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Neoclassical toroidal viscosities (NTVs) in tokamaks are investigated using a �f Monte Carlo

simulation, and are successfully verified with a combined analytic theory over a wide range of

collisionality. A Monte Carlo simulation has been required in the study of NTV since the complexities

in guiding-center orbits of particles and their collisions cannot be fully investigated by any means of

analytic theories alone. Results yielded the details of the complex NTV dependency on particle

precessions and collisions, which were predicted roughly in a combined analytic theory. Both numerical

and analytic methods can be utilized and extended based on these successful verifications.
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The control of the toroidal rotation is an important issue
in tokamaks and the International Thermonuclear
Experimental Reactor (ITER), in order to improve the
stability of the contained plasmas. Recent studies have
shown that the nonaxisymmetry as small as �B=B0 �
10�4 can induce significant damping in toroidal rotation
which otherwise would be much better maintained. Such a
small level of nonaxisymmetry is inevitable in tokamaks
due to imperfect magnets and therefore can change the
plasma rotation and stability unexpectedly[1,2]. There is
also a counterexample, as the small nonaxisymmetry can
be applied for the purpose of stabilizing or destabilizing
edge localized modes [3]. In either case, it is critical to
predict the effects of nonaxisymmetry in tokamaks on the
toroidal rotation.

The significant change of the toroidal rotation can occur
when the axisymmetry is broken. When magnetic field
strength cannot be expressed as B ¼ Bðc ; lÞ with c a
flux surface label and l the distance along a field line, the
action J ¼ H

Mvkdl of a particle cannot be conserved on

the surfaces and radial drifts across the surfaces are gen-
erally expected [4]. The radial particle transport depends

on species, and resulting radial currents produce ~j� ~B
toroidal torque. The radial transport is not intrinsically
ambipolar and is called nonambipolar transport in general,
and the toroidal torque in tokamaks is particularly called
neoclassical toroidal viscosity (NTV) torque.

The NTV torque has been observed and studied in many
tokamaks [5–7], since the change of rotations is apparent
when a small nonaxisymmetric perturbation is applied.
However, theoretical predictions are nontrivial due to dif-
ferent particle orbits, precessions, and collisions. A number
of theories have been developed in each limited regime to
simplify or ignore other processes; the effects by passing
and trapped particles are studied separately, and effects by
trapped particles are studied in many different regimes,
1=� regime, ��

ffiffiffi
�

p
regime, superbanana-plateau regime,

and superbanana regime, assuming the pitch-angle colli-
sions [8]. The overlapping between the regimes is signifi-
cant in practice, so a combined NTV formula was also
developed by Park et al. [9] using the Krook collisions
including all precessions and bounce orbits, or a connec-
tion between NTV formulas was studied between 1=�
regime and ��

ffiffiffi
�

p
regime. None of these studies can cover

the complexities in finite orbit widths and in Fokker-Planck
collisions, which can be resolved only by a full numerical
simulation. This Letter reports the first successful verifica-
tions for NTVusing the FORTEC-3D [10], a �f Monte Carlo
code solving the perturbed drift-kinetic equation in the
presence of nonaxisymmetry in tokamaks, with the com-
bined NTV formula by Park.

FORTEC-3D directly solves the following drift-kinetic

equation for the deviation of distribution function from
local Maxwellian, �f ¼ f� fM:�

@

@t
þ ðvk þ vdÞ � rþ _K

@

@K

�
�f� CTð�fÞ

¼ �
�
vd � rþ _K

@

@K

�
fM þ CPfM; (1)

where the independent phase-space variables are chosen
as (c , �, � , K, �), (c , �, �) are the guiding-center
position in Boozer coordinates, and (K, �) are the kinetic
energy and magnetic moment, respectively. The linearized
Fokker-Plank collision term is separated into the test-
particle part CT and the field-particle part CP, which
ensures the conservation laws. The guiding-center drift
velocity vd contains all the rB-, curvature-, and
E�B-drift terms and each simulation marker follows
the exact drift orbit, including finite radial excursion, in a
perturbed field.
The evaluation of the neoclassical toroidal viscosity

he� � r � Pi, where h� � �i denotes a flux-surface averaging,
e� ¼ @x=@� is the toroidal covariant basis and P is the
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pressure tensor,, respectively, is based on the idea by
Lewandowski et al. [11] which utilizes the magnetic field
spectrum expression. Here we use an expression in Fourier
spectrum form;

Bðc ; �; �Þ ¼ B0

�
1� X

m�0

�mðc Þ cosðm�Þ

þ X
m�0;n�0

�m;nðc Þ cosðm�� n�Þ
�
: (2)

By noting that the Jacobian in Boozer coordinates is pro-
portional to B�2, the flux-surface averaged toroidal viscos-
ity can be expressed as he� � r � Pi ¼ h�Pð@B=@�Þ=Bi,
where �P ¼ R

d3v�fMðv2
?=2þ v2

kÞ. Making use of

Eq. (2), we have the following form:

he� � r � Pi ¼ B0

X
m;n�0

n�m;n

�
�P

B
sinðm�� n�Þ

�
: (3)

Thus NTV is evaluated directly from the perturbed distri-
bution function �f. There is no approximation used, such
as large-aspect-ratio or small-orbit-width limit expansions,
which are often adopted in analytic formulae.

The primal benchmarks for zero E�B limit cases have
been carried out recently and it was reported that the
numerical scheme has good convergence even for a very
weak perturbation amplitude (�m;n � 10�4) and that the

j�m;nj2 dependence of NTV is confirmed [12]. It was also

found that there is a discrepancy between the FORTEC-3D

result with Shaing’s formulae [8] as collision frequency
goes lower from the so-called 1=� regime to the
superbanana-plateau regime. It is expected that the differ-
ence comes from the fact that the analytic formulae are
constructed by assuming a certain limited range in colli-
sionality and thus fail to reproduce the dependence of NTV
on collision frequency. Therefore, to verify the simulation
results, here we conduct a benchmark of FORTEC-3D with
another analytic formula [9], which gives a connection
formula among different collisionality regimes.

The combined analytic formula is derived from a
bounce-averaged drift-kinetic equation for the ‘‘lth class’’
perturbed distribution function f1 ¼ f1lðK; �; c ; � ¼
q�� �Þ exp½�2i�lh�,

iðl!b � nhv�
d ibÞf1l þ hCl½f1l�ib ¼ hvc

d P
lib @fM@c

; (4)

where hðK;�;�Þ¼ðR�
0d#v

�
dJB=vkÞ=ðH�

0d#v
�
dJB=vkÞ,

P l � e2i�lh, hAib � ð!b=2�ÞH qd#ðAJB=vkÞ is the

bounce average of a function A with the bounce frequency

!b � 2�=
H
qd#ðJB=vkÞ, and v�

d and vc
d are drift veloc-

ity in the � and c direction, respectively. The Jacobian J
is a constant factor if Hamada coordinates are used and
therefore is omitted hereafter. The precession velocity
hv�

d ib is given as follows:

hv�
d ib ¼ �q

d�

dc
þ q

e

�
�

@B

@c
� ð2K� 2�BÞd lnB

dc

�
b
;

(5)

where �ðc Þ is the electrostatic potential which makes the

E�B rotation. Similarly, hvc
d P

lib is given from the

action Jl � H
qd#vkBP l as hvc

d P
lib / @Jl=@�, where

@Jl
@�

¼ 2�

!b

��
2K� 3�B

B

�
@

@�
ðBP lÞ

�
b
: (6)

Approximating the collision term by the Krook operator
C½f1� ¼ ��Kf1, Eq. (4) can be solved for f1l, and the
radial flux of the lth class particles �l ¼ hR dvf1lvd �
rc ihh is obtained as follows;

�na
l ¼ q

4�2e2

Z
dK

Z
d�

I
d�

@fM
@c

��������
@Jl
@�

��������
2

� hjP�lj2ib�K!b

ðl!b � nhv�
d ibÞ2 þ �2

K

: (7)

This is the radial flux induced by the broken toroidal
symmetry. Since the toroidal viscosity obtained in
FORTEC-3D is related to this flux he� � r � Pi ¼ e�na=q,

one can compare the calculation results from these two
methods. Equation (7) is still complicated to solve, and
therefore further approximations are adopted concerning
the expressions for!b, hv�

d ib, @Jl=@�, and �K by assuming

a large aspect ratio, circular cross section, low collision-
ality, etc. (see [9]). One can see that a large contribution to
NTV comes from the resonant particles which satisfy the
condition l!b � nhv�

d ib ’ 0 from Eq. (7). Since the reso-

nant particles’ contribution is significant near the resonant
flux surfaces where mqðc Þ � n ’ 0, the analytic formula
uses the approximation mq� n ’ 0 in some parts. In the
following benchmarks in the E� B ! 0 limit, we adopt
the l ¼ 0 part of Eq. (7). It represents the contribution from
particles of which !b is large enough to regard their
bouncing orbits as almost closed. The l � 1 part will be
important when the precession drift hv�

d ib is fast enough to
harmonize with the bouncing motion.
Here we should note the magnetic field model used here.

We are not involved in the problems such as how much the
external perturbation field penetrates into the plasma and
whether or not a �m;n component creates a local magnetic

island at q ¼ m=n resonant surface as discussed in [13,14].
Instead, we use a simple model, in which the perturbation
field spectra are superimposed on a circular tokamak
model B ¼ B0ð1� �t cos�Þ. Another point is about the
difference in the coordinate systems, that is, FORTEC-3D is
based on Boozer coordinates while Hamada coordinates
are used in the analytic formula. Here it is assumed that the
perturbation field spectra �m;n have the same profiles seen

in the two different coordinates. As we have discussed in
[12], the difference can be neglected if �t; �� 	 1, and if
we compare NTV around the resonant surfaces which are

PRL 107, 055001 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending
29 JULY 2011

055001-2



not so close to the plasma edge, where �t is the inverse

aspect ratio, �� ¼ qR0=ð�3=2t vth	iÞ is the normalized colli-
sionality, vth is thermal velocity, and 	i is the ion collision
time, respectively.

The geometry of the model tokamak for the benchmark
is R0 ¼ 10 m, a ¼ 2:5 m, B0 ¼ 10 T, and the q profile is

qð
Þ ¼ 1:2þ 9:8
3, where 
 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c =c edge

q
is used for the

index of the flux surface. Plasma density and temperature
are chosen so that �� becomes about 0.1 at 
 ¼ 0:4� 1:0.
Two types of perturbation field are considered: one is the
ðm; nÞ ¼ ð7; 3Þ single-mode case �B=B0 ¼ �7;3ð
Þ�
cosð7�� 3�Þ, where �7;3 ¼ 0:02
2, and the other is the

multihelicity case in which three-mode perturbation
is given as �B=B0 ¼ P

m¼13;14;15�m;3ð
Þ cosðm�� 3�Þ,
where �m;3 ¼ 0:005
4. To benchmark the �� dependence

of NTV, the collisionality is artificially multiplied by a nu-
merical factor ‘‘cm.’’ Here we explore 0:001
cm
50,
or roughly 10�4 < �� < 5. According to the criteria
by Shaing [8], 10�2 < �� < 1 is the 1=� regime and
�� < 10�2 corresponds to the superbanana-plateau
(SB-P) regime. The boundary between the SB-P and super-

banana regimes, which depends on j�m;nj3=2, is below this

range, �� < 10�4.
First, to see the dependence on collision frequency, the

NTV values on several flux surfaces are plotted against ��
in Figs. 1(a) and 1(b). The 
 ¼ 0:493 result in Fig. 1(a) and

 ¼ 0:706 result in Fig. 1(b) correspond to the peak value
of NTV in each case, which appears at the resonant flux

surface where qð
Þ is equal to m=n of the given (m, n)
mode. The dependence agrees well between FORTEC-3D

and the combined analytic formula, especially for the
peak value at the resonant surfaces, in the wide range of
plasma collisionality. In Fig. 1, the peak values of asymp-
totic 1=� and the superbanana-plateau limit formulae from
[8] are also shown. There is no clear SB-P regime found
either in FORTEC-3D or in the combined analytic formula in
the region 10�4 < �� < 10�2 where it is classified as the
SB-P regime, and a large discrepancy is seen from the
asymptotic formula in the lower-�� regime.
Next, Figs. 2 and 3 show the radial profiles of the NTV

he� � r � Pi for the single and multihelicity cases, respec-

tively, with the cm factor varied. We find good agreement
between the FORTEC-3D simulation and the combined
analytic formula around the peak of NTV, which appears
at the resonant surface (for the multihelicity case, three
resonant surfaces are at 
 ’ 0:68, 0.71, and 0.73.) The
peak value and its position are similar between them. The
NTV profile from Shaing’s 1=�-theory is also plotted for
the �� ’ 0:1ðcm ¼ 1Þ case in these figures. One can see
two differences: the peak amplitude of the 1=�-theory is
much larger than the other two calculations, and the NTV
drops very quickly at the off-resonant position, while a
certain magnitude of NTV remains at the off-resonant
tails in the other two calculations, especially in
lower-�� cases of FORTEC-3D.
Although the radial profiles of NTVaround the resonant

position are similar between FORTEC-3D and Park’s
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FIG. 1 (color online). Dependence of NTV on �� at several
radial positions in (a) single and (b) multihelicity cases, respec-
tively. The ‘‘F’’ curves are results from FORTEC-3D, the ‘‘P’’
symbols are from the combined analytic formula, and the nu-
merals denote the radial position 
. The 1=� and SB-P lines
represent the peak values from the 1=� and superbanana-plateau
theory at the resonant surface, respectively.
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FIG. 2 (color online). Radial profiles of NTV he� � r � Pi
calculated from (a) FORTEC-3D and (b) the combined analytic
formula by Park, in the single-mode case with varying the
collisionality magnification factor cm (the numerals on the
legend). For comparison, the NTV profile from the 1=�-theory
for the cm ¼ 1:0 case is also shown (symbols).
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formula, there is a difference locally for the multihelicity
case. In Fig. 3, one can see three local peaks of NTV in the
FORTEC-3D result, which corresponds to the three resonant

surfaces, which do not appear in the results of the com-
bined analytic formula. The local peaks are considered
higher-order correction effects which are included only
in the direct simulation of FORTEC-3D. We have discussed
in [12] that toroidal couplings among toroidicity of the
field ðm; nÞ ¼ ð1; 0Þ, field perturbation (m, n), and the
sin½ðm� 1Þ�� n��-dependent part of �P will create
Oð�tÞ corrections to NTVon each of the resonant surfaces,
if the neighboring two modes (m, n) and (m� 1, n) are
applied at once. Since the height and width of the peaks in
FORTEC-3D depend on the collisionality, it is also antici-

pated that the difference in the shape of the peak profile
between the two methods results from the finite radial drift
of resonant particles. The decorrelation time scale of the
resonant particles is determined by the combination of
collisional scattering and the collisionless detrapping pro-
cess, which occurs when a resonant particle drifts radially
and then escapes from the local ripples. In the analytic
model, however, such a finite-orbit-width effect is not
taken into account in deriving Eq. (7). This difference
will be important when we discuss how the NTV torque
is localized and examine its effect on the rotation profile.

Another difference between the two calculations is
found at the outer off-resonant position. In Fig. 2, about
a one order larger NTV is obtained in FORTEC-3D than in the
analytic formula at 
 ’ 0:8 when �� 	 1. However, we
found good agreement between them at the inner off-
resonant position both in single and multihelicity cases.

Note here that we have neglected the difference of the
coordinate systems as mentioned before. As the real dif-
ference in perturbation spectra seen in Boozer and Hamada
coordinates tends to enlarge at the edge region, the differ-
ence in the NTVs at the edge might be caused by neglect-
ing the difference in coordinates. It is important to use a
proper coordinate system to express perturbation field
spectra in applying these methods to realistic situations
in experiments.
In conclusion, the benchmarks demonstrated that both

calculation methods for NTVagree well in wide collision-
ality range except the edge region, and a large discrepancy
is found from the asymptotic limit theories. Since in pre-
vious analyses some have reported agreement between the
observation of rotation damping with the estimation of
NTV from analytic theory [5] while the others have shown
a difference [7], it is important to verify the NTV calcu-
lation methods before applying them to experiments. The
present result encourages us to use the combined analytic
formula to evaluate and analyze NTV in experiments. On
the other hand, we have also found a difference between
two methods in the shape of the peak profile of NTV
around the resonant surface. Direct kinetic simulation of
FORTEC-3D can reveal the detailed properties of NTV,

which is difficult to treat analytically. Although it takes
longer computation time, the direct simulation reinforces
the reliability of the combined analytic formula and can be
utilized to understand the physics of neoclassical viscosity
in detail. We will continue to verify the calculation meth-
ods including the E�B rotation effect to study the phys-
ics of NTV in ��

ffiffiffi
�

p
regimes, and offer them as reliable

and general methods.
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FIG. 3 (color online). Radial profiles of NTV he� � r � Pi
calculated from (a) FORTEC-3D and (b) the analytic formula in
the multihelicity case for several collisionalities.
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