

(MHD) equilibria.30–34 In particular, the curvature-driven

tearing mode is crucial in high-b regime. In addition, effec-

tive curvature is easily controlled in stellarators. For this rea-

son, comprehensive understanding of the RMP-driven mode

and the curvature-driven mode is necessary to know possible

saturation states of magnetic islands, where theoretical mod-

eling is an open issue.

In this paper, we revisit the theoretical model of the mag-

netic reconnection in a helical plasma, so that RMP, plasma

flows, and the curvature-driven tearing mode are described

simultaneously. The paper is organized as follows. In Sec. II,

we introduce basic fluid models with neoclassical viscosity in

a stellarator. In Sec. III, we derive model equations for mag-

netic islands and poloidal flows. In Sec. IV, the model is ana-

lytically solved, and the self-healing and penetration thresholds

and scalings of them are derived. In Sec. V, the model is

numerically solved in a typical parameter regime in LHD. Sec-

tions VI and VII are devoted for discussion and summary.

II. BASIC MODEL

A. Two-fluid model with neoclassical viscosity

An extended version of the two fluid model35,36 for

hydrogen plasmas with the Braginskii’s classical transport

closure37 and additional neoclassical viscosity in a torus

magnetic field is written as

dini

dt
þ nir � Vi ¼ 0; (1)

dene

dt
þ ner � Ve ¼ 0; (2)

mini

diVE

dt
þ

dVk
dt

� �
¼ �rpþ 1

c
J � Bþ lr2V

� hr �Pneoisrf ; (3)

0 ¼ �rpe � eneðEþ Ve � BÞ þ R� hr �Pneo
e isrf ; (4)

3

2

dipi

dt
� 5

2
pir � Vi ¼ �r � qi; (5)
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3

2

depe

dt
� 5

2
per � Ve ¼ �r � qe; (6)

with d=dt ¼ @=@tþ VE � r, di=dt ¼ @=@tþ Vi � r, de=dt
¼ @=@tþ Ve � r,

J ¼ c

4p
r� B; (7)

1

eni

R ¼ gkJk þ g?J? �
aT

e
bðb � rÞTe; (8)

1

ni

qi ¼ �vkib � rTi � v?i r� bðb � rÞð ÞTi þ
5

2

cTi

eB
b�rTi;

(9)

1

ne

qe ¼ �vkeb � rTe � v?e r� bðb � rÞð ÞTe

� aTTe

ene

Jk �
5

2

cTe

eB
b�rTe; (10)

where B ¼ Bb is the magnetic field, b is the unit vector paral-

lel to the magnetic field, B ¼ b � B, E is the electric field, J is

the current density, Jk ¼ jkb, jk ¼ b � J, J? ¼ J � Jk, V ¼
Vk þ VE is the single fluid velocity, Vk ¼ vkb, vk ¼ b � V, VE

is the E� B drift velocity, ViðeÞ ¼ V þ V�iðeÞ, V�iðeÞ is the ion

(electron) diamagnetic drift velocity, niðeÞ is the ion (electron)

density, TiðeÞ is the ion (electron) temperature, piðeÞ is the ion

(electron) pressure, p ¼ pi þ pe, Pneo
iðeÞ is the anisotropic ion

(electron) pressure tensor associated with the neoclassical vis-

cosity, Pneo ¼ Pneo
i þPneo

e , l is the perpendicular anomalous

viscosity coefficient, gk is the parallel resistivity, g? is the per-

pendicular resistivity, vkiðeÞ is the parallel ion (electron) ther-

mal diffusivity, v?iðeÞ is the perpendicular ion (electron)

thermal diffusivity, aT ¼ 0:71, mi is the ion mass, e is the ele-

mentary charge, and c is the velocity of the light. The bracket

h isrf denotes the average over the magnetic surface, which

will be defined in the Subsection II B. In Eqs. (8)–(10), terms

including a ratio of the gyro-frequency to the collision fre-

quency and the Larmor radius are neglected for simplicity. To

eliminate a term miniðdiV�i=dtÞ and the gyro-viscous term in

Eq. (3), the so-called gyroviscous cancellation is taken into

account.35,40 Residual terms due to imperfect cancellation are

neglected for simplicity, although those appear in the model

with hot ion fluids.38,39 In Eq. (4), the electron inertia is

neglected for simplicity. According to the large amount of ex-

perimental observations in torus plasmas, both the perpendicu-

lar thermal diffusivity v?iðeÞ and the viscosity coefficient l are

anomalously larger than those predicted by the classical and

neoclassical theories,41,42 which might be due to micro-

turbulence. The detailed modeling of the anomalous effects is

still an open issue.43 Therefore, we treat these coefficients as

phenomenological parameters. In addition, the neoclassical

thermal transport is not considered, since that is typically

smaller than the anomalous perpendicular thermal transport.

Operating ðB � r�Þ to Eq. (3) eliminates the compressional

Alfv�en wave, and gives the Shear Alfv�en law

cB � ðr � f � 2j� f Þ ¼ B2B � r
Jk
B

� �
þ 2cB� j � rp;

(11)

where f ¼ miniðdiVE þ dVk=dtÞ � lr2V þ hr �Pneoisrf and

j ¼ ðb � rÞb is the magnetic field line curvature.

B. Stellarator magnetic field and ordering

We consider a helical plasma with the averaged minor

radius a and the major radius R0, using the toroidal coordi-

nates ðR; h; fÞ, where R is the major radial position, h is the

poloidal angle, and f is the toroidal angle. The magnetic field

is given by

B ¼ B0

R0

R
f̂ þ Bh þ Bdiaf̂ þ eB; (12)

where ðB0R0=RÞf̂ is the toroidally axisymmetric magnetic field,

B0 is the toroidal magnetic field on the magnetic axis, f̂ repre-

sents the toroidal unit vector, Bh is the toroidally non-

axisymmetric but helically symmetric part of the magnetic field,

Bdia � �B0b=2 is the diamagnetic field, b is the total plasma

pressure normalized by the toroidal magnetic pressure B2
0=8p,

and eB is the magnetic field perturbation which involves the exter-

nally applied RMP. The magnetic field perturbation is given by

eB ¼ r� A; (13)

where A ¼ Af̂ is the vector potential perturbation. In the fol-

lowing, the cylindrical coordinates ðr; h; zÞ are used for con-

venience, where r is defined by R ¼ R0 þ r cos h, z ¼ R0f and

unit vectors are fr̂; ĥ; ẑg. Introducing B ¼ ðbr; bh;B0 þ bzÞ,
the magnetic field line is determined by

drm

br
¼ rdhm

bh
¼ dzm

B0 þ bz
¼ dlm

B
; (14)

where ðrm; hm; zmÞ is the position along the magnetic field

line and lm is the distance along the magnetic field line. The

magnetic surface average is defined by

hf isrf ¼

þ
f

B
dlmþ

1

B
dlm

; (15)

where f is arbitrary. We assume the so-called stellarator

expansion ordering

�t � �2
h � b; (16)

where �t ¼ r=R0, �h ¼ jBhj=B0, and jBhj indicates the ampli-

tude of the ripple magnetic field. In order �h, the magnetic

field is expressed as Bh ¼ rU, where U is a scalar variable,

since the magnetic field in the current-less limit is curl-less.

The Gauss’s law for magnetism r2U ¼ 0 gives U ¼
P

j;k

Uj;kIkðjr=R0Þexpfiðkhþ jz=R0Þg, where Ik is the modified

Bessel function. Here, a dominant component

U ¼ Ul;MIl
Mr

R0

� �
sin lhþMz

R0

� �
(17)

is considered, where Ul;M is a coefficient and fl;Mg are the

pole and pitch numbers of the helically winding coil,
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respectively. The so-called drift ordering, where the plasma

velocity is comparable to the diamagnetic drift velocity, is

assumed to justify a fluid model with the transport closure:35

vk � VE � V�i � V�e � Oð�tÞ. The assumption of the large

aspect ratio leads to @r � @h � Oð�0
t Þ and @z � Oð�tÞ. The

low-b assumption implies p � pi � pe � ni � ne � Ti � Te

� OðbÞ. We only focus on the slow time variation compara-

ble to the drift frequency: @t � V�i � r � V�e � r � Oð�tÞ.
The electro-magnetic fields are ordered as E � J � A
� Oð�tÞ. The transport coefficients are ordered as l � gk �
g? � v?i � v?e � Oð�tÞ and vki � vke � Oð��1

t Þ. To include

the neoclassical viscosity, we assume Pneo
i � Pneo

e � Pneo

� Oð�2
t Þ.

C. Reduced fluid model

Considering Eq. (17), the zm dependence is separated

into the slowly changing variable z and the rapidly changing

variable Z ¼ Mz=R0. Therefore, the zm derivative is sepa-

rated as @z þ @Z, where @z � Oð�2
hÞ and @Z � Oð�0

hÞ. The to-

roidal average is defined by44,45

f ¼ 1

2p

ð2p

0

f dZ; (18)

where f is arbitrary. Similarly, the radial and poloidal posi-

tions along the magnetic field are split into the average and

fluctuating parts

rm ¼ rðh; zÞ þ drðr; h; z; ZÞ; (19)

hm ¼ hðr; zÞ þ dhðr; h; z; ZÞ; (20)

where dr=r � dh=h � Oð�hÞ. Henceforth, the coordinates

ðr; h; zÞ represent the position on the average magnetic field.

A reduced fluid model is given by the toroidal averaging of

Eqs. (1)–(6) and (11) with the ordering shown in the Subsec-

tion II B. In the averaging procedure, the average magnetic

field and the average magnetic field curvature are given after

the lengthy calculation.44,45 In particular, the careful treat-

ment of the curvature term in Eq. (11) is necessary, since the

nonlinear coupling of the curvature and the magnetic field is

explicitly included. We neglect the nonlinear coupling of Bh

in the parallel thermal transport terms in Eqs. (5) and (6) for

simplicity. Other parts of the derivation follow those in the

reduced fluid model in tokamaks.35 The reduced fluid model

is given by

c2

4pv2
A

Di

Dt
r2
?/ ¼ rkjk þ

2c

B0

ẑ � j �r?pþ c2l

4pv2
A

r4
?/

þ c

B0

ẑ � r? � hr �Pneoisrf ; (21)

1

c

@A

@t
¼ �grk/ � 1

en0

grkpe �
aT

e
grkTe � gkejk

� 1

en0

ẑ � ghr �Pneo
e i srf ; (22)

D

Dt
vk ¼ �

1

min0

rkpþ lr2
?vk; (23)

D

Dt
ne ¼

1

e
rkjk þ n0rkvk; (24)

3

2

D

Dt
pe ¼

a0TTe0

e
rkjk þ

5

2
n0Te0rkvk þ vker2

kpe þ v?er2
?pe;

(25)

3

2

D

Dt
pi ¼

5

2
n0Ti0rkvk þ vkir2

kpi þ v?ir2
?pi; (26)

where jk ¼ jk0 þ ejk, ejk ¼ �ðc=4pÞr2
?A, / is the electrostatic

potential, vA is the Alfv�en velocity, and a0T ¼ 5=2þ aT . The

suffix “0” indicates the unperturbed equilibrium value, and

the tilde represents the perturbation with the same mode

number as A. We assumed the quasi-neutral condition

between the ion and electron densities, ni ¼ ne, and defined

ni0 ¼ ne0 ¼ n0. The derivatives are defined by

D

Dt
¼ @

@t
þ ½/; �; (27)

Di

Dt
¼ @

@t
þ /� 1

en0

pi;

� �
; (28)

rk ¼
@

@z
þ i

R0

@

@h
� 1

B0

½A; �; (29)

r? ¼ r̂
@

@r
þ ĥ

1

r

@

@h
; (30)

where ½f ; g� ¼ ẑ � r?f �r?g for arbitrary f and g. The aver-

age rotational transform normalized by 2p, which is the

inverse of the safety factor q; i ¼ 1=q, is given by44,45

i ¼ R0Bh

rB0

; (31)

where Bh ¼ ĥ � rA0 � ẑ, A0 ¼ ð1=2B0Þẑ � rU�rhUita ,

and hUita ¼
Ð Z

0
ðU� UÞdZ �

Ð Z
0
ðU� UÞdZ . Using Eq. (17)

gives

iðrÞ ¼ lU2
lMR2

0

4MB2
0

1

r

d

dr

1

r

d

dr
I2
l ðxÞ

� �
: (32)

where x ¼ Mr=R0. Since the pressure-gradient term in j ¼
rB=Bþ ð4p=B2Þrp vanishes in Eq. (11), an average of

rB=B is only required. Then, the average curvature is given

by44,45

j ¼ r? �
r

R0

cos hþ 1

2B2
0

jrUj2
� �

: (33)

Some manipulations of Eq. (32) with the modified Bessel

equation give the following relation

1

B2
0

jrUj2 ¼ 1þ M

R2
0l
ðr2iþ 2

ðr

0

ridrÞ: (34)

Finally, using Eq. (34) rewrites the average curvature as

j ¼ r? �
r

R0

cos h

� �
þ jhr̂; (35)
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with

jh ¼
M

2lR2
0

rið4� sÞ; (36)

where s ¼ �ðr=iÞðdi=drÞ is the magnetic shear.

D. Neoclassical closure

The neoclassical particle transport in stellarators is

mainly due to the interaction between the passing particle

and the banana particles trapped by the ripple toroidal mag-

netic field. Note that toroidal magnetic fields by magnetic

islands are smaller than that of the ambient helical field Bh.

Thus, in strongly non-axisymmetric stellarators, the neo-

classical particle flux might be well approximated by that in

the absence of magnetic islands. Radial neoclassical particle

fluxes of ions and electrons averaged over the original mag-

netic surface, Ci and Ce, are calculated by the drift-kinetic

equation with the drift ordering and the transport ordering,35

by integrating the radial velocity weighted by distribution

function perturbation in the whole velocity space. A general-

ized expression of the particle flux is obtained by connecting

the results in many collisionality regime, depending on the

E� B drift frequency, the rB drift frequency, and the colli-

sion frequency. In this study, we employ the model in Ref.

46 in the absence of therB drift. The neglect of therB drift

implies that the strong E� B drift prevents the super-banana

orbit, and such parameter regime is of interest. Further, we

assume that B � B0 and the collision frequency is much

slower than the thermal velocity transit time. Then, we

obtain the neoclassical radial particle flux

Cneo
a ¼ �2

t �
3=2
h V2

?ana

ð1
0

dx
�ax5=2expð�xÞ

c1�t�hx2
E þ c2�2

a

� n0a
na
� eaEr

Ta
þ x� 3

2

� �
T0a
Ta

� �
; (37)

for að¼ i; eÞ species, where x is the square of the velocity

normalized by the thermal velocity, Er is the radial electric

field, the prime indicates the radial derivative,

V?a ¼ cTa=eaB0r, eiðeÞ ¼ eð�eÞ, xE ¼ �cEr=rB0, �a is the

collision frequency, c1 ¼ 1:67 (Ref. 46), and c2 ¼ 3.46

Although the collision frequencies are functions of x, in gen-

eral, we replace them to those measured at the thermal veloc-

ities. Using
Ð1

0
dx x5=2e�x ¼ 15

ffiffiffi
p
p

=8 and
Ð1

0
dx x7=2e�x

¼ 105
ffiffiffi
p
p

=16, we finally obtain

Cneo
a ¼ c3�

2
t �

3=2
h V2

?ana�a

c1�t�hx2
E þ c2�2

a

n0a
na
� eaEr

Ta
þ 2T0a

Ta

� �
: (38)

where c3 ¼ 15
ffiffiffi
p
p

=8. Operating ðẑ�Þ to Eq. (3) and applying

the toroidal averaging, we model the neoclassical perpendic-

ular current

jneo
? ¼

c

B0

ẑ � hr �Pneoisrf ¼ eðCneo
i � Cneo

e Þr̂: (39)

Operating ðr?�Þ to Eq. (39) gives

c

B0

ẑ � r? � hr �Pneoisrf ¼
e

r

@

@r
½rðCneo

i � Cneo
e Þ�; (40)

which is the neoclassical closure in Eq. (21).

For consistency with the neoclassical theory, the parallel

force balance hB � r �Pneoisrf ¼ 0 should be taken into

account. This is why the neoclassical viscosity does not

appear in Eq. (23). In Eq. (23), only the lowest order of this

balance with the toroidal averaging

ẑ � hr �Pneoisrf ¼ 0 (41)

is important, since the neoclassical viscosity is of order

Oð�2
t Þ in our ordering and the correction of order Oð�3

t Þ is

lost.

In this study, we neglect the influence of the perturbed

bootstrap current, and simply assume

� 1

en0

ẑ � ghr �Pneo
e i srf ¼ 0; (42)

in the lowest order, and the equilibrium bootstrap current is

not included in jk0. The neglect of the perturbed bootstrap

current is mainly due to a fact that the stellarator equilibrium

is based on the toroidal-current-less condition in most cases.

The influence of the perturbed bootstrap current will be

briefly discussed in Sec. III F.

III. DERIVATION OF MODEL EQUATIONS

A. Asymptotic matching

We assume that the perturbation is dominated by a sin-

gle mode with the poloidal mode number m and the toroidal

mode number n, which is resonant at the rational surface

is ¼ iðrsÞ ¼ n=m, where rs is the average minor radial posi-

tion of the rational surface. There exists a boundary layer

near the rational surface, where non-ideal MHD effects

become important and the magnetic reconnection is driven

by the resonant mode. We introduce the inner-layer current

perturbation ejkin ¼ �ðc=4pÞr2
?Ain and the outer layer cur-

rent perturbation ejkout ¼ �ðc=4pÞr2
?Aout. Hereafter, the sub-

scripts in0 and ‘out0 denote the inner-layer quantity and the

outer-layer quantity, respectively. Here, Ain is written as

Ain ¼ wscos H; (43)

H ¼ mh� nz

R0

þ DHðtÞ; (44)

where ws is the amplitude at the rational surface, H is the

phase angle, and DH is the time dependent part of the phase

angle. We consider integrals of the current perturbation mul-

tiplied by cosH and sinH across the boundary layer. The

inner-layer integral is
Ð1
�1 dx

Ð p
�p dH and the outer-layer inte-

gral is
Ðþw=2

�w=2
dx
Ð p
�p dH, where x ¼ r � rs, w ¼ 4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lsws=B0

p
is the magnetic island width, Ls ¼ rsR0=isss, rs ¼ sgnðssÞ,
and ss ¼ sðrsÞ. Near the rational surface, it is reasonable to

approximate r2
?Aout ! @2

x Aout. Then, so-called the cosine

and sine matchings are written as7–9
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ð1
�1

dx

ðp

�p
dHejkincosH ¼ � c

4
wsD

0
c; (45)

ð1
�1

dx

ðp

�p
dHejkinsinH ¼ � c

4
wsD

0
s; (46)

with

D0c ¼
1

pws

ðp

�p
dH

@Aout

@x

� �w=2

�w=2

cosH; (47)

D0s ¼
1

pws

ðp

�p
dH

@Aout

@x

� �w=2

�w=2

sinH; (48)

where the prime indicates the radial derivative.

For analytical traceability, we assume that ws is constant

in the inner layer, i.e., the so-called constant- w approxima-

tion. Strictly speaking, this approximation might be reasona-

ble when jwD0cj; jwD0sj 	 1 and the resistive diffusion inside

islands is much faster than the rotation frequency of islands.

Although we use the approximation throughout this study,

the extension of the theory to that in the non-constant- w re-

gime is left as a future work.

B. Outer-layer calculation

Far from the rational surface, i.e., in the outer-layer, Aout

is given by the perturbed MHD equilibrium J � B ¼ crp
and Eq. (7). Operating ðB � r�Þ and ðB�Þ to J � B ¼ crp,

and applying the toroidal averaging give Eqs. (21) and (23)

in the ideal MHD limit

rkjkout þ
2c

B0

ẑ � j �r?pout ¼ 0; (49)

rkpout ¼ 0; (50)

where jkout ¼ jk0 þ ejkout. Substituting pout in the linearized

Eq. (50) into the linearized Eq. (49) gives

1

r

@

@r
r
@Aout

@r

� �
� k2

h þ
4pkhj0k0
cB0kk

þ 4pjhk2
hp00

B2
0k2
k

 !
Aout ¼ 0;

(51)

where p0 is the unperturbed pressure, kh ¼ m=r, and

kk ¼ ðmi� nÞ=R0. The last term on the left-hand side (LHS)

of Eq. (51) gives rise to the perturbed Pfirsch-Schl€uter cur-

rent in stellarators. In the presence of magnetic islands and

RMP, Aout satisfies the boundary condition: Aoutð0Þ ¼ 0,

Aoutðrs 6 w=2Þ ¼ ws cos H, and AoutðaÞ ¼ wa cosðH� DHÞ.
According to Ref. 7, without any loss of generality, Aout is

separated as

Aout ¼ wmðrÞ cos Hþ wcðrÞ cosðH� DHÞ: (52)

Equation (51) is rewritten as

1

r

@

@r
r
@wmðcÞ
@r

� �
� k2

h þ
4pkhj0k0
cB0kk

þ 4pjhk2
hp00

B2
0k2
k

 !
wmðcÞ ¼ 0;

(53)

and the boundary condition becomes wmð0Þ ¼ 0, wm

ðrs 6 w=2Þ ¼ ws, wmðaÞ ¼ 0, wcð0Þ ¼ 0, wcðrs 6 w=2Þ ¼ 0,

and wcðaÞ ¼ wa. Using wm and wc yields

D0c ¼ D0mode þ D0coil cos DH; (54)

D0s ¼ D0coil sin DH; (55)

with

D0mode ¼
1

ws

@wm

@x

� �w=2

�w=2

; (56)

D0coil ¼
1

ws

@wc

@x

� �w=2

�w=2

: (57)

In the limit of jk0 ¼ 0 and jh ¼ 0, general solutions of

Eq. (53) are wm ¼ C1rm þ C2r�m and wc ¼ D1rm þ D2r�m,

where C1, C2, D1, and D2 in 0 
 r 
 rs and those rs 
 r 
 a
are determined by the boundary condition. Then, we obtain

D0mode and D0coil in the limit of jk0 ¼ 0 and jh ¼ 0

D0mode;0 ¼ �
2khs

1� r2m
s =a2m

¼ D00; (58)

D0coil;0 ¼ �D00
w2

v

w2
; (59)

where khs ¼ m=rs, D00 is the tearing mode stability parameter

in the currentless and straight stallarator, and the correction

of order w=rs is neglected. The vacuum island solution

w ¼ wv, where the vacuum island width is defined by

wv ¼ 4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrs=aÞmðLswa=B0Þ

p
, is given by D0mode;0 þ

D0coil;0 cos DH ¼ 0 with DH ¼ 0. In the small jk0 and jh

limit, we can expand wm ¼ wm;0 þ dwm, wc ¼ wc;0 þ dwc,

D0mode ¼ D0mode;0 þ dD0mode, and D0coil ¼ D0coil;0 þ dD0coil. The

lowest order of Eq. (53) near the rational surface gives

wm;0 ¼ ws and wc;0 ¼ 0. In the first order, Eq. (53) near the

rational surface is

@2

@x2
dwmðcÞ �

4pkhsj
0
k0s

cB0k0ksx
þ 4pjhsk

2
hsp
0
0s

B2
0k02ksx

2

 !
wmðcÞ;0 ¼ 0; (60)

where j0k0s ¼ j0k0ðrsÞ, jhs ¼ jhðrsÞ, p00s ¼ p00ðrsÞ, k0ks ¼ k0kðrsÞ,
and kk � k0ksx is used. Operating

Ð w=2

�w=2
dx to Eq. (60) yields

dD0mode ¼
1

ws

@

@x
dwm

� �w=2

�w=2

¼ 2D

w
; (61)

dD0coil ¼
1

ws

@

@x
dwc

� �w=2

�w=2

¼ 0; (62)

with

D ¼ � 8pjhsL
2
s p00s

B2
0

; (63)

where k0ks ¼ �rskhs=Ls is used. Note that D is an approximate

value of the conventional resistive interchange mode parame-

ter DR or E þ F4,30–32 in the sense of the toroidal averaging.
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C. Inner layer calculation

The parallel derivative Eq. (29) near the rational surface

is given by

rkin ¼ �rs
khs

Ls
x
@

@H

����
x

� khsws

B0

sinH
@

@x

����
H

¼ �rs
khs

Ls
x
@

@H

����
X

;

(64)

where X is the helical flux function normalized by rsws

X ¼ 8x2

w2
þ rs cos H: (65)

The O-point and separatrix of magnetic correspond to

X ¼ �1 and X ¼ 1, respectively. Using the Jacobian

J ¼ j@ðx;HÞj=j@ðX;HÞj ¼ rsw
2=16x, the cosine and sine

integrals in the ðx;HÞ -coordinates are transformed into those

in the ðX;HÞ-coordinates asð1
�1

dx

ðp

�p
dH f cos H ¼ pwffiffiffi

2
p
ð1
�1

dX hf cos HiX; (66)

ð1
�1

dx

ðp

�p
dH g sin H ¼ rsLs

khs

ð1
�1

dX
þ

X;x>0

þ
þ

X;x<0

� �
�rking dH; (67)

where f and g are arbitrary, and ð@x=@HÞjX ¼ ðw2=16xÞ
sin H and Eq. (64) are used in Eq. (67). The contour integral

along the constant- X in Eq. (66) is defined by

hhiX ¼
1

4p

�þ
Xðx>0Þ

þ
þ

Xðx<0Þ

	 rxhffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X� rs cos H
p dH; (68)

where rx ¼ sgnðxÞ and h is arbitrary. It is confirmed

hrkinf iX ¼ 0 for arbitrary f. Then, the cosine and sine

matching Eqs. (45) and (46) are rewritten asð1
�1

dXhejkin cos HiX ¼ �
cws

2
ffiffiffi
2
p

pw
D0c; (69)ð1

�1

dX
þ

X
dHrkinejkin ¼ �rsckhsws

4Ls
D0s: (70)

Using Eqs. (22), (42), (43), and (44) gives

1

c

@ws

@t
cos H� ws

c

dDH
dt
þ khsðvh þ v�eÞjr¼rs

� �
sinH

¼ �rkin e/ þ 1

en0s

epe þ
aT

e
eT e

� �
in

� gkjkin;

(71)

with
vh ¼

c

B0

e/00; (72)

v�e ¼
c

B0

ep0e0

en0

þ aT
eT 0e0

e

 !
: (73)

where n0s ¼ n0ðrsÞ and fe/0; epe0; eT e0g are the perturbed equi-

librium electrostatic potential, electron pressure, and electron

temperature, respectively. Operating h iX to Eq. (71) gives

1

c

@ws

@t
hcos HiX ¼ �gkhejkiniX; (74)

where the constant-w approximation and hsin HiX ¼ 0 are

used. Separating the inner layer current asejkin ¼ J0ðXÞ þ J1; (75)

where J0 is the component constant on the X contour and J1

is the residual component, Eq. (74) yields

ejkin ¼ � 1

gkc
@ws

@t

hcos HiX
h1iX

þ J1 �
hJ1iX
h1iX

: (76)

Substituting Eq. (76) into Eq. (69), the cosine matching

is written in the form of a modified Rutherford equation

I1

@ws

@t
¼

gkc
2ws

2pw
D0c þ gkcI: (77)

with

I1 ¼
ffiffiffi
2
p ð1

�1

dX
hcos Hi2X
h1iX

; (78)

I ¼
ffiffiffi
2
p ð1

�1

dX hJ1 cos HiX �
hJ1iXhcos HiX

h1iX

� �
; (79)

where I1 � 0:8272 and J1 is specified in Subsection III D.

Substituting ejkin in Eq. (71) into Eq. (70), we obtain an

island phase evolution equation

I2

@DH
@t
þ khsðvhþ v�eÞjr¼rs

� �
¼

rsgkc
2

w
D0s

� 4cLs

khswsw

ð1
�1

dX
þ

X
dH r2

kin
e/þ epe

en0s

þ aT
eT e

e

 !
in

" #
; (80)

with

I2 ¼
ffiffiffi
2
p ð1

�1

dX
þ

X
dH rx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X� rs cos H

p
cos H: (81)

In Eq. (80), I2 diverges as X3=2 for X!1. The divergence

of I2 implies that the relation

@DH
@t
þ khsðvh þ v�eÞjr¼rs

¼ 0 (82)

might be satisfied. More precisely, this anticipation is

justified since the ideal MHD equations imply that

r2
kinðe/ þ epe=en0s þ aT

eT e=eÞin is an odd function of x in the

large X regime, therefore, the right-hand side (RHS) of Eq.

(80) might converge to a finite value.

Substituting rkejk in Eq. (21) in the inner layer into Eq.

(70) gives another version of the sine matching, which corre-

sponds to a force (torque) balance equationð1
�1

dX
þ

X
dH

c2

4pv2
A

Di

Dt
r2
?/�

2c

B0

ẑ � j �r?p

�
� c2l

4pv2
A

r4
?/�

c

B0

ẑ � r? � hr �Pneoisrf

�
in

¼ � ckhsws

4Ls
D0s;

(83)
where rkinjk0 vanishes.
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D. Modified Rutherford equation

Following Refs. 2, 47, and 48, the ion and electron pres-

sure profile in the inner layer are assumed to be determined

by the local heat balance

vkar2
kpa þ v?ar2

kpa ¼ 0; (84)

for a ¼ i; e. Equations (25) and (26) are well approximated

by Eq. (84) when the perpendicular thermal transport is

dominated by the anomalous effect, the parallel thermal

transport is much faster than any other parallel dynamics

in the island region and the density perturbation is negligible.

A typical scale length of Eq. (84) is wc;a ¼ ðv?a=vkaÞ1=8ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8Ls=khs

p
. Then, Eq. (84) is written as47

1

4

w4

w4
c;a

@

@H

����
X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X� rs cos H

p @

@H

����
X

pa

þ @

@X

����
H

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X� rs cos H

p @

@X

����
H

pa ¼ 0; (85)

in the ðX;HÞ-coordinates, and

1

4
rsX

@

@H

����
X

þ w2

w2
c;a

sin H
@

@X

 !2

pa þ
@2

@X2

����
H

pa ¼ 0; (86)

in the ðX;HÞ -coordinates, where X ¼ 4x=wc;a. In the limit

of w=wc;a � 1, the first term on LHS of Eq. (85) is domi-

nant, and an approximate solution is

pa ¼ const: ð�1 
 X 
 1Þ; (87)

@pa

@X

����
H

¼
ffiffiffi
2
p

p
4

rxp0a0swþ
Xðx>0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X� rs cos H

p
dH

ð1 < XÞ; (88)

where p0a0s ¼ p0a0ðrsÞ and pa0 is the unperturbed equilibrium

pressure of the a species at the rational surface. In the limit of

w=wc;a 	 1, a small parameter w2=w2
c;a is used for an expan-

sion parameter, and a perturbative solution of Eq. (86) is

pa ¼ pa0s þ p0a0sxþ pa1 cos H; (89)

pa1 ¼
rsp
0
a0sw

2x

16x2 þ w2
c;a

0:3

; (90)

which is a connecting version of Eqs. (37) and (38) in

Ref. 47.

The influence of the polarization current, the anomalous

viscosity, and the neoclassical viscosity on the island width

evolution is typically smaller than that of the curvature-

driven current. Impacts of them will be discussed in Sec. III F.

Further, the toroidal curvature is of order Oðr=R2
0Þ, which is

typically smaller than jh by a factor of l=M 	 1. Then, the

parallel current perturbation is determined by a simplified

version of Eq. (21)

rkinejkin ¼ � 2c

B0

ẑ � ðjhsx̂Þ � ðr?pÞin; (91)

which is rewritten as

@ejkin
@H

����
X

¼ 2rscjhsLs

mB0x

@p

@h

����
x

� �
in

; (92)

where a term rkinjk0 is neglected since it does not contribute

to the inner-layer integral.

In the limit of w� wc;a, substituting Eqs. (87) and (88)

into Eq. (92) yields

J1 ¼ 0 ð�1 
 X 
 1Þ; (93)

J1 ¼ �
4pcjhsLsp

0
0s

B0

rx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X� rs cos H
pþ

Xðx>0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X� rs cos H

p
dH

ðX > 1Þ;

(94)

where we have considered @hpjx � @hXjx@XpjH in the

region of X > 1. Substituting Eqs. (93) and (94) into Eq.

(79) gives

I ¼ I3

cjhsLsp
0
0s

4B0

; (95)

I3 ¼ 16
ffiffiffi
2
p

p
ð1

1

dX
hcos HiX

h1iX
þ

X;x>0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X� rs cos H

p
dH

; (96)

where I3 � 6:35.4 In the limit of w	 wc;a, substituting Eqs.

(89) and (90) into Eq. (92) yields

J1 ¼
cjhsLsp

0
0s

B0

cos H

Xþ w2
c;a

0:6w2

; (97)

where we have considered w2
c;a=w2 � jcos Hj. Substituting

Eq. (97) into Eq. (79) gives

I ¼
X
a¼i;e

Ia
4

cjhsLsp
0
0s

4B0

w

wc;a
; (98)

Ia
4 ¼ 4

ffiffiffi
2
p ð1

�1

dX
1

Xþ w2
c;a

0:6w2

hcos2 HiX �
hcos Hi2X
h1iX

 !
; (99)

where I4 weakly depends on wc;a=w but is typically Ia
4 � 6:6

for 1	 wc;a=w � 102.

Finally, the modified Rutherford equation is given by

I1

4p
gkc2

@w

@t
¼ D0c þ

X
a¼i;e

I3Daffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 þ ðI3=I4Þ2w2

c;a

q ; (100)

with

Da ¼
8pjhsp

0
a0sL

2
s

B2
0

; (101)

where I4 ¼ 6:6. Note that D ¼ Di þ De. The tokamak ver-

sion of the third term on the RHS of Eq. (100) is first derived

in Ref. 48, which formally agrees with our result except the

detailed value of I4.

122510-7 Nishimura et al. Phys. Plasmas 19, 122510 (2012)

Downloaded 23 Jan 2013 to 133.75.110.124. Redistribution subject to AIP license or copyright; see http://pop.aip.org/about/rights_and_permissions



E. Flow evolution equation

In principle, Eq. (83) determines the flow evolution

equation. However, to evaluate the integral in Eq. (83), /
and p in the inner layer should be specified by some models.

Since we only require perturbed equilibria of these variables,

following Ref. 8, the integral in Eq. (83) is interpreted as an

average inside magnetic islands.

Using Eqs. (21) and (40) for perturbed equilibria gives

c2

4pv2
A

@

@t
r2
?
e/0 ¼ �

c2

4pv2
A

e/ � epi

en0

;r2
?
e/� �

0;0

� 1

B0

½A;ejk�0;0
þ c2l

4pv2
A

r4
?
e/0 þ e

1

r

@

@r
rðCneo

i0 � Cneo
e0 Þ;

(102)

where the bracket ½ ; �0;0 indicates ð0; 0Þ components of non-

linear couplings of Fourier modes and Cneo
a0 indicates the neo-

classical particle flux of the a species in the perturbed

equilibria. On the RHS of Eq. (102), the first term is the

Reynolds stress and the second term is the so-called Maxwell

stress. In the following, we neglect the Reynolds stress, since

the Maxwell stress plays a dominant role in the presence of

RMP. Considering that ½ ; �0;0 is interpreted by an averaging

ð1=4p2R0Þ
Þ

dh
Þ

dz, the second term on the RHS of Eq. (102)

operated by �ðB0=rÞ
Ð r

0
dr r is expressed in the form of the

J � B force ðejk eBrÞ0;0, where eBr ¼ �@hA. The average J � B
force near magnetic islands is

1

2pw

ðw=2

�w=2

dx

ðp

�p
dH

1

c
ejkin eBrin�

khsws

8p2w

ðp

�p
dHsinH

@Ain

@x

� �þw=2

�w=2

� khsB
2
0

2048pL2
s

w3D0s; (103)

where ejkin ¼ �ðc=4pÞ@2
x Ain, eBrin ¼ �ðm=rsÞws sin H, the

constant-w approximation, ½@Ain=@x�þw=2

�w=2
¼ ½@Aout=@x�þw=2

�w=2

and Eq. (48) are used. Operating �ðc=rB0Þ
Ð r

0
dr r to Eq.

(102) and using Eq. (103), an evolution equation of the

poloidal flow velocity is given by

@

@t
vh ¼ r

khsv2
As

512L2
s

w3D0s þ l
@

@r

1

r

@

@r
ðrvhÞ

� �
þ
X
a¼i;e

�neo
a ðVneo

a � vhÞ; (104)

with

�neo
a ¼ 15

ffiffiffi
p
p

8

sa

q2
i

�t�
3=2
h V2

?a�a

c1�t�hðvh=rÞ2 þ c2�2
a

; (105)

Vneo
a ¼ � ceTa0

eaB0

en00en0

þ 2eT 0a0eT a0

 !
; (106)

where fen0; eTa0g are the perturbed equilibrium density and

temperature of the a species, respectively, vAs is the Alfven

velocity at the rational surface, si ¼ 1, se ¼ Ti=Te, and r ¼ 1

for �w=2 
 x 
 w=2 and r ¼ 0 for other cases. Considering

the toroidal component of the E� B drift velocity, the toroi-

dal flow velocity is given by

vz ¼
ri
R0

vh: (107)

Equation (104) is also written by the toroidal flow velocity

using Eq. (107).

F. Summary of model equations

Collecting Eqs. (82), (100), and (104), the modified

Rutherford equation, the island phase evolution equation and

the poloidal flow evolution equation are

4pI1

gkc2

@w

@t
¼ D0mode þ D0coil cos DHþ

X
a¼i;e

I3Daffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2 þ ðI3=I4Þ2w2

c;a

q ;

(108)

@DH
@t
¼ khsðvh þ v�eÞjr¼rs

; (109)

@vh

@t
¼ r

khsv2
As

512L2
s

w3D0coil sin DHþ l
@

@r

1

r

@

@r
ðrvhÞ

� �
þ
X
a¼i;e

�neo
a ðVneo

a � vhÞ; (110)

where fD0mode;D
0
coilg are calculated by Eqs. (53), (56), and

(57), and fDa; �
neo
a ;Vneo

a g are given by Eqs. (101), (105), and

(106), respectively.

The correction of the RHS of Eq. (108) due to the polar-

ization current is roughly Dpl � 8biq
2
i L2

s=r2
s w3, where bi is

the ion beta value. We have evaluated Dpl for typical experi-

mental parameters in LHD, and found that the influence is

negligibly small in comparison with the other terms in Eq.

(108). Similarly, the influence of the anomalous viscosity

and the neoclassical viscosity on Eq. (108) is negligible. The

toroidal direction of the equilibrium bootstrap current in stel-

larators is mainly in the opposite direction in comparison

with that in tokamaks (so does the sign of the bootstrap cur-

rent perturbation),45,49 therefore, the perturbed bootstrap cur-

rent has the stabilizing effect on the island stability. As

discussed in the Introduction, the influence of the perturbed

bootstrap current does not play an essential role in low-b
stellarators. Therefore, these effects are neglected in our

model for simplicity. However, the extension of the model

might be required in an advanced parameter regime with

high a b value and a larger ion Larmor radius.

IV. CRITERION OF ISLAND STABILITY

In the following, we consider that the ion temperature

and the electron temperature in the equilibrium are compara-

ble. In this case, the ion neoclassical viscosity dominates the

electron neoclassical viscosity, and �neo
i is assumed to show

the 1=�i dependence, i.e., �neo
i � �neo

i0 ¼ �neo
i jvh¼0. The poloi-

dal flow profile outside magnetic islands is determined by

the viscous force balance

0 ¼ l
@2vh

@x2
þ �neo

i0 ðVneo
i � vhÞ: (111)

The solution of Eq. (111) is approximately given by

vh � Vneo
i / expð�jxj=kÞ, where
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k ¼
ffiffiffiffiffiffiffiffi
l
�neo

i0

r
; (112)

is the typical scale length of flows. In the limit of k� w=2,

the flow gradient is widely formed outside magnetic islands.

While, in the limit of k	 w=2, the gradient is sharply

formed close to the separatrix. In both limits, the gradient is

relaxed inside magnetic islands with the scale length w=2.

Therefore, Eq. (110) at the rational surface is reduced to a

zero dimensional equation

@vhjr¼rs

@t
¼ khsv2

Asw
3

512L2
s

D0s þ
2l
wd
ðVneo

i0 � vhjr¼rs
Þ

þ �neo
i0 ðVneo

is � vhjr¼rs
Þ; (113)

with

d ¼ k ðk� w=2Þ
w ðk	 w=2Þ;



(114)

where Vneo
is ¼ Vneo

i ðrsÞ is the perturbed neoclassical flow ve-

locity at the rational surface and Vneo
i0 is the unperturbed neo-

classical flow velocity at the rational surface. It is easily

confirmed that the second term dominates the third term on

the RHS of Eq. (113) if k	 w=2, and vice versa. Therefore,

it is convenient to define

anomalous viscosity� dominant regime: k� w=2;

neoclassical viscosity� dominant regime: k	 w=2:

Then, simplified and normalized model equations are

S
dŵ

dT
¼ �D0�

D00
þ ŵ2

v

ŵ2
cos DHþ D̂

ŵ
; (115)

dDH
dT
¼ x̂; (116)

dv

dT
¼ �Mŵŵ2

v sin DHþ l̂

ŵd̂
ðV̂0 � vÞ þ �̂ðV̂ s � vÞ; (117)

with

d̂ ¼ k̂ ðk̂ � ŵ=2Þ
ŵ ðk̂ 	 ŵ=2Þ;



(118)

where variables are normalized as ŵ ¼ w=rs, ŵv ¼ wv=rs,

k̂ ¼ k=rs, and T ¼ t=sA, and parameters are defined by

sA ¼ rs=vA, v ¼ vhjrs
=vA, l̂ ¼ 2lðsA=r2

s Þ, V̂0 ¼ Vnc
i0 =vA, V̂ s

¼ Vnc
is =vA, x̂ ¼ xsA, x ¼ khsðVneo

is þ v�eðrsÞÞ, �̂ ¼ �neo
i0 sA,

S ¼ I1ðsR=sAÞ=ðrsD
0
0Þ, and M ¼ ð�D00khsr

4
s Þ =ð512L2

s Þ. Here,

D̂ and D0� include the curvature effects, and we will specify

these parameters in the following subsections.

A. Self-healing threshold

To evaluate a criterion of the self-healing, i.e., the spon-

taneous shrinkage of locked magnetic islands, we assume

that the following conditions are satisfied: w � wc;i > wc;e,

x̂ ¼ 0, v¼ 0. The model equations for large magnetic

islands in the steady state are reduced to

0 ¼ �D0�1
D00
þ ŵ2

v

ŵ2
cos DHþ D̂1

ŵ
; (119)

0 ¼ �Mŵŵ2
v sin DHþ l̂

ŵd̂
V̂0 þ �̂V̂ s; (120)

with

D0�1 ¼ D00; (121)

D̂1 ¼
ð2þ I3ÞDe

ð�D00rsÞ
; (122)

where we have considered Eqs. (58) and (61). Using Eqs.

(119) and (120), we obtain

FðŵÞ ¼ ŵ8

ŵ4
v

1� D̂1

ŵ

� �
þ 1

M2ŵ4
v

l̂ŵ

d̂
V̂ 0þ �̂V̂ sŵ

2

� �
� ŵ4 ¼ 0:

(123)

At the critical value of ŵv, below which magnetic islands

start to rotate and shrink, the condition dF=dŵ ¼ 0 is also

satisfied since the minimal value of ŵv is on the ŵv-axis. To

approximately solve F¼ 0 and dF=dŵ ¼ 0, D̂1 is used for a

small parameter, and the variables are expanded as

ŵ ¼ ŵ0 þ ŵ1, DH ¼ DH0 þ DH1, and ŵv ¼ ŵv0 þ ŵv1.

In the anomalous viscosity-dominant regime, where

the fourth term on the RHS of Eq. (123) is negligible, solutions

are given by ŵ0 ¼ ŵv0=21=4, ŵ1 ¼ 3D̂1=16, DH0 ¼ p=4,

DH1¼ 2ŵ1=3ŵ0, ŵv0 ¼ 21=4ðl̂�̂V̂
2

0=M2Þ1=8
, and ŵv1 ¼�21=4

D̂1=4. The self-healing criterion is written by the RMP ampli-

tude at the edge boundary BRMP ¼ khawa=a, where kha ¼ m=a,

such that

Bheal
RMP

B0

¼ Bheal
RMP0

B0

þ Bheal
RMP1

B0

; (124)

Bheal
RMP0

B0

¼ a1L
l̂�̂ V̂

2

0

M2

 !1=4

; (125)

Bheal
RMP1

B0

¼ �a2LD̂1

l̂�̂V̂
2

0

M2

 !1=8

; (126)

where L ¼ ð1=16Þðkhar2
s =LsÞða=rsÞm, a1 ¼ 21=2, a2 ¼ 2�1=2.

In the neoclassical viscosity-dominant regime, where

the third term on the RHS of Eq. (123) is negligible, solu-

tions are ŵ0 ¼ ŵv0=31=4, ŵ1 ¼ D̂1=4, DH0 ¼ cos�1ð1=
ffiffiffi
3
p
Þ,

DH1 ¼ 21=2ŵ1=3ŵ0, ŵv0 ¼ ð31=4=21=6Þð�̂V̂ s=MÞ1=4
, and

ŵv1 ¼ �31=4D̂1=6. Again, the self-healing criterion is writ-

ten by the RMP amplitude such that

Bheal
RMP

B0

¼ Bheal
RMP0

B0

þ Bheal
RMP1

B0

; (127)

Bheal
RMP0

B0

¼ a3L
�̂ V̂ s

M

� �2=3

; (128)
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Bheal
RMP1

B0

¼ �a4D̂1L
�̂V̂ s

M

� �1=3

; (129)

where a3 ¼ 2�1=331=2 and a4 ¼ 2�1=63�3=4.

Above results clearly show that the self-healing thresh-

old is shifted by the curvature effect.

B. Penetration threshold

To evaluate a criterion of the penetration RMP, i.e., the

back transition of the self-healing, we assume w � wc;e

< wc;i, x̂ ¼ x̂0 þ kv, V̂ s ¼ V̂ 0, where x̂0 ¼ sAkhsðVneo
i0

þ v�e0Þ, k ¼ khsrs ¼ m, and v�e0 is the unperturbed electron

diamagnetic drift velocity. The model equations for healed

magnetic islands are reduced to

S
dŵ

dT
¼ �D0�2

D00
þ ŵ2

v

ŵ2
cos DHþ D̂2

ŵ
; (130)

dDH
dT
¼ x̂0 þ kðv� V̂0Þ; (131)

dv

dT
¼ �Mŵŵ2

v sin DHþ l̂

ŵd̂
þ �̂

� �
ðV̂0 � vÞ: (132)

with

D0�2 ¼ D00 þ I4

De

wc;e
þ Di

wc;i

� �
; (133)

D̂2 ¼
2D

ð�D00rsÞ
; (134)

where we remind D ¼ De þ Di. If the RMP amplitude is

small enough, Eqs. (130)–(132) describe small oscillating

(rotating) islands with unlocked flows. When the RMP ampli-

tude reaches a critical value, the J � B force starts to damp

flows, which slows down the island rotation and triggers the

sudden island growth. To evaluate the criterion, we consider

that the time average of v is V̂0, then the time-average island

phase evolves as x̂0T. If magnetic islands are stable in the ab-

sence of the RMP even for the island width close to the linear-

layer width dlin, i.e., D0�=D
0
0 þ D̂2=dlin < 0, the second term

on the RHS of Eq. (130) is dominant for the island evolution,

and islands approximately evolves as

ŵ ¼ ŵxjsinðx0TÞj1=3; (135)

where ŵx ¼ ð3ŵ2
v=Sx̂0Þ1=3

.

In contrast, if magnetic islands are unstable even in the

absence of RMP, the time-average island width becomes

ŵD ¼
D̂2D

0
0

D0�2
: (136)

In the following, the force balance is discussed in the

different viscosity regime. First, we consider the anomalous

viscosity-dominant regime. The locking of flows is triggered

when the maximum J � B force overcomes the maximum

viscous force. Substituting Eq. (135) into Eq. (132) gives the

penetration threshold

Bpen
RMP0

B0

¼ a5LðSx̂0Þ2=5 l̂�̂V̂
2

0

M2

 !3=10

; (137)

where a5 ¼ 3�2=5 and the subscript “0” of Bpen
RMP0 indicates

that the threshold is reproduced in the case of D¼ 0. Simi-

larly, substituting Eq. (136) into Eq. (132) gives

Bpen
RMP

B0

¼ L
D0�2

D̂2D
0
0

 !2
l̂�̂V̂

2

0

M2

 !1=2

: (138)

Next, we consider the neoclassical viscosity-dominant

regime. Substituting Eq. (135) into Eq. (132) gives

Bpen
RMP0

B0

¼ a6LðSx̂0Þ1=4 �̂V̂0

M

� �3=4

; (139)

where a6 ¼ 3�1=4. Finally, substituting Eq. (136) into Eq.

(132) gives

Bpen
RMP

B0

¼ LD0�2
D̂2ð�D00Þ

�̂V̂0

M
: (140)

It is remarkable that the penetration threshold is essen-

tially modified when magnetic islands are nonlinearly desta-

bilized by the curvature effect. Note that such modification

is effective when ŵD overcomes ŵx.

C. Hysteresis characteristics

Figure 1 shows the schematic stability diagram of RMP-

induced magnetic islands in the space of D and BRMP, using

the various thresholds derived in Subsections IV A and IV B,

where De ¼ Di ¼ D=2 is assumed for simplicity. The dia-

gram is almost the same for the anomalous viscosity-

dominant regime and the neoclassical viscosity-dominant re-

gime. In Fig. 1, D ¼ D1 is determined by ŵD ¼ ŵx. In Fig.

1, hysteresis characteristics of the island state is clearly

observed, i.e., once locked magnetic islands are healed, suffi-

ciently larger RMP amplitude is necessary to excite locked

magnetic islands. In opposite, the self-healing does not take

place even below the penetration threshold. In the presence

of the strong curvature effect, the self-healing tends not to

take place, while the penetration tends to occur.

FIG. 1. Schematic diagram of nonlinear states of magnetic islands regime in

a ðD;BRMPÞ space.
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In the following, to evaluate the magnitude for the hyster-

esis, we only consider the low-b limit in the following, where

the curvature effect is negligible. In the anomalous viscosity-

dominant regime, coupling Eq. (125) to Eq. (137) gives

Bpen
RMP0

B0

¼ a7

S2x̂2
0

L

� �1=5
Bheal

RMP0

B0

� �6=5

; (141)

where a7 ¼ a�6=5
1 a5, whereas, in the neoclassical viscosity-

dominant regime, coupling Eq. (128) to Eq. (139) gives

Bpen
RMP0

B0

¼ a8

V̂0

V̂ s

� �3=4
S2x̂2

0

L

� �1=8
Bheal

RMP0

B0

� �9=8

; (142)

where a8 ¼ a�9=8
3 a6. Note that V̂0=V̂ s � 1. If the factor

S2x̂2
0=L is much larger than unity, Bpen

RMP0 is larger than

Bheal
RMP0. It is remarkable that S2x̂2

0=L is independent from the

detailed modeling of the viscosity. Here, we assume Te ¼ Ti,

scale lengths of the density and the temperature gradients are

of order rs, D00 � �2khs, rs=a is of order unity, V̂
neo

is � V̂
neo

i0

and the anomalous viscosity coefficient is approximated by

the Bohm-type diffusion coefficient ðfl=16ÞðcTi=eB0Þ or

gyro-Bohm-type diffusion coefficient ðfl=16Þðqi=rsÞðcTi

=eB0Þ, where fl is a fitting parameter. We introduce dimen-

sionless parameters: the normalized ion collisionality ��
¼ �iðrs=vtiÞ, the normalized ion Larmor radius q� ¼ qi=rs,

and the normalized ion skin depth d ¼ c=ðxpirsÞ, where vti is

the ion thermal velocity and xpi is the ion plasma oscillation

frequency. Each parameter is measured at the rational sur-

face. The index of the hysteresis scales as

S2x̂2
0

L
¼ c1�t�

�1=2
� q2

�s
�1d�4; (143)

where c1 ¼ 0:0229� n�1A and A is the mass number of the

hydrogen. The self-healing and penetration thresholds of the

RMP amplitude in the anomalous viscosity-dominant regime

are rewritten as

Bheal
RMP0

B0

¼ c2�
1=4
t �

3=8
h b1=2

i ��1=4
� qk=4þ3=4

� s0; (144)

Bpen
RMP0

B0

¼ c3�
1=10
t �

1=20
h b9=20

i ��7=10
� q3k=10þ1

� s�1=5d�1=5; (145)

where c2 ¼ 1:06� f 1=4
l , c3 ¼ 0:170� n�1=5A1=5f 3=10

l , and

k ¼ 0ðk ¼ 1Þ indicates the Bohm-type (gyro-Bohm-type)

modeling of the anomalous viscosity. Whereas, those in the

neoclassical viscosity-dominant regime are rewritten as

Bheal
RMP0

B0

¼ c4�t�hb
2=3
i ��2=3

� q2=3
� s�1=3; (146)

Bpen
RMP0

B0

¼ c5�
1=4
t �

9=8
h b3=4

i ��1
� q�s

�1=2d�1=2; (147)

where c4 ¼ 4:86� n�1=3 and c5 ¼ 1:96� n�1=2A1=8. Criteria

of arbitrary dimensionless parameters for the self-healing

and penetration for the fixed RMP amplitude are easily

obtained by solving the Eqs. (144)–(147) for the requiring

parameters.

Figure 2 shows the stability diagram of RMP-induced

magnetic islands in the space of bi and ��, using Eqs. (144)–

(147). The transition from the anomalous viscosity-dominant

regime to the neoclassical viscosity-dominant regime occurs

at k̂ ¼ ŵ=2. For the suppressed islands, ŵ ¼ ð3ŵ2
v=Sx̂0Þ1=3

and k̂ ¼ ŵ=2 give the transition point ��1 ¼ 2:46

�106n�2A�1f�3k
l �t�

9=2
h q�3k�5

� s�2d̂
4ðBRMP=B0Þ2. Whereas, for

locked magnetic islands comparable to the vacuum islands,

ŵ ¼ ŵv and k̂ ¼ ŵ=2 give the transition point

��2 ¼ 5
ffiffiffi
p
p

f�k
l ŵvq�k�1

� . Here, bi1 (bi2) is evaluated by substi-

tuting ��1 (��2) into Eq. (145) (Eq. (144)) for the fixed RMP

amplitude and solving for bi. In Fig. 2, hysteresis character-

istics of the island state and the change of b dependency are

observed. In the small �� regime, the b dependence is due to

the direct influence of the neoclassical viscosity, while, in

the large �� regime, which is due to the anomalous viscosity

coupling to the neoclassical viscosity, as shown in Eqs. (120)

and (132). In particular, the b dependence for the self-

healing threshold is strongly enhanced in large b regime.

V. NUMERICAL ANALYSIS

Here, Eqs. (53), (56), (57), (101), (108), (109), and

(110) are numerically solved for the typical parameters in

the LHD: R0 ¼ 3:6½m�, a ¼ 0:7½m�, l¼ 2, M¼ 10,

B0 ¼ 1:5½T�, �h ¼ �haðr=aÞl, �ha ¼ 0:4, i ¼ 0:4þ 1:2ðr=aÞ4,

n0 ¼ 2� 10�19½m�3�, Ti0 ¼ Te0 ¼ T0½1� ðr=aÞ2� with T0 ¼
1½keV� and bs ¼ 0:10½%�, where bs is the b value at the

rational surface. The boundary condition of the poloidal flow

velocity is vhðr ¼ 0Þ ¼ vhðr ¼ aÞ ¼ 0. In our parameters, the

ion neoclassical viscosity dominates the electron neoclassi-

cal viscosity in Eq. (110), i.e., �neo
i � �neo

e , and poloidal

flows are in the direction of the ion neoclassical flows.50

Moreover, �neo
i shows the 1=�i dependence, which is consist-

ent with the assumption made in Sec. IV. The rational sur-

face is ¼ 1 is located at rs=a ¼ 0:84 and magnetic islands

and RMP have mode numbers ðm; nÞ ¼ ð1; 1Þ. The anoma-

lous diffusivities are ve
? ¼ vi

? ¼ 3½m2=s�, which are typical

values in the experiments in LHD.19 For these parameters,

aD00 ¼ �8:2, the tearing mode is in the visco-resistive re-

gime,8 where the visco-resistive linear-layer width is given

by dVR=a ¼ 6:3� 10�3, wc;i ¼ 6:8� 10�2, and wc;e ¼ 3:1
�10�2. To evaluate the perturbed equilibrium temperature

Ta0, the local heat balance near magnetic islands Eq. (84)

FIG. 2. Schematic diagram of nonlinear states magnetic islands in a ðbi; ��Þ,
where D¼ 0 is considered as a typical low-b case.
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should be solved, however, this is quite time-consuming.

The solution equations (87) and (89) indicate that the tem-

perature profile of the a species is flattened near magnetic

islands if w� wca. Therefore, we consider

eTa0 ¼ Ta0 �
T0a0sx

1þ ð2x=wÞp1

wp2

2wp2 þ wp2
ca
; (148)

for a ¼ i; e, where T0a0s ¼ T0a0ðrsÞ, p1 ¼ 4, and p2 ¼ 2 are

chosen. The anomalous viscosity and the RMP amplitude are

used for parameter scan. We set w ¼ dVR in case of

w < dVR, since the nonlinear theory is applicable to cases

with w > dVR.

First, we examine simulations with ramp-up/down RMP

amplitudes. In the ramp-up phase, BRMP=B0 is linearly

increased from zero to 10�3, then, in the ramp-down phase,

BRMP=B0 is linearly decreased from 10�3 to zero, where the

total time of the change in BRMP=B0 is 10½s� for each phase.

Since 10½s� is sufficiently longer than the time scale of the

island growth and rotation, results might reproduce satura-

tion states in many simulations with fixed RMP amplitudes.

Figure 3 shows the RMP amplitude dependence of the

magnetic island width. In the early ramp-up phase, magnetic

islands are rotating and the island growth is suppressed by

the time-periodical phase shift between the islands and vac-

uum islands. In the suppressed state, the magnetic island

width rapidly grows and damps to the linear-layer width, and

this cycle is repeated as described in Eq. (135). When the

RMP amplitude reaches a sufficiently large value, the pene-

tration suddenly occurs and large locked islands comparable

to vacuum islands are excited. In the present parameters, the

curvature parameter is D ¼ 0:028, which is small to excite

the curvature-driven magnetic islands. Therefore, the curva-

ture hardly affects the suppressed state and the penetration

threshold. In the early ramp-down phase, large locked

islands are maintained. When the RMP amplitude becomes

sufficiently small, the viscous force overcomes the J � B
locking force, and the locking of poloidal flows is not sus-

tained. Then, islands start to rotate and transit to the sup-

pressed state, which is the self-healing of islands by poloidal

flows. Extended view of Fig. 3 is shown is Fig. 4.

Figure 5 shows the radial profile of poloidal flows near

magnetic islands for D ¼ 0:028 and l ¼ 3½m2=s�, where the

initial island width is given by w ¼ wv. In Fig. 5, to demon-

strate the self-healing mechanism by poloidal flows, we

amplify the neoclassical velocity in Eq. (110) as

Vneo
a ! fVVneo

a ; (149)

for a ¼ i; e, where fV is the amplification factor. In the cases

with fV ¼ 0:5; 1; 1:5, poloidal flows are damped by the J � B
force near magnetic islands, and the damped poloidal flows and

the large locked islands are maintained. While, in the case with

fV ¼ 2, the poloidal flow velocity is large enough so that the

viscous force overcomes the J � B force, and the final state is

characterized by unlocked flows and small rotating islands.

Figure 6 shows the stability diagram of magnetic islands

in a space of the anomalous viscosity coefficient and the RMP

amplitude, where D ¼ 0:028. It is remarkable that the self-

healing occurs in the small anomalous viscosity limit. In the

FIG. 3. RMP amplitude dependence of the saturated magnetic island width,

where the curvature parameter is D ¼ 0:028 and the anomalous viscosity

coefficient is l ¼ 3½m2=s�. The dashed line shows the magnetic island width

in the vacuum limit.

FIG. 4. Extended view of Fig. 4. (a) Island width and (b) island phase in the

ramp-up phase, and (c) island width and (d) island phase in the ramp-down

phase.

FIG. 5. Radial profile of the poloidal flow velocity near magnetic islands for

D ¼ 0:028, l ¼ 3½m2=s�, and fV ¼ 0:5; 1; 1:5; 2:0, where fV is the amplifica-

tion factor of the neoclassical flow velocity. Island regions for the locked

flows and an unlocked flow are shown by the long and short double-headed

arrows, respectively.
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preceding works,7–9 the viscous force is assumed to be driven

by the anomalous viscosity coupling the flow gradient just

outside the separatrix, which indicates that the self-healing

does not occur in the small anomalous viscosity limit. While,

in our model, the radial profile of poloidal flows across mag-

netic islands is taken into account, in consequence, the neo-

classical viscosity inside magnetic islands works as a restoring

force and triggers the self-healing. This mechanism is consist-

ent with the discussion in Sec. IV, where the self-healing and

penetration thresholds in the neoclassical viscosity-dominant

regime, Eqs. (127), (139), and (140), are independent from the

anomalous viscosity.

To examine the influence of the curvature, we amplify

the curvature in Eqs. (53) and (101) as

jh ! fjjh; (150)

where fj is the amplification factor and fj ¼ 0� 5 is consid-

ered. The average radial curvature Eq. (36) is given in the

limit of the helical symmetry. The operation Eq. (150)

mimics the inward and outward shifts of the magnetic axis

position and the control of the effective curvature. For fj ¼ 2

and fj ¼ 4, the RMP amplitude dependence of the magnetic

island width is shown in Fig. 7. In these cases, the curvature-

driven magnetic islands are excited even in the absence of

RMP, and the self-healing and penetration thresholds are

shifted from that in the case of fj ¼ 1 in Fig. 3. Figure 8

shows the stability diagram of magnetic islands in a space of

the curvature parameter and the RMP amplitude. Figure 8 is

similar to Fig. 1 and is consistent with the discussion in Sec.

IV, i.e., the self-healing threshold monotonically depends on

D, while, the penetration threshold weakly depends on D in

the small D limit but becomes sensitive to D when the width

of the curvature-driven islands overcomes the maximum

width of oscillating islands by RMP.

VI. DISCUSSION

Our model of poloidal flows Eq. (110) is based on the

balance between the J � B force (torque) and the viscous

force (torque). The modeling of the J � B force and the

anomalous viscosity are basically the same as those in toka-

maks.7–9 A different point is that the neoclassical viscosity

due to the helical trapped particles is taken into account.24–28

In tokamaks, the non-axisymmetric magnetic field perturba-

tion by RMP drives the so-called neoclassical toroidal

viscosity.51 While, in stellarators, the ambient magnetic

field has the considerable non-axisymmetric component

(jBhj=B0 � 10�1), which dominates the influence of RMP.

As a result, neoclassical damping rate due to RMP in toka-

maks depends on the magnetic island width, while, that in

stellarators is independent from the island width but depends

on the magnitude of the helical ripple. Therefore, although

the force (torque) balance is commonly formulated in both

tokamaks and stellarators, the parameter dependence of crite-

ria is different. In this study, the average curvature effect is

newly considered, where the effect is stabilizing in toka-

maks, while, that is destabilizing in stellarators. Since the av-

erage radial curvature typically dominates the average

FIG. 7. RMP amplitude dependence of the saturated magnetic island for (a)

D ¼ 0:056 and (b) D ¼ 0:112, where l ¼ 3½m2=s� and fj is the amplification

factor of the average curvature.

FIG. 6. Stability diagram of magnetic islands in a space of the anomalous

viscosity coefficient l and the RMP amplitude BRMP=B0, where D ¼ 0:028. FIG. 8. Stability diagram of magnetic islands in a space of the amplified cur-

vature parameter D and the RMP amplitude, where l ¼ 3½m2=s�. The origi-

nal value of D is indicated by an arrow.
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toroidal curvature in stellarators, the influence of the curva-

ture is more important than that in tokamaks.

In the following, our results are qualitatively compared

with the experimental observations in LHD. The locking

(unlocking) of poloidal flows and the excitation (annihila-

tion) of magnetic islands are simultaneously observed,19,22

and these facts support that the locking of poloidal flows by

RMP-induced J � B is essential for the island stability. The

phase flip of the magnetic diagnostics indicates that magnetic

islands start to rotate and shrink at the onset of the self-

healing (Fig. 8 in Ref. 21). According to the theoretical pre-

dictions, Eqs. (144) and (146), the critical RMP amplitude

for the self-healing shows the weak positive dependence on

the b value, which is consistent with the experimental results

(Fig. 4 in Ref. 20). In the experiments, the self-healing

threshold in a parameter space of the b value and the normal-

ized collisionality with a fixed RMP amplitude shows mono-

tonic positive dependence (Fig. 8 in Ref. 21), which is also

consistent with our results. Our numerical results in a typical

parameter regime of LHD show that the magnetic island

width at the penetration is of order 10[cm], which is the

value often observed in experiments. Moreover, the island

width after the penetration is often larger than the vacuum

island width,21 which might be explained by the unfavorable

curvature effect in our model. All of these similarities might

justify our modeling. However, concerning the hysteresis

characteristics and the curvature effect, experimental data

are not sufficiently accumulated to check our modeling. In

addition, an extended analysis with finite toroidal current is

necessary to discuss the island bifurcation phenomenon in

the low magnetic shear.52

VII. SUMMARY

In this study, a nonlinear theoretical model of magnetic

islands and poloidal flows in a sterallator plasma is revisited.

We first introduce a fluid model with neoclassical viscosity

and effective curvature in stellarators, where the neoclassical

viscosity is calculated by radial particle fluxes due to helical

trapped particles, and the effective curvature is given by the

conventional toroidal averaging method. The asymptotic

matching method gives generalized Rutherod equations of

the magnetic island width and phase angle in the presence of

RMP and the curvature effect. An evolution equation of the

poloidal flow across magnetic islands includes the RMP-

induced J � B force, the neoclassical viscosity, and the

anomalous viscosity.

Using the model, we obtain criteria of the self-healing

of locked magnetic islands and the penetration thresholds of

RMP. Scalings of them with dimensionless parameters are

also derived. The difference between two criteria gives rise

to hysteresis characteristics. In analyses, the poloidal flow

profile is categorized into those in the anomalous viscosity-

dominant regime and the neoclassical viscosity-dominant

regime. In the former regime, the coupling of anomalous

momentum diffusion and the poloidal flow originally excited

by the neoclassical viscosity forces locked magnetic islands

to rotate and triggers the self-healing. In the latter regime,

it is newly found that the self-healing can be driven by the

neoclassical viscosity even in the absence of the anomalous

viscosity. The self-healing mechanism without the anoma-

lous viscosity is due to the neoclassical viscosity inside mag-

netic islands. In each regime, the penetration occurs when

the RMP amplitude is sufficiently large so that the RMP-

induced J � B force dominates the viscous force. In the pres-

ence of the unfavorable curvature, the maximum island

width is increased and the criteria of the self-healing and the

penetration are modified, where the self-healing tends not to

take place, while the penetration tends to occur. The self-

healing threshold is monotonically shifted by the curvature

effect. The penetration threshold is less-sensitive to the cur-

vature effect in the small curvature limit, while that becomes

sensitive when the curvature-driven tearing mode becomes

unstable.

The model is also numerically solved in a typical param-

eter regime in the LHD. Using ramp-up/down simulations of

RMP, the sudden penetration of RMP and the self-healing of

magnetic islands are observed, where existence of the hyster-

esis characteristics is identified. A parameter which charac-

terizes the magnitude of the hysteresis is found. The

influence of the curvature effect is checked by increasing

effective curvature. The simulation results are consistent

with the theoretical prediction.

Finally, difference between our model in stellarators and

the standard model in tokamaks is discussed. Our results are

also qualitatively compared with the experimental observa-

tions in LHD.

In future works, detailed comparison with the experi-

mental observations are necessary. The poloidal flow profile

should be analyzed to check the viscosity regime. The influ-

ence of the average curvature is desired to be checked, by

controlling the magnetic axis position, for example.
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