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A nondissipative drift kinetic simulation scheme, which rigorously satisfies the time-reversibility, is
applied to the three-mode coupling problem of the ion temperature gradient~ITG! instability. It is
found from the simulation that the three-mode ITG system repeats growth and decay with a period
which shows a logarithmic divergence for infinitesimal initial perturbations. Accordingly, time
average of the mode amplitude vanishes, as the initial amplitude approaches zero. An exact solution
is analytically given for a class of initial conditions. An excellent agreement is confirmed between
the analytical solution and numerical results. The results obtained here provide a useful reference for
basic benchmarking of theories and simulations of the ITG modes. ©2000 American Institute of
Physics.@S1070-664X~00!02003-6#
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I. INTRODUCTION

Understanding the anomalous heat transport mechan
in high-temperature plasmas has been a central subje
magnetic confinement fusion studies. The ion tempera
gradient~ITG! instability1,2 is widely recognized as one o
the candidates for the cause of the anomalous ion the
transport in the core of tokamaks. Many first-principle sim
lations, as well as theoretical predictions, have been car
out on ITG turbulence transport. Among them, t
gyrokinetic3–6 and gyrofluid7–10 simulations have largely
contributed to development of transport modeling in the l
decade. However, they have a discrepancy in the ion the
diffusivity by a factor of two or more.5,11 Since the reason
for the difference between the two methods has not yet b
completely understood, simple nonlinear problems,
which reliable solutions with sufficient accuracy are est
lished, are preferable for benchmark studies of the numer
schemes.

The three-mode coupling of the ITG mode,3 as well as
the drift waves,12–14which is represented by a reduced set
the drift kinetic equation in a two-dimensional slab geo
etry, has been used to explain qualitatively a nonlinear s
ration mechanism in the gyrokinetic simulation.3 The three-
mode system has also been examined in comparison o
gyrokinetic and gyrofluid simulations11 and in a test of a
nonlinear kinetic fluid closure method.15 In the pioneering
work by Lee et al.,12 they derived a nonlinear dispersio
relation of the three-mode drift waves. However, so far,
exact solution of the three-mode coupling equations has b
obtained analytically, except for a steady state solution w
the Maxwellian velocity distribution.14 The three-mode ITG
and drift wave systems have also been studied by mean
Eulerian drift kinetic~Vlasov! simulations.12–15 The Vlasov
simulation results, however, seem to suffer from numer
dissipation, because a dissipative integrator such as
predictor-corrector is employed for the collisionless drift k
netic equation. Therefore, it would be meaningful to deve
a nondissipative Vlasov simulation method, and to find n
9841070-664X/2000/7(3)/984/7/$17.00
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merical and analytical solutions of the three-mode equatio
Results of the present study give a useful reference
benchmarking of various simulations and theories which
employed to investigate more complicated systems.

The remainder of the present paper is organized as
lows. In Sec. II, we will analytically derive an exact solutio
for a certain class of initial conditions from the three-mo
ITG equations. Section III gives the numerical simulati
results of the three-mode coupling of the ITG modes, wh
a newly developed drift kinetic simulation method is al
briefly explained. Comparisons of the numerical and theo
ical results are also presented in Sec. III. Finally, we su
marize the results in Sec. IV.

II. GOVERNING EQUATIONS AND ANALYTICAL
SOLUTIONS

A. Model configuration

We start from the electrostatic drift kinetic equation in
slab geometry,

] f

]t
1v¹ i f 1vE3B•¹ f 1

q

m
Ei

] f

]v
50, ~1!

where the long wavelength limit (k'r i!1) is assumed, and
vE3B5E3B/B2. v is the parallel velocity. Here, we con
sider the same model as that used in comparison of the
rokinetic and the gyrofluid simulations11 except for trunca-
tion of the distribution function and ap/2 phase difference in
x ~direction of density and temperature gradients!. The same
model was also used by Mattor and Parker for examinin
nonlinear kinetic fluid closure.15 A rectangular domain of
Lx3Ly is considered in thex-y plane with a uniform exter-
nal magnetic field perpendicular to thex-axis. Neglecting the
parallel nonlinearity and expanding density and tempera
scale length,Ln and LT , of an assumed Maxwellian back
ground,FM(v), the drift kinetic equation for ions, Eq.~1!,
leads to
© 2000 American Institute of Physics
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] t f̃ 1Qv]y f̃ 2~]yf]x f̃ 2]xf]y f̃ !

52]yf@11~v221!h i /21Qv#FM~v !, ~2!

where f̃ denotes a perturbed distribution function normaliz
by f̃ 5 f̃ 8Lnv t i /r in0 . Prime means a dimensional quantit
v t i , r i , andn0 are the ion thermal velocity, the ion gyrora
dius, and the background plasma density.Q is defined as
Q5uLn /r i , where an inclination of the magnetic fieldu
!1 is assumed. Other quantities are normalized asx
5x8/r i , y5y8/r i , v5v8/v t i , t5t8v t i /Ln , h i5Ln /LT ,
and f5ef8Ln /Tir i with the elementary chargee and the
background ion temperatureTi (5miv t i

2 ; mi means the ion
mass!. We have takenTi5Te throughout this paper. We als
assume the adiabatic electron response and the quasine
ity. Thus,

E f̃ dv5f. ~3!

We employ the periodic boundary conditions in bothx

andy directions. Then,f̃ andf can be written as

f̃ ~x,y,v,t !5(
m,n

f̃ m,n~v,t !ei (kxx1kyy), ~4!

f~x,y,t !5(
m,n

fm,n~ t !ei (kxx1kyy), ~5!

wherekx52pm/Lx andky52pn/Ly for m50,61,62, . . .
and n50,61,62, . . . . Wealso takeLx5Ly . For studying
the three-mode coupling, we only keep (m,n)5(61,61)
and (62,0) modes with the following symmetry condition
of f̃ 1,15 f̃ 21,15 f̃ 1,21* 5 f̃ 21,21* and f̃ 2,05 f̃ 22,0* . Also,
Re(f̃2,0)50.

B. Three-mode equations and linear solution

We derive exact nonlinear solutions of the three-mo
problem of the ITG modes. Hereafter, in Sec. II,f̃ 1,1,
Im( f̃2,0), andf1,1 are, respectively, denoted byf , h, andf
for simplicity. From Eqs.~2! and ~3! the three-mode ITG
system is described by3

~] t1 ikQv ! f ~v,t !12ik2f~ t !h~v,t !52 ikf~ t !G~v !,
~6!

] th~v,t !54k2 Im@f* ~ t ! f ~v,t !#, ~7!

f~ t !5E dv f ~v,t !, ~8!

where f and f are complex-valued whileh is real-valued.
G(v) is defined as

G~v ![F11
h i

2
~v221!1QvGFM~v !. ~9!

We easily find

] tF u f ~v,t !u21
1

2
h2~v,t !1

G~v !

2k
h~v,t !G50. ~10!
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The linearized version of the three-mode equations ha
linear solution of the form @ f (v,t),h(v,t),f(t)#
5@ f L(v),hL(v),fL#exp(2ivt). Here, the linear eigenfunc
tions are given by

f L~v ![ f Lr~v !1 i f Li~v !

[
kG~v !

~v r2kQv !1 ig

[
kG~v !@~v r2kQv !2 ig#

~v r2kQv !21g2 , ~11!

hL~v ![0, and fL[1~normalization!, ~12!

and the complex eigenfrequencyv5v r1 ig is determined
by the dispersion relation

E dv f L~v ![E dv
kG~v !

~v r2kQv !1 ig
51, ~13!

whereg.0 is assumed.

C. Nonlinear solution

Now, let us consider a certain class of exact solutions
the nonlinear three-mode ITG equations, which are written
terms of the real and imaginary parts of the eigenfunct
f L(v) and the real eigenfrequencyv r as

f ~v,t !5@a~ t ! f Lr~v !1 ib~ t ! f Li~v !#exp~2 iv r t !,

h~v,t !5c~ t ! f Li~v !, ~14!

f~ t !5a~ t !exp~2 iv r t !,

wherea(t), b(t), andc(t) are real-valued functions of th
time t. The linear solution given by Eqs.~11!–~13! corre-
sponds to the case in whicha(t)5b(t)}exp(gt) and c(t)
50. Substituting these into Eqs.~6!–~8! and using Eq.~11!,
we obtain the ordinary differential equations fo
@a(t),b(t),c(t)#,

da/dt5gb,

db/dt5ga22k2ac, ~15!

dc/dt54k2ab.

These equations have two types of stationary solutio
which are written as

~a,b,c!5~0,0,cs! and ~a,b,c!5~as,0,g/2k2!, ~16!

respectively, whereas and cs are arbitrary constants. Th
former solution in Eq.~16! is thec-axis, and the latter one is
parallel to thea-axis. From Eq.~15!, we easily find

d

dt S c2
2k2

g
a2D50, ~17!

and

d

dt S b21
1

2
c22

g

2k2 cD50. ~18!

Also, combining these two equations, we have
 license or copyright; see http://pop.aip.org/pop/copyright.jsp
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d

dt S a21b21
1

2
c22

g

k2 cD50, ~19!

which corresponds to Eq.~10!. Thus, as shown in Fig. 1, th
orbit of the solution in the (a,b,c)-phase space is given b
the intersection between the two surfaces, which are wri
as

c2
2k2

g
a25C1 , ~20!

and

b21
1

2
c22

g

2k2 c5C2 , ~21!

where C1 and C2 are constants. The orbit is also on th
spheroid surface,

a21b21
1

2
c22

g

k2 c5C22
g

2k2 C1 . ~22!

We also note that the stationary solutions (as ,0,g/2k2) with
varying as form the central axis of the elliptic column give
by Eq. ~21!, which is also shown in Fig. 2.

Using Eqs.~20!–~22!, the solution of Eq.~15! for the
initial condition (a,b,c) t505(a0 ,b0 ,c0) can be obtained by

b25b0
21

g

2k2 ~c2c0!2
1

2
~c22c0

2!, ~23!

c5c01
2k2

g
~a22a0

2!, ~24!

and

a~ t !5H b dn@dn21~a0 /b!2~Aa/b!gt# for r .0

b cn@cn21~a0 /b!2~Aa/b!gt# for r ,0
,

~25!

FIG. 1. An orbit of the exact solution forQ51, k50.1, andh i510 in the
(a,b,c)-phase space shown by the intersection of parabolic and ell
column surfaces which is also on a spheroid.
Downloaded 03 Apr 2009 to 133.75.139.172. Redistribution subject to AIP
n

where the Jacobi elliptic functions are defined by dnu5(1
2k2sn2u)1/2, cnu5(12sn2u)1/2, and *0

snu@(12x2)(1
2k2x2)#21/2dx5u. Here, the parametersa, b, and k2 are
given by

a55
p2

2q
2r 1Ap2

2q S p2

2q
22r D for r .0

p2

2q
22r 1Ap2

2q S p2

2q
22r D for r ,0

, ~26!

b5H S a

q D 1/4

for r .0

S a

q
k2D 1/4

for r ,0

, ~27!

and

k2512
ur u
a

, ~28!

respectively, where

p512
2k2

g
c01

4k4

g2 a0
2, ~29!

q5
2k4

g2 , ~30!

r 5a0
22

2k2

g
a0

2c01
2k4

g2 a0
42b0

2. ~31!

D. Orbit in „a,b,c …-phase space

The solutions given above are periodic functions of t
time t. For r .0, a(t) takes any value in the rang
b(r /a)1/2<uau<b, and its sign is a constant determined
the initial valuea0 . On the other hand, forr ,0, the value

ic
FIG. 2. A separatrix surface ofr 50 for the same parameters as Fig. 1 wi
stationary solutions of (0,0,cs) and (as,0,g/2k2), where two solid curves
represent typical solutions forr .0 andr ,0.
 license or copyright; see http://pop.aip.org/pop/copyright.jsp
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range of a(t) is given by 2b<a<b and the sign ofa
changes with time. Thus, the shape of the closed orbit in
(a,b,c)-phase space is like a butterfly forr ,0 ~see Figs. 2
and 9!. The periodT of the solution@a(t),b(t),c(t)# is writ-
ten as

T55
2b

Aag
K~k! for r .0

4b

Aag
K~k! for r ,0

, ~32!

whereK(k) is the complete elliptic integral of the first kind
We find that, as (a0 ,b0 ,c0)→(0,0,0), r→0 and

T; H g21 log~1/ur u! for r→10
2g21 log~1/ur u! for r→20. ~33!

Thus, the periodT shows the logarithmic divergence forr
→0. The solution@a(t),b(t),c(t)# stays most of the period
in the neighborhood of the stationary point~0,0,0!. For the
case ofr 50, the solution is no longer periodic~or T5`)
and its orbit emerges from~approaches to! the stationary
point ~0,0,0! for t→2` (1`). The set of (a0 ,b0 ,c0) sat-
isfying r 5a0

22 (2k2/g) a0
2c01 (2k4/g2) a0

42b0
250 forms a

separatrix surface, which separates the phase space int
two regions (r .0 andr ,0; see Fig. 2! which are filled with
the two different types of orbits given by Eqs.~23!–~25!.

III. DRIFT KINETIC SIMULATIONS

A. Simulation scheme

A basic scheme of our drift kinetic simulation is briefl
presented here. It is easily found that Eq.~1! is reversible in
time. Avoiding the numerical noise inherent in the partic
simulation, we employ an Eulerian scheme which keeps
time-reversibility. A discrete spectral representation in
phase space or discretization on numerical grids makes
~1! a set of ordinary differential equations. In a vector for
it can be written as

dU

dt
5F~U!. ~34!

In order to keep the time-reversibility of Eq.~1!, a numerical
time-integration scheme of Eq.~34! should also be reversibl
in time. It is well known that the symplectic scheme oft
used for integration of a Hamiltonian system, preservin
symplectic 2-form exactly, is nondissipative, name
time-reversible.16,17One of the simplest examples is the lea
frog integrator, which is a standard scheme in parti
simulations,18 where particle motions are given by th
Newton-Lorentz equation~not by drift motion of the guiding
center!. To trace theE3B drift particle motion with the
time-reversibility, however, one needs to use an impl
symplectic method. This is because the Hamiltoni
H(x,y,z,v)5mv2/21ef(x,y,z), for the drift motion is
nonseparable for perpendicular coordinatesx and y, which
are a conjugate pair of the coordinates~where dx/dt5
2]f/]y and dy/dt5]f/]x), while it is separable for the
Downloaded 03 Apr 2009 to 133.75.139.172. Redistribution subject to AIP
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another conjugate pair, that is, the parallel coordinatez and
the parallel velocityv. One of the simplest implicit scheme
is the implicit midpoint rule,

Un112Un5DtF~@Un111Un#/2!, ~35!

wheren means a time step. This scheme is apparently rev
ible in time. When Eq.~35! is applied to the Hamilton’s
equation in canonical coordinates,U5(q,p), it leads to a
canonical transform from (qn,pn) to (qn11,pn11).19

We have employed Eq.~35! to integrate the drift kinetic
equation,

f n112 f n52Dt$ f̄ ,H̄%, ~36!

where f̄ 5( f n111 f n)/2 and$,% means the Poisson bracket
H̄ depends onf̄ through the electrostatic potentialf. Al-
though Eq.~36! is not a symplectic transform off generated
by a particle Hamiltonian, it preserves the time-reversibili
namely, is nondissipative. It is also noteworthy that Eq.~36!,
which can be solved by iteration, is regarded as a discret
form of ] f̄ /]t52$ f̄ ,H̄% with second-order accuracy in tim
~namely, a time-centered finite difference!. Construction of a
fourth-order scheme is straightforward by successive op
tions of Eq.~35!.20

The nondissipative simulation scheme given above is
plied to the three-mode coupling system of the ITG modes
the two-dimensional shearless slab geometry. Starting w
an initial condition of

f̃ ~x,y,v,t50!5«FM~v !cos~kx!cos~ky! ~37!

for Lx5Ly52p/k, we numerically follow a time evolution
of f̃ in Eq. ~2!.

The physical parameters used here arek5kx5ky50.1
andh i510. We have carried out several runs for differentQ
scanning from 0.25 to 3. Amplitude of the initial perturb
tion, «, is also changed from 1025 to 1. The box size of the
simulation isLx5Ly520p with 32332 grid points. Spatial
derivatives in Eq.~2! are calculated in the Fourier space. T
velocity space of25<v<5 is discretized by 129 grid
points. A time step is taken to beDt50.25.

We have made convergence checks for the time step
resolution in the velocity space, the maximum velocity, a
the accuracy of integration scheme, all of which give t
same results as shown below.

B. Linear results

In Fig. 3, the linear frequencyv r and growth rateg
resulting from simulations for differentQ are shown by cir-
cular and triangular marks in comparison with the line
analysis. Simulation results shown here are obtained by
second-order implicit scheme in Eq.~36!. Solving the linear
dispersion relation given in the last section@see Eq.~13!#
numerically, we have calculated the theoretical values, wh
agree with the simulation results. By the Nyquist criterio
we have also confirmed that only one eigenmode is unst
for a given value ofQ.

In Fig. 4 are plotted profiles off̃ 1,1 for Q51 and «
51025 in the velocity space during the linear growth pha
 license or copyright; see http://pop.aip.org/pop/copyright.jsp
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988 Phys. Plasmas, Vol. 7, No. 3, March 2000 Watanabe, Sugama, and Sato
at t5100. Here, a phase off̃ 1,1 is shifted iny so thatf1,1 is
real. Amplitude off̃ 1,1 ~and alsof̃ 2,0 in Fig. 6! is normalized
by f1,1. Circular and triangular marks in Fig. 4 show th
simulation data on each grid point. Solid and dashed li
represent real and imaginary parts of a linear eigenfunc
of the ~1,1! mode,f Lr(v) and f Li(v), for the eigenfrequency
v r1 ig, which are defined in Eqs.~11! and~13! in Sec. II. In
the linear growth phase,f̃ 1,1 is well fitted by the eigenfunc-
tion, while f̃ 2,0 is negligible.

C. Nonlinear results

A time evolution of mode amplitudes forQ51 and«

51025 is shown in Fig. 5, where the 0th-moment off̃ 1,1 and
2nd-moment of f̃ 2,0 are represented by solid and dash
lines, respectively. After the initial linear growth phase, t
amplitude of the~1,1! mode peaked att5196 due to appear
ance of the nonlinear~2,0! mode. Then, the~1,1! mode ex-
ponentially decays with the same rate as the linear gro
phase, and reaches its minimum att5393. The minimum

FIG. 3. Linear frequency (v r) and growth rate~g! for differentQ obtained
from simulations~marks! and linear analysis~lines! with k50.1 andh i

510.

FIG. 4. Profiles of the distribution functions in the velocity space obtain
from simulations~marks! for Q51 and«51025 with k50.1 andh i510 at
t5100. Solid and dashed lines indicate the linear eigenfunction.
Downloaded 03 Apr 2009 to 133.75.139.172. Redistribution subject to AIP
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th

amplitude is nearly equal to the initial perturbation lev
After that, the growth and decay are repeated with a reg
oscillation period ofT5394.

Figure 6 shows profiles off̃ 1,1 and f̃ 2,0 in the velocity
space in the nonlinear phase. When the~1,1! mode amplitude
is peaked att5196, Im(f̃1,1) disappears~upper panel!. On

d

FIG. 5. Amplitude evolutions of 0th-moment of~1,1! mode ~solid! and
2nd-moment of~2,0! mode~dashed! for Q51 and«51025 with k50.1 and
h i510.

FIG. 6. The same as Fig. 4, but fort5196 ~upper! and t5290 ~lower!.
 license or copyright; see http://pop.aip.org/pop/copyright.jsp
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the other hand, one can see a finite amplitude of Im(f̃2,0), of
which profile is scaled as& f Li(v). During the decay phase
f̃ 1,1 is fitted by the complex conjugate off L(v). Neglecting
small fluctuations of order«, therefore, the linear and non
linear evolutions off̃ 1,1 and f̃ 2,0 are described in terms off Lr

and f Li as is considered in the last section.
The peak amplitude off1,1 provides a good benchmar

for the simulation scheme, since the same test has been
by the gyrokinetic and gyrofluid codes11 as well as theoreti-
cal predictions.3,11 A systematic scan forQ from 0.25 to 3
has been made with«51025. The peak levels are summa
rized in Fig. 7 with a theoretical prediction ofuf1,1upeak

5g/&k2 given as follows: SubstituteC15C250 to Eqs.
~20! and ~21! for infinitesimal initial perturbation. Since
da/dt50 at the peak of the mode amplitude,b50 @see Eq.
~15!#. Then, one findsa5g/&k2, b50, and c5&a

5g/k2, which also gives the scaling of Im(f̃2,0)5& f Li

shown in Fig. 6. The simulation and the theory give the sa
peak level and scaling.

The scaling ofuf1,1upeak5g/&k2 agrees with previous
theoretical works3,11 except for a factor of&. The peak am-
plitude forQ51 is almost the same as the drift kinetic sim
lation shown in Ref. 15. In the early work on the gyrokine
and gyrofluid comparison,11 the peak amplitude given by th
gyrokinetic code is about 15% lower than the present res
but with the similar dependence onQ. The gyrofluid code
shows an agreement at smallQ, but overestimates at largeQ.
Since f̃ or density and temperature perturbations were
truncated in Ref. 11, more detailed benchmarking would
desired.

As found in Fig. 5, after the peaking, the mode amp
tude decreases to the initial perturbation level. Thus, i
considered that the oscillation periodT depends on«. A
similar nonlinear oscillation, but with different period an
amplitude, was observed in a benchmark test of the nonlin
kinetic fluid closure15 as well as the drift wave
simulations.12–14 In order to examine dependence of the o
cillation period on the initial perturbation amplitude, we ha
performed six runs forQ51, changing« as 1025, 1024, . . . ,
1. The observed periodsT in the simulations are plotted in

FIG. 7. Peak amplitudes off1,1 for different Q ~marks! with a theoretical
prediction ofg/&k2 ~solid! where«51025 with k50.1 andh i510.
Downloaded 03 Apr 2009 to 133.75.139.172. Redistribution subject to AIP
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Fig. 8 versus the minimum amplitudeuf1,1umin , which shows
a logarithmic dependence ofT on uf1,1umin . The analytical
solution forr .0 given by Eq.~32! predicts the same period
The uf1,1umin dependence ofT is easily explained by noting
that a smaller initial perturbation stays for a longer time
the linear growing and decaying phases. Thus, a time a
age of uf1,1u approaches zero as«→0, which is consistent
with Eq. ~33!.

Finally, Fig. 9 shows the two kinds of orbits in Eq
~23!–~25! for r .0 with (a0 ,b0 ,c0)5(0.25,0,0)~upper! and
r ,0 with (a0 ,b0 ,c0)5(0,0.25,0)~lower! by solid lines. We
also plot circular marks representing the Vlasov simulat
results at every 2Ln /v t i which are, respectively, begun wit
initial conditions of

f̃ 1,1~v,t50!5a0f Lr~v ! ~upper! ~38!

and

f̃ 1,1~v,t50!5 ib0f Li~v ! ~ lower!. ~39!

As shown in Fig. 9, a perfect agreement is found between
analytical solutions and the Vlasov simulation results. It
clearly confirmed that our numerical scheme strictly p
serves the time-reversibility, the periodicity, and the init
value dependence of the exact solution. Here, we have
sumed the initial conditions in Eqs.~38! and~39! which sat-
isfy Eq. ~14!, while a different type of the initial condition in
Eq. ~37! has been employed for the simulations shown
Figs. 3–8. Nevertheless, all of the simulation results are w
described by the analytical solution. It is because, if the
tial perturbation is sufficiently small, only one linearly un
stable eigenmode in the form of Eq.~14! becomes dominan
at the early time stage. Thus, the amplitude oscillation fou
in Fig. 5, wherea.0, is explained by the periodic motio
along the orbit forr .0 in the (a,b,c)-phase space.

IV. SUMMARY

We have developed a nondissipative Eulerian kine
simulation method which rigorously preserves the tim

FIG. 8. Oscillation periods found in simulations forQ51, k50.1, andh i

510 depending on the initial perturbation level« ~where «
51025,1024, . . . ,1) ~marks! with a theoretical prediction given by Eq.~32!
~solid!.
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reversibility inherent in the collisionless drift kinetic equ
tion. The simulation method is applied to the three-mo
ITG problem. An analytical solution of the three-mode IT
equations is also derived here, and successfully describe
nonlinear evolution of the three-mode system. We ha
found an excellent agreement between the simulation res
and the analytical solution.

The main results obtained here are summarized as
lows: Amplitudes of (61,61) and (62,0) modes repeat th

FIG. 9. Typical two orbits of solutions forr .0 ~upper! and r ,0 ~lower!
followed by the Vlasov simulation results for the initial conditions given
Eqs.~38! and~39! for the same parameters as Fig. 1. The solid lines rep
sent the analytical solutions. Circular marks show the simulation resul
every 2Ln /v t i .
Downloaded 03 Apr 2009 to 133.75.139.172. Redistribution subject to AIP
e

the
e
lts

l-

nonlinear oscillation, and evolve in time along a closed or
which encircles the stationary solution (as ,0,g/2k2) in the
phase space. This fact reflects the time-reversibility of
~2!. Thus, the three-mode system never reaches a st
state, unless the initial condition coincides with the statio
ary solutions in Eq.~16!. Since the solution stays most of th
period in the neighborhood of the stationary point~0,0,0!
with the exponential time dependence, the oscillation per
has a logarithmic dependence on the initial mode amplitu
Thus, the time average of the mode amplitude vanishes
the infinitesimal initial perturbation approaches zero.

The success of the present simulation, the validity
which is confirmed by the theoretical analysis, is achieved
a proper choice of the numerical scheme with no dissipat
If the scheme is dissipative, it affects estimates of the os
lation period and the averaged amplitude. Application of
present numerical method to a multimode coupling syst
and the gyrokinetic equations remains for future works.
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