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Nondissipative kinetic simulation and analytical solution of three-mode
equations of the ion temperature gradient instability
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A nondissipative drift kinetic simulation scheme, which rigorously satisfies the time-reversibility, is
applied to the three-mode coupling problem of the ion temperature gradié®yf instability. It is

found from the simulation that the three-mode ITG system repeats growth and decay with a period
which shows a logarithmic divergence for infinitesimal initial perturbations. Accordingly, time
average of the mode amplitude vanishes, as the initial amplitude approaches zero. An exact solution
is analytically given for a class of initial conditions. An excellent agreement is confirmed between
the analytical solution and numerical results. The results obtained here provide a useful reference for
basic benchmarking of theories and simulations of the ITG modes20@ American Institute of
Physics[S1070-664X00)02003-9

I. INTRODUCTION merical and analytical solutions of the three-mode equations.

) . Results of the present study give a useful reference for
Understanding the anomalous heat transport mechanisglnchmarking of various simulations and theories which are

in high-temperature plasmas has been a central subject E]'nployed to investigate more complicated systems.
magnetic confinement fusion studies. The ion temperature '1ne remainder of the present paper is organized as fol-
gradient(ITG) instability"? is widely recognized as one of |55 |n Sec. II, we will analytically derive an exact solution
the candidates for the cause of the anomalous ion thermgl, 5 certain class of initial conditions from the three-mode
transport in the core of tokamaks. Many first-principle simu- 1t equations. Section 11l gives the numerical simulation
lations, as well as theoretical predictions, have been carrieflq its of the three-mode coupling of the ITG modes, where
out on ITG turbulence transport. Among them, they newly developed drift kinetic simulation method is also

. . _6 . _10 . .
gyrolsmetu? and gyrofluid™® simulations have largely pefly explained. Comparisons of the numerical and theoret-
contributed to development of transport modeling in the 1ast.,| results are also presented in Sec. Ill. Finally, we sum-
decade. However, they have a discrepancy in the ion thermal . -« the results in Sec. IV.

diffusivity by a factor of two or mor&:! Since the reason
for the difference between the two methods has not yet been
completely understood, simple nonlinear problems, for
which reliable solutions with sufficient accuracy are establl- GOVERNING EQUATIONS AND ANALYTICAL
lished, are preferable for benchmark studies of the numericatOLUTIONS
schemes. A. Model configuration

The three-mode coupling of the ITG motias well as
the drift waves:>~**which is represented by a reduced set of
the drift kinetic equation in a two-dimensional slab geom-
etry, has been used to explain qualitatively a nonlinear satu- ¢ q
ration mechanism in the gyrokinetic simulatidiThe three- S HuVif+vese Vi mE15, =0 (1)
mode system has also been examined in comparison of the
gyrokinetic and gyrofluid simulatiohs and in a test of a where the long wavelength limik( p;<1) is assumed, and
nonlinear kinetic fluid closure methdd.In the pioneering Vegxg=EXB/B2. v is the parallel velocity. Here, we con-
work by Lee et al,'? they derived a nonlinear dispersion sider the same model as that used in comparison of the gy-
relation of the three-mode drift waves. However, so far, norokinetic and the gyrofluid simulatiohsexcept for trunca-
exact solution of the three-mode coupling equations has bedion of the distribution function and a/2 phase difference in
obtained analytically, except for a steady state solution with (direction of density and temperature gradignthe same
the Maxwellian velocity distribution? The three-mode ITG model was also used by Mattor and Parker for examining a
and drift wave systems have also been studied by means abnlinear kinetic fluid closur& A rectangular domain of
Eulerian drift kinetic(Vlasoy) simulations'*~**The Vlasov  L,XL, is considered in the-y plane with a uniform exter-
simulation results, however, seem to suffer from numericahal magnetic field perpendicular to tkeaxis. Neglecting the
dissipation, because a dissipative integrator such as thgarallel nonlinearity and expanding density and temperature
predictor-corrector is employed for the collisionless drift ki- scale lengthl,, and L+, of an assumed Maxwellian back-
netic equation. Therefore, it would be meaningful to developground,Fy,(v), the drift kinetic equation for ions, Ed1),
a nondissipative Vlasov simulation method, and to find nudeads to

We start from the electrostatic drift kinetic equation in a
slab geometry,
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<9t~f+@v<9y?—( y b0 T x¢07y7) The Iinearize'd version of the three-mode equations has a
linear solution of the form [f(v,t),h(v,t),é(t)]
=—dy[1+(v>—1) 712+ OvIFy(v), (2 =[f(v),h.(v),d ]exp(iwt). Here, the linear eigenfunc-

- o . . ftions are given b
wheref denotes a perturbed distribution function normalized g y

by T=T'L,v./pino. Prime means a dimensional quantity.  fL(©)=f(v)+ifi(v)

vyi, pi, andng are the ion thermal velocity, the ion gyrora- KG(v)

dius, and the background plasma density.is defined as =

®=0L,/p;, where an inclination of the magnetic fiel (0 —kOv)+iy

<1 is assumed. Other quantities are normalized xas kG(v)[(w,—kOv)—iy]

=X'Ip;, y=Yy'lpi, v=v'lvy, t=t'vy/L,, m=L,/Lt, = (0,—k@v)2+ 72 (13)
and p=e¢'L,/T,p; with the elementary charge and the '

background ion temperatuiig (=mivﬁ; m; means the ion h (v)=0, and ¢ =1(normalization, (12

mass. We have takefM; =T, throughout this paper. We also
assume the adiabatic electron response and the quasineut
ity. Thus,

K nd the complex eigenfrequenay= w,+ivy is determined
Sy the dispersion relation

k
J dof (v)—J dv ————— o) =1, (13

J fdv=¢. 3 —kO®uv)+iy

We employ the periodic boundary conditions in bath
andy directions. Thenf and ¢ can be written as

wherey>0 is assumed.

7(x,y,v,t)=z 'fm’n(v,t)ei(kxx-#kyy)’ (4) C. Nonlinear solution
mh Now, let us consider a certain class of exact solutions of
, the nonlinear three-mode ITG equations, which are written in
XY, 1) =2 (1€ ®eriy), (5)  terms of the real and imaginary parts of the eigenfunction
mh fL(v) and the real eigenfrequenay, as

wherek,=27m/L, andk,=2mn/L, for m=0,+£1,+2,... Fo.0)=[a(t) fL,(0)+ib(D) fLi(v)Jexp(—iwit),

andn=0,=1,*2,.... Wealso takeL,=L,. For studying

the three-mode coupling, we only keem,f)=(*=1,+1) h(v,t)=c(t)f (v), (14)
and (+2,0) modes with the following symmetry conditions .

Of ?1'1:?_1’1:?1_1:?’:1’_1 and ?2‘0:?’:2‘0. AISO, d)(t):a(t)e)(q_lwrt)’

Re(~fz,0)=O. wherea(t), b(t), andc(t) are real-valued functions of the

time t. The linear solution given by Eq$11)—(13) corre-
sponds to the case in whidch(t) =b(t)x<exp(t) and c(t)
=0. Substituting these into Eq&)—(8) and using Eq(11),
we obtain the ordinary differential equations for
We derive exact nonlinear solutions of the three-modd a(t),b(t),c(t)],

B. Three-mode equations and linear solution

problem of the ITG modes. Hereafter, in Sec. 'fh,l, da/dt=vb
Im("fizvo), and ¢, ; are, respectively, denoted By h, and ¢ )
for simplicity. From Egs.(2) and (3) the three-mode ITG db/dt=ya—2k-ac, (15
system is described By de/di=ak2ab
. . 2 _ .
(9 +1kOV)f(v,1) +2ik ‘/’(t)h(v't)__'k¢(t)G(v)'6 These equations have two types of stationary solutions,
©®) which are written as
— 2
aih(v,H=4k"Im[$* (O (v, 1], @ (a,b,c)=(0,0c) and (a,b,c)=(a;0,7/2k?), (16)
(t)= J’ dvf(v,0) ) respectively, whereg and cg are arbitrary constants. The
former solution in Eq(16) is thec-axis, and the latter one is
wheref and ¢ are complex-valued whilé is real-valued. parallel to thea-axis. From Eq(15), we easily find
G(v) is defined as d ( 2k2
. - . o . dt c— 7& =0, (17)
(v)= 1+E(v —1)+0v [Fy(v). 9 and
We easily find d 1 02
2 —_— =
&) dt(b ZkZC) 0. (18

o, =0 (10

|f(v,t)|2+%h2(v,t)+ —h(v,t)

Also, combining these two equations, we have
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FIG. 1. An orbit of the exact solution fdf =1, k=0.1, andy; =10 in the FIG. 2. A separatrix surface of=0 for the same parameters as Fig. 1 with
(a,b,c)-phase space shown by the intersection of parabolic and elliptic .. par 2 p 9.
column surfaces which is also on a spheroid stationary solutions of (0,6,) and (@s,0,y/2k?), where two solid curves

represent typical solutions for>0 andr<O0.

d 1 y where the Jacobi elliptic functions are defined byuehi{1

gi| @+ b*+ 5= 15¢) =0, (19 —«?srfu)?,  cru=(1-srfu)¥?,  and [PU[(1-x?)(1

’ — k?x?)]"Y2dx=u. Here, the parameters, B, and x> are

which corresponds to E¢10). Thus, as shown in Fig. 1, the given by
orbit of the solution in the &,b,c)-phase space is given by

2 272
the intersection between the two surfaces, which are written b I p(p —Zr) for r>0
as 2q 29\2q
a=) 2 272 \ ' (26)
C_Lwaz_c (20) p—72r+ L p——2r for r<0
, =t 2q 29\ 2q
1/4
and (a) for r>0
2.1, 7 = 2
b +§C _WC:CZ, (21) B= a 1/4 ' ( 7)
(KZ for r<0
where C; and C, are constants. The orbit is also on the q
spheroid surface, and
1, v Y Iri
2 20 n2 e~ 2_q_ 11
a’+b + 56— 3¢ C, 2kzcl' (22) k°=1 o (29)
We also note that the stationary solutioms (0,y/2k?) with ~ respectively, where
varying a, form the central axis of the elliptic column given 2K2 4K4
by Eg.(21), which is also shown in Fig. 2. p=1- —co+ —5 a3, (29
Using Egs.(20)—(22), the solution of Eq(15) for the Y Y
initial condition (a,b,c){-g=(a¢,bg,Cq) can be obtained by 2k4
q=—, (30
b2=b2+ -1y (c—c )—}(cz—cz) (23 7
0 2k2 0 2 0/1 , 2k2 , 2k4 , ,
r=ag— —agCo+ —ay— bg. 31
2k2 , , 0 Y 0~0 ,y2 0 0 ( )
c=cCgt T(a —ayp), (24
g D. Orbit in (a,b,c)-phase space
an
The solutions given above are periodic functions of the
0= Bdndn Y(ay/B)—(ValB)yt] for r>0 time t. For r>0, a(t) takes any value in the range
an= Beren Yag/B)—(Val B)yt] for r<0’ B(rla)?<|a]<p, and its sign is a constant determined by

(25 the initial valueay. On the other hand, for<0, the value
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range ofa(t) is given by —B<a<p and the sign ofa  another conjugate pair, that is, the parallel coordirzatad
changes with time. Thus, the shape of the closed orbit in théhe parallel velocity. One of the simplest implicit schemes
(a,b,c)-phase space is like a butterfly fox0 (see Figs. 2 is the implicit midpoint rule,

and 9. The periodT of the solution a(t),b(t),c(t)] is writ-

Ut U= AtF([U"T T+ UM/2), (35
ten as
wheren means a time step. This scheme is apparently revers-
Z—BK( ) for r>0 ible in time. When Eq.(35) is applied to the Hamilton's
\/;7 “ equation in canonical coordinated=(q,p), it leads to a
T= : (320 canonical transform fromq",p") to (q"*,p"*1).1°
ﬁK(K) for r<0 We have employed E@35) to integrate the drift kinetic
Vay equation,
whereK (k) is the complete elliptic integral of the first kind. 1 = — At{f,H}, (36)

We find that, as 4,,bgy,c9)—(0,0,0),r—0 and — 1 )
wheref=(f""1+{")/2 and{,} means the Poisson brackets.

-1 0 _
Y _l|°9(1/|r|) for r—>+0. (33 H depends orf through the electrostatic potentigl. Al-
2y *log(1/r|) for r——0 though Eq.(36) is not a symplectic transform dfgenerated

Thus, the periodl shows the logarithmic divergence for by a particle Hamiltonian, it preserves the time-reversibility,
—0. The solutiofa(t),b(t),c(t)] stays most of the period Namely, is nondissipative. It is also noteworthy that &§),

in the neighborhood of the stationary poii®,0,0. For the  Which can be solved by iteration, is regarded as a discretized
case ofr =0, the solution is no longer periodior T=«)  form of 9f/gt=—{f,H} with second-order accuracy in time
and its orbit emerges frontapproaches jothe stationary (namely, a time-centered finite differenc€onstruction of a
point (0,0,0 for t— —oo (+=). The set of &y,by,co) sat-  fourth-order scheme is straightforward by successive opera-
isfying r=a2— (2k%y) asco+ (2k*/y?) ai—b2=0 forms a  tions of Eq.(35).2°

separatrix surface, which separates the phase space into the The nondissipative simulation scheme given above is ap-
two regions (>0 andr <0; see Fig. 2which are filled with  plied to the three-mode coupling system of the ITG modes in

T

the two different types of orbits given by Eq23)—(25). the two-dimensional shearless slab geometry. Starting with
an initial condition of
f(x,y,v,t=0)=¢eF(v)cogkx)cogky) (37)
I1l. DRIFT KINETIC SIMULATIONS . . .
for Ly=L,=2w/k, we numerically follow a time evolution
A. Simulation scheme of T in Eq. (2)

A basic scheme of our drift kinetic simulation is briefly ~ The physical parameters used here larek,=k,=0.1
presented here. It is easily found that Et). is reversible in ~ and»;=10. We have carried out several runs for differént
time. Avoiding the numerical noise inherent in the particlescanning from 0.25 to 3. Amplitude of the initial perturba-
simulation, we employ an Eulerian scheme which keeps th&0n, ¢, is also changed from 10 to 1. The box size of the
time-reversibility. A discrete spectral representation in thesimulation isL,=L, =207 with 32X 32 grid points. Spatial
phase space or discretization on numerical grids makes Egérivatives in Eq(2) are calculated in the Fourier space. The
(1) a set of ordinary differential equations. In a vector form,velocity space of—5<v<5 is discretized by 129 grid

it can be written as points. A time step is taken to h&t=0.25.
We have made convergence checks for the time step, the
d_U: F(U). (34)  resolution in the velocity space, the maximum velocity, and
dt the accuracy of integration scheme, all of which give the

In order to keep the time-reversibility of E¢f), a numerical S@me results as shown below.

time-integration scheme of EB4) should also be reversible

in time. It is well known that the symplectic scheme 01‘tenB
used for integration of a Hamiltonian system, preserving a
symplectic 2-form exactly, is nondissipative, namely, In Fig. 3, the linear frequencw, and growth ratey
time-reversiblé®’ One of the simplest examples is the leap-resulting from simulations for differer) are shown by cir-
frog integrator, which is a standard scheme in particlecular and triangular marks in comparison with the linear
simulationst® where particle motions are given by the analysis. Simulation results shown here are obtained by the
Newton-Lorentz equatiomot by drift motion of the guiding Second-order implicit scheme in E@6). Solving the linear
centey. To trace theExB drift particle motion with the dispersion relation given in the last sectipsee Eq.(13)]
time-reversibility, however, one needs to use an implicithumerically, we have calculated the theoretical values, which

symplectic method. This is because the Hamiltonianagree with the simulation results. By the Nyquist criterion,
H(x,y,z,v)=mv?/2+ep(x,y,z), for the drift motion is Wwe have also confirmed that only one eigenmode is unstable
nonseparable for perpendicular coordinateandy, which ~ for a given value of®.

are a conjugate pair of the coordinatéshere dx/dt= In Fig. 4 are plotted profiles o"fl,l for ®=1 ande
—d¢lay anddy/dt=d¢p/ax), while it is separable for the =10"° in the velocity space during the linear growth phase

. Linear results
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0.1 T p. T T T i1 (v)dv |
NS SEv-y S 1,1(v)dv
0.05 " T, . 2 IJv2fzo(v)dvI -------
. ~a 10 T T
0 F >
-0.05 . 10°
_2* -0.1 . %;
5 -0.15 - = 1072
a [=]
3 0.2 . E
0.25 . 5 4
-0. L 10
03 | 0t . =
035 L ®, (Simulation) i _6
-0. & y(Simulation) 10
-0.4 . . .
0 05 1 1.5 2 25 3 1078
e
FIG. 3. Linear frequencyd,) and growth ratdy) for different® obtained ) ] )
from simulations(mark9 and linear analysiglines) with k=0.1 and 7, FIG. 5. Amplitude evolutions of Oth-moment ¢1,1) mode (solid) and
=10. 2nd-moment of2,0) mode(dashegifor ® =1 ande =10 with k=0.1 and
=10.

att=100. Here, a phase 6, is shifted iny so thatd111S  5mnjityde is nearly equal to the initial perturbation level.
real. Amplitude off; ; (and alsof, oin Fig. 6) is normalized  After that, the growth and decay are repeated with a regular
by ¢, 1. Circular and triangular marks in Fig. 4 show the gggillation period ofT = 394.

simulation data on each grid point. Solid and dashed lines Figure 6 shows profiles 0f11 and fzo in the velocity
represent real and imaginary parts of a linear eigenfunctlogpace in the nonlinear phase. When thd) mode amplitude

of the (1,1 mode,f ,(v) andf;(v), for the eigenfrequency ked at=196. | d | O

w,+ 17, which are defined in Eq$11) and(13) in Sec. Il. In is peaked a ' m(fl'l) isappeargupper pangl On

the linear growth phas&,m is well fitted by the eigenfunc-

tion, while T, o is negligible. L5
. 1
C. Nonlinear results
A time evolution of mode amplitudes fd® =1 ande 05
=10"° is shown in Fig. 5, where the Oth-momen'ffq,f1 and -
2nd-moment of"f'zp are represented by solid and dashed = 0
lines, respectively. After the initial linear growth phase, the 05 L
amplitude of thg1,1) mode peaked dt=196 due to appear- '
ance of the nonlineaf2,0) mode. Then, thél,1) mode ex- 1k
ponentially decays with the same rate as the linear growth
phase, and reaches its minimumtat393. The minimum 15
1.5 T T T T T v
— Jir (Theory)
{ b J1i (Theory) 4 1.5 T T T T T
— Jir (Theory)
—f1; (Theor
0s L /i ( e y)
=0
[revt
05 F =
L o Re(f)att=100 7
& Im(fy) at t=100 i |
1.5 ' L ' ' -1 o Re(fy) at t=290
-4 -2 0 2 4 o Im(fy ) at t=290
-1.5 | | . | | |
M -4 -2 0 2 4
FIG. 4. Profiles of the distribution functions in the velocity space obtained v
from simulations(markg for ® =1 ande =10"° with k=0.1 andz;=10 at
t=100. Solid and dashed lines indicate the linear eigenfunction. FIG. 6. The same as Fig. 4, but for 196 (uppe) andt= 290 (lower).
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T T T T T T 500 T T T T T
6 i
&5 - 400 | -
Gy
(e}
34 N ~ 300 | .
=t ]
Z i .2
Q-t el
£ & 200 + .
2 T
<
A 100 | .
I Theory 7] Theory
O Simulation o] Simulation
0 1 1 I I I I o L A [ I I I
0 05 1 15 2 25 3 10 10° 10* 107 107 107!
S Minimum value of 1¢ 4|

FIG. 7. Peak amplitudes ap, ; for different® (marks with a theoretical

prediction of y/vak? (solid) wheres =105 with k=0.1 andz; = 10. FIG. 8. Oscillation periods found in simulations f&r=1, k=0.1, andz;

=10 depending on the initial perturbation levet (where ¢
=10510"%, ..., 1) (marks with a theoretical prediction given by E(R2)

~ (solid).

the other hand, one can see a finite amplitude ofJg)( of

which profile is scaled ag2f, ;(v). During the decay phase, _ N _ _

T, is fitted by the complex conjugate 6f(v). Neglecting ~ Fig. 8 versus the minimum amplitude 1| min, which shows
small fluctuations of ordes, therefore, the linear and non- & logarithmic dependence f on |y i|min. The analytical
linear evolutions of ; ; andf, , are described in terms df solution forr >0 given by Eq.(_32) prgdlcts th? same per!od.
andf,; as is considered in the last section. The | ¢4 1 min dependence of is easily explained by noting

The peak amplitude of, ; provides a good benchmark that a smaller initial perturbation stays for a longer time at
1,1 . . . .

for the simulation scheme, since the same test has been doH’be Ilnfear growing anhd decaying pf(])aseﬁ: Ehlus, a tl_mte atver-

by the gyrokinetic and gyrofluid codEsas well as theoreti- agt(; (IDE |¢gg approaches zero as—o, which I consisten

cal prediction$! A systematic scan fo® from 0.25 to 3 V! a.(33).

A Finally, Fig. 9 shows the two kinds of orbits in Egs.
has been made with=10"°. The peak levels are summa- .
rized in Fig. 7 with a theoretical prediction Q¥ 1| peax (23~(25) for r >0 with (ao,bo,Co) =(0.25,0,0)(uppe) and

= v/v2k? given as follows: Substitut€,;=C,=0 to Egs. r<0 with (?O’bO’CO):(0’0'25’0)“0.Wer) by solid Iine_s. we
(20) and (21) for infinitesimal initial perturbation. Since also plot circular marks representing the Vlasov simulation

da/dt=0 at the peak of the mode amplitude=0 [see Eq. _re.s_ults at every R, /v which are, respectively, begun with
(15)]. Then, one findsa=vy/v2k?, b=0, and c=v2a initial conditions of
=y/k?, which also gives the scaling of IM()=v2f,; Tra(v,t=0)=ayf (v) (upped (38
shown in Fig. 6. The simulation and the theory give the same d
peak level and scaling. an

The scaling of| ¢ 1| peai= ¥/V2k? agrees with previous T, 4(v,t=0)=ibyf i (v) (lowen). (39)
theoretical work$'! except for a factor of2. The peak am- '
plitude for® =1 is almost the same as the drift kinetic simu-
lation shown in Ref. 15. In the early work on the gyrokinetic
and gyrofluid comparisoh the peak amplitude given by the
gyrokinetic code is about 15% lower than the present result

but with the similar dependence @ The gyrofluid code T o i ;
shows an agreement at small but overestimates at larg sumed the initial conditions in Eq&38) and(39) which sat-
isfy Eq. (14), while a different type of the initial condition in

Since’f or.density and tempergture perturbatiqns were noEq. (37) has been employed for the simulations shown in
truncated in Ref. 11, more detailed benchmarking would b‘?:igs. 3-8. Nevertheless, all of the simulation results are well

desired. . . . . . .

As found in Fig. 5, after the peaking, the mode ampli_qescrlbed by. the'analypgal solution. It is becau;e, if the ini-

- . - tial perturbation is sufficiently small, only one linearly un-

tude decreases to the initial perturbation level. Thus, it IS table eigenmode in the form of E@.4) becomes dominant
considered that the oscillation period depends ore. A 9

- . o . . . tth rly time stage. Thus, the amplit illation foun
similar nonlinear oscillation, but with different period and arthe early ime stage. 1hus, the amp ude oscillation found

amplitude, was observed in a benchmark test of the nonline i Fig. S, whe_zrea>0, 'S explained by the periodic motion
kinetic fluid closuré® as well as the drift wave Hong the orbit for >0 in the (a.b,c)-phase space.

simulationst>~**In order to examine dependence of the os-
cillation period on the initial perturbation amplitude, we have
performed six runs fo® =1, changing: as 10°°, 1074, ..., We have developed a nondissipative Eulerian kinetic
1. The observed periodB in the simulations are plotted in simulation method which rigorously preserves the time-

As shown in Fig. 9, a perfect agreement is found between the
analytical solutions and the Vlasov simulation results. It is
clearly confirmed that our numerical scheme strictly pre-
serves the time-reversibility, the periodicity, and the initial
value dependence of the exact solution. Here, we have as-

IV. SUMMARY
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c nonlinear oscillation, and evolve in time along a closed orbit
which encircles the stationary solutioag(0,y/2k?) in the
phase space. This fact reflects the time-reversibility of Eq.
(2). Thus, the three-mode system never reaches a steady
state, unless the initial condition coincides with the station-
ary solutions in Eq(16). Since the solution stays most of the
period in the neighborhood of the stationary poit0,0

with the exponential time dependence, the oscillation period
has a logarithmic dependence on the initial mode amplitude.
Thus, the time average of the mode amplitude vanishes, as
the infinitesimal initial perturbation approaches zero.

The success of the present simulation, the validity of
which is confirmed by the theoretical analysis, is achieved by
a proper choice of the numerical scheme with no dissipation.
If the scheme is dissipative, it affects estimates of the oscil-
lation period and the averaged amplitude. Application of the
present numerical method to a multimode coupling system
and the gyrokinetic equations remains for future works.
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FIG. 9. Typical two orbits of solutions far>0 (upped andr <0 (lower)
followed by the Vlasov simulation results for the initial conditions given by
Egs.(38) and(39) for the same parameters as Fig. 1. The solid lines repre-
sent the analytical solutions. Circular marks show the simulation results ato
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