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Neoclassical electron and ion transport in toroidally rotating plasmas
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Neoclassical transport processes of electrons and ions are investigated in detail for toroidally
rotating axisymmetric plasmas with large flow velocities on the order of the ion thermal speed. The
Onsager relations for the flow-dependent neoclassical transport coefficients are derived from the
symmetry properties of the drift kinetic equation with the self-adjoint collision operator. The
complete neoclassical transport matrix with the Onsager symmetry is obtained for the rotating
plasma consisting of electrons and single-species ions in the Pfirsch–Schlu¨ter and banana regimes.
It is found that the inward banana fluxes of particles and toroidal momentum are driven by the
parallel electric field, which are phenomena coupled through the Onsager symmetric off-diagonal
coefficients to the parallel currents caused by the radial thermodynamic forces conjugate to the
inward fluxes, respectively. ©1997 American Institute of Physics.@S1070-664X~97!00806-9#
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I. INTRODUCTION

Improved confinement modes of tokamak plasmas s
as high-confinement modes~H-modes!1 and reversed shea
configurations2 are attracting considerable attention as pro
ising means for achieving controlled fusion. Such a reduct
of the transport level is generally considered as caused by
large radial electric field shear~or sheared flow!. In the Japan
Atomic Energy Research Institute Tokamak-60 Upgra
~JT-60U!,3 the internal transport barrier~ITB! with the steep
ion temperature gradient is formed in the region where
gradient of the toroidal flow is steepest.4 In rotating plasmas
with the large flow velocities on the order of the ion therm
speedvTi , the toroidal flow shear influences the transport
particles, heat, and momentum as an additional thermo
namic force, although, in conventional neoclassi
theories,5–7 the flow velocities are assumed to be on the
der of dvTi and the direct effects of the flow shear on t
transport do not appear in the lowest order. Hered[r i /L is
the drift ordering parameter,r i the ion thermal gyroradius
andL the equilibrium scale length. It is important to deriv
the transport equations including the flow shear effects at
same order as particle and thermal transport for underst
ing the ITB physics. Neoclassical ion transport equations
rotating plasmas were obtained by Hinton and Wong8 and by
Catto et al.9 However, neoclassical electron fluxes are a
required for a comprehensive description of transport p
cesses. For example, the neoclassical parallel~bootstrap! cur-
rent is associated with the parallel electron viscosity and
necessary for determining the equilibrium configuration s
consistently. In the present work, we derive full transp
equations for neoclassical electron and ion fluxes in the
tating plasma with the toroidal flow velocity on the order
the ion thermal speed.

Hereafter we consider only axisymmetric systems,
which the magnetic field is given by

B5I ~C!¹z1¹z3¹C, ~1!

wherez is the toroidal angle,C represents the poloidal flux
Phys. Plasmas 4 (6), June 1997 1070-664X/97/4(6)/2215/1
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and I (C)5RBT . In the axisymmetric systems, the poloid
flow decays in a few transit or collision times and the lowe
order flow velocityV0 is in the toroidal direction:8

V05V0ẑ, V05RVz52RcF08~C!, ~2!

whereF0(C) denotes the lowest-order electrostatic pote
tial in d ~which corresponds toF21 in the paper by Hinton
and Wong8! andE0[2¹F0[2F08¹C. The toroidal angu-
lar velocityVz52cF08 is directly given by the radial electric
field and is a flux-surface quantity.

For particle speciesa with the massma and the charge
ea , the phase space variables (x8,«,m,j) are defined in
terms of the spatial coordinatesx in the laboratory frame and
the velocityv8[v2V0 in the moving frame as8,10

x85x, e5
1

2
ma~v8!21Ja , m5

ma~v'8 !2

2B
,

~3!

v'8

v'8
5e1cosj1e2sin j.

Here (e1 ,e2 ,b[B/B) are unit vectors which form a right
handed orthogonal system at each point,v85v i8b1v'8 ,
v i85v8•b, and

Ja[eaF̃12
1

2
maV0

2, ~4!

where F̃1[F12^F1&@5O (d)# is the poloidal-angle-
dependent part of the electrostatic potential. The magn
flux surface average is denoted by^•&. The lowest-order dis-
tribution function is the Maxwellian which is written as

f a05naS ma

2pTa
D 3/2expS 2

ma~v8!2

2Ta
D

5NaS ma

2pTa
D 3/2expS 2

«

Ta
D , ~5!
22154/$10.00 © 1997 American Institute of Physics
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where the temperatureTa5Ta(C) andNa5Na(C) are flux-
surface functions although generally the densityna depends
on the poloidal angleu throughJa and is given by8

na5NaexpS 2
Ja

Ta
D . ~6!

This dependence of the densityna on the poloidal angleu is
one of the causes which complicates the derivation of
classical and neoclassical transport coefficients for the ro
ing plasma. For plasmas consisting of electrons and sin
species ions with chargeei[Zie, we have8

e

Te
F̃15

mi~V
z!2~R22^R2&!

2~ZiTe1Ti !
,

~7!

ZiNi~C!5Ne~C!expS 2
mi~V

z!2^R2&
2Ti

D ,
where the charge neutrality condition(aeana50 is used and
me /mi(!1) is neglected.

In toroidally rotating axisymmetric systems, the linea
ized drift-kinetic equation is written as8–10

v i8b•¹ḡa2Ca
L~ ḡa!5

1

Ta
f a0~Wa1Xa11Wa2Xa2

1WaVXV1WaEXE!, ~8!

whereCa
L denotes the linearized collision operator@see Eq.

~8! in Ref. 11# and ḡa is defined in terms of the first-orde
gyrophase-averaged distribution functionf̄ a1 as

ḡa[ f̄ a12 f a0
ea
Ta
E l dl

B SBEi
~2!2

B2

^B2&
^BEi

~2!& D . ~9!

Here* ldl denotes the integral along the magnetic field lin
andEi

(2)[b•(2¹F (2)2c21]A/]t) is the second-order par
allel electric field. The thermodynamic force
(Xa1 ,Xa2 ,XV ,XE) are flux-surface quantities defined by

Xa1[2
1

Na

]~NaTa!

]C
2ea

]^F1&
]C

, Xa2[2
]Ta
]C

,
~10!

XV[2
]Vz

]C
5c

]2F0

]C2 , XE[
^BEi

~A!&

^B2&1/2
.

The functions (Wa1 ,Wa2 ,WaV ,WaE) are defined by

Wa1[
mac

ea
v i8b•¹SR2Vz1

I

B
v i8D[v i8b•¹Ua1 ,

Wa2[Wa1S «

Ta
2
5

2D[v i8b•¹Ua2 ,
~11!

WaV[
mac

2ea
v i8b•¹FmaSR2Vz1

I

B
v i8D 21m

R2BP
2

B G
[v i8b•¹UaV ,

WaE[
eav i8B

^B2&1/2
.
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The neoclassical entropy production10,11 is kinetically de-
fined in terms off̄ a1 andCa

L and is rewritten in the thermo
dynamic form by using Eq.~8!. The surface-averaged tota
neoclassical entropy production is given by

(
a

Ta^sa
ncl&[2(

a
TaK E d3v

f̄ a1
f a0

Ca
L~ f̄ a1!L

5(
a

S Ga
nclXa11

1

Ta
qa
nclXa21Pa

nclXVD
1JEXE , ~12!

where the neoclassical transport fluxes (Ga
ncl ,qa

ncl/Ta ,Pa
ncl ,

JE) conjugate to the forces (Xa1 ,Xa2 ,XV ,XE) are defined by

Ga
ncl[ K E d3vḡaWa1L , 1

Ta
qa
ncl[ K E d3vḡaWa2L ,

Pa
ncl[ K E d3vḡaWaVL , ~13!

JE[
^BJi&

^B2&1/2
[(

a
K E d3vḡaWaEL .

HereGa
ncl , qa

ncl , andPa
ncl denote the surface-averaged rad

fluxes of particles, heat, and toroidal~angular! momentum,
respectively, andJE represents the surface-averaged para
current. The neoclassical transport equations connecting
conjugate pairs of the fluxes and forces are written as

Ga
ncl5(

b
~L11

abXb11L12
abXb2!1L1V

a XV1L1E
a XE ,

1

Ta
qa
ncl5(

b
~L21

abXb11L22
abXb2!1L2V

a XV1L2E
a XE ,

~14!

(
a

Pa
ncl5(

b
~LV1

b Xb11LV2
b Xb2!1LVVXV1LVEXE ,

JE5(
b

~LE1
b Xb11LE2

b Xb2!1LEVXV1LEEXE ,

where the transport coefficients are dependent on the ra
electric field through the toroidal angular veloci
Vz52cF08 .

The remaining parts of this work are organized as f
lows. In Sec. II, using the formal solution of the linearize
drift kinetic equation~8!, we prove the Onsager symmetry o
the neoclassical transport matrix for the rotating plasma c
sisting of electrons and multi-species ions with arbitrary c
lision frequencies. In Sec. III, we describe the transp
fluxes other than the neoclassical fluxes to give the to
transport of the particles, heat, and toroidal momentum
the cases of single-species ions, the explicit forms of
neoclassical transport matrices for the Pfirsch–Schlu¨ter and
banana regimes are given in Sec. IV and Sec. V, resp
tively. Conclusions and discussion are given in Sec. V
Appendix A shows the classical transport coefficients for
rotating plasma. In Appendix B, the first-order parallel flow
and the parallel momentum equations, which are usefu
derive the neoclassical transport equations, are obtained
H. Sugama and W. Horton
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the drift kinetic equation. The parallel viscosity coefficien
for the plateau regime, from which all the plateau transp
coefficients except forLVV can be derived, are shown i
Appendix C.

II. ONSAGER SYMMETRY OF NEOCLASSICAL
TRANSPORT EQUATIONS FOR ROTATING PLASMAS

In order to prove the Onsager symmetry of the neoc
sical transport equations, it is useful to note that the solu
of the linearized drift kinetic equation~8! is written as

ḡa5(
b

~Gab1Xb11Gab2Xb2!1GaVXV1GaEXE , ~15!

whereGabm (m51,2) andGaM (M5V,E) are defined as
the solutions of the following equations:

v i8b•¹Gabm2(
a8

Caa8
L

~Gabm,Ga8bm!5dab
1

Tb
f b0Wbm

~m51,2!,
~16!

v i8b•¹GaM2(
a8

Caa8
L

~GaM ,Ga8M !5
1

Ta
f a0WaM

~M5V,E!.

Substituting Eq.~15! into Eq. ~13!, and comparing it with
Eq. ~14!, we find that the neoclassical transport coefficie
are given by

Lmn
ab5 K E d3vWamGabnL ~m,n51,2!,

LmM
a 5 K E d3vWamGaML ~m51,2;M5V,E!,

~17!

LMm
b 5(

a
K E d3vWaMGabmL ~m51,2;M5V,E!,

LMN5(
a

K E d3vWaMGaNL ~M ,N5V,E!.

Here, let us consider separately two types of variable tra
formations, i.e.,v i8→2v i8 andVz→2Vz. For an arbitrary
function F of v i8 andV

z, we defineF11, F12, F21, and
F22 as parts ofF which are even–even, even–odd, odd
even, and odd–odd with respect to the transformati
v i8→2v i8 and Vz→2Vz, respectively. From Eq.~11!, we
find that

Wam5Wam
111Wam

22 , Wam
125Wam

2150 ~m51,2!,
~18!

WaM5WaM
121WaM

21 , WaM
115WaM

2250 ~M5V,E!.

Then, the first equation in Eqs.~16! is divided into the
11, 12, 21, and22 parts as
Phys. Plasmas, Vol. 4, No. 6, June 1997
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v i8b•¹Gabm
21 2(

a8
Caa8
L

~Gabm
11 ,Ga8bm

11
!5dab

1

Tb
f b0Wbm

11 ,

v i8b•¹Gabm
22 2(

a8
Caa8
L

~Gabm
12 ,Ga8bm

12
!50,

~19!

v i8b•¹Gabm
11 2(

a8
Caa8
L

~Gabm
21 ,Ga8bm

21
!50,

v i8b•¹Gabm
12 2(

a8
Caa8
L

~Gabm
22 ,Ga8bm

22
!5dab

1

Tb
f b0Wbm

22

~m51,2!.

Similarly, the second equation in Eqs.~16! is divided into
parts with these symmetries, which is straightforward a
not shown here. Next, we regard the transport coefficient
functions ofVz and write them as the sum of even and o
parts with respect toVz: for example,Lmn

ab (m,n51,2) given
in Eq. ~17! are written as

Lmn
ab5Lmn

ab11Lmn
ab2 ~m,n51,2!, ~20!

where

Lmn
ab1~Vz!5Lmn

ab1~2Vz!

5 K E d3v~Wam
11Gabn

111Wam
22Gabn

22!L ,
~21!

Lmn
ab2~Vz!52Lmn

ab2~2Vz!

5 K E d3v~Wam
11Gabn

121Wam
22Gabn

21!L
~m,n51,2!.

From Eqs.~19! and ~21!, we obtain

Lmn
ab152 (

a8,b8
Ta8K E d3v

1

f a80

3@Ga8bn
11 Ca8b8

L
~Ga8am

11 ,Gb8am
11

!

1Ga8bn
22 Ca8b8

L
~Ga8am

22 ,Gb8am
22

!

1Ga8am
12 Ca8b8

L
~Ga8bn

12 ,Gb8bn
12

!

1Ga8am
21 Ca8b8

L
~Ga8bn

21 ,Gb8bn
21

!#L 5Lnm
ba1 ,

~22!

Lmn
ab25(

a8
Ta8K E d3v

1

f a80
@Ga8bn

12 v i8b•¹Ga8am
21

1Ga8bn
21 v i8b•¹Ga8am

12
2Ga8am

11 v i8b•¹Ga8bn
22

2Ga8am
22 v i8b•¹Ga8bn

11
#L 52Lnm

ba2 ~m,n51,2!,

where we have used the self-adjointness of the lineari
collision operator@see Eq.~9! in Ref. 11# and the antisym-
metry relation

K E d3vxv i8b•¹c L 52 K E d3vcv i8b•¹x L
~x,c: arbitrary functions!. ~23!
2217H. Sugama and W. Horton
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Equation ~22! gives the Onsager symmetry for th
coefficients Lmn

ab (m,n51,2) which is rewritten as
Lmn
ab (Vz)5Lnm

ba (2Vz). In the same way as above, we c
derive the Onsager symmetry for the other coefficients.
summarize, the Onsager relations for all the neoclass
transport coefficients are given by

Lmn
ab ~Vz!5Lnm

ba ~2Vz! ~m,n51,2!,

LMN~Vz!5LNM~2Vz! ~M ,N5V,E!, ~24!

LmM
a ~Vz!52LMm

a ~2Vz! ~m51,2;M5V,E!.

We can see from the derivation here that the Onsager r
tions in Eq. ~24! are robustly valid even for the cases
multi-species ions and arbitrary collision frequencies.

Here, let us consider the case in which the system
up–down symmetryB(u)5B(2u) (u: a poloidal angle de-
fined such thatu50 on the plane of reflection symmetry!. In
this case, it is convenient to use the transformat
T :(v i8 ,u,V

z)→(2v i8 ,2u,2Vz). We note that, under the
transformationT , WaV is invariant whileWam(m51,2) and
WaE change their signs. Also, the operatorsv i8b•¹ andCa

L

commute withT . Therefore, we see thatGaV is symmetric
andGabm (m51,2) andGaE are antisymmetric with respec
to T . Then, it is found from Eq.~17! that Lmn

ab , LmE
a , LVV ,

andLEE are even whileLmV
a andLVE are odd inVz . Thus,

for the system with up–down symmetry, we obtain the
stricted forms of the Onsager relations,

Lmn
ab ~Vz!5Lmn

ab ~2Vz!5Lnm
ba ~Vz! ~m,n51,2!,

LmV
a ~Vz!52LmV

a ~2Vz!5LVm
a ~Vz! ~m51,2!,

LmE
a ~Vz!5LmE

a ~2Vz!52LEm
a ~Vz! ~m51,2!, ~25!

LVE~V
z!52LVE~2Vz!52LEV~V

z!,

LVV~V
z!5LVV~2Vz!,

LEE~V
z!5LEE~2Vz!.

III. TRANSPORT FLUXES OTHER THAN
NEOCLASSICAL FLUXES

The particle, heat, and toroidal momentum fluxes
speciesa consist of the neoclassical and other transp
parts, and are written as10

Ga[ K E d3v f av•¹C L
5Ga

cl1Ga
ncl1Ga

H1Ga
~E!1Ga

anom,

qa[TaK E d3v f aS «

Ta
2
5

2D v•¹C L
~26!

5qa
cl1qa

ncl1qa
H1qa

~E!1qa
anom,

Pa[ K E d3v f amavzv•¹C L
5Pa

cl1Pa
ncl1Pa

H1Pa
~E!1Pa

anom.

Here the classical fluxesGa
cl , qa

cl , and Pa
cl are caused by

particles’ gyromotion with collisions. Their definitions an
2218 Phys. Plasmas, Vol. 4, No. 6, June 1997
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the classical transport coefficients for the rotating plasma
shown in Ref. 10. The momentum conservation in collisio
assures the intrinsic ambipolarity of the classical parti
fluxes, which implies that(aeaGa

cl50 is valid for arbitrary
values of the radial electric field. In Appendix A, the clas
cal transport coefficients for the case of single-species i
are given. The fluxesGa

(E) , qa
(E) , andPa

(E) @see Eq.~20! in
Ref. 10 for their definitions# are given from the inductive
electric fieldE(A)[2c21]A/]t and do not contribute to the
entropy production. The anomalous transport fluxesGa

anom,
qa
anom, andPa

anomare driven by turbulent fluctuations and a
defined in terms of the fluctuation–particle interaction ope
tor @see Eq.~26! in Ref. 10#. Then, the intrinsic ambipolarity
of the particle fluxesGa

anom andGa
(E) are separately derived

from the charge neutrality:(aeaGa
anom5(aeaGa

(E)50. The
fluxes Ga

H , qa
H , and Pa

H are defined in Ref. 10, and ar
related to the thermodynamic forcesXa1 , Xa2 , and XV

through thenondissipative antisymmetrictransport coeffi-
cients which satisfy the Onsager symmetry Eq.~24! @see Eqs.
~23! and ~24! in Ref. 10# and vanish if the system has up
down symmetry.

It can be shown that the sum of the neoclassical flu
(Ga

ncl ,qa
ncl ,Pa

ncl) and (Ga
H ,qa

H ,Pa
H) gives

Ga
ncl1Ga

H52cI^na&
^BEi

~A!&

^B2&
2
cI

ea
K F ia1

B L ,
1

Ta
~qa

ncl1qa
H!52cIK naJa

Ta
L ^BEi

~A!&

^B2&

2
c

ea
K E d3vmaS Iv i8

B
1R2VzD

3S «

Ta
2
5

2DCa
L~ ḡa!L ,

~27!

Pa
ncl1Pa

H52macIV
z^naR

2&
^BEi

~A!&

^B2&

2
mac

2ea
K E d3vFmaSR2Vz1

I

B
v i8D 2

1m
R2BP

2

B GCa
L~ ḡa!L ,

where F ia1 is the parallel component of the frictio
force Fa1[*d3vmav8Ca( f a). Those fluxes in Eq.~27! that
include (Ga

H ,qa
H ,Pa

H) are referred to as the neoclassic
fluxes by Hinton and Wong and by Cattoet al. In Ref. 10
and in the present work, (Ga

H ,qa
H ,Pa

H) are considered sepa
rately from the neoclassical fluxes since the former res
from the collisionless particles’ gyromotion and are relat
to the nondissipative parallel gyroviscosity. Now that t
Onsager symmetry is shown to be satisfied by the trans
coefficients for both (Ga

ncl ,qa
ncl ,Pa

ncl) and (Ga
H ,qa

H ,Pa
H), the

symmetry is also valid for the transport coefficients for th
total fluxes in Eq.~27!. From the charge neutrality and th
momentum conservation in collisions with Eq.~27!, we find
that the particle fluxes (Ga

ncl1Ga
H) are intrinsically ambipo-

lar:
H. Sugama and W. Horton
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(
a

ea~Ga
ncl1Ga

H!50. ~28!

Using the ambipolarity condition in Eq.~28!, the number of
the pairs of the particle fluxes (Ga

ncl1Ga
H) and the conjugate

thermodynamic forces appearing in the transport equat
can be reduced by one without breaking the Onsager s
metry of the transport matrix.11 In the following sections, we
consider the case of single-species ions (i ) with charge
ei5Zie per particle, and derive the transport equations co
bining the five transport fluxes@(Ge

ncl1Ge
H),(qe

ncl1qe
H)/Te ,

(qi
ncl1qi

H)/Ti ,(P i
ncl1P i

H),JE] with the five thermodynamic
forces (Xe1* ,Xe2 ,Xi2 ,XV ,XE):

3
Ge
ncl1Ge

H

1

Te
~qe

ncl1qe
H!

1

Ti
~qi

ncl1qi
H!

P i
ncl1P i

H

JE

4 5F L11
ee L12

ee L12
ei L1V

e L1E
e

L21
ee L22

ee L22
ei L2V

e L2E
e

L21
ie L22

ie L22
i i L2V

i L2E
i

LV1
e LV2

e LV2
i LVV LVE

LE1
e LE2

e LE2
i LEV LEE

G
3F Xe1*

Xe2

Xi2

XV

XE

G , ~29!

where the Onsager symmetry for the 535 transport matrix is
already guaranteed. Here, we have neglectedPe

ncl1Pe
H

which is O (me /mi) smaller thanP i
ncl1P i

H . The first ther-
modynamic forceXe1* is defined by

Xe1* [Xe11
Xi1

Zi
52

1

Ne

]~NeTe!

]C
2

1

ZiNi

]~NiTi !

]C
. ~30!

With this reduction, we see that theO (d) radial electric field
2]^F1&/]C disappears from the thermodynamic force
Thus, in the axisymmetric toroidally rotating system, t
O (d) radial electric field neither affects the transport nor
determined by the ambipolar condition. Recall that the tra
port coefficients in Eq.~29! depend on the radial electri
field of O (d0) @not O (d)# through the toroidal angular ve
locity Vz52c]F0 /]C and that the thermodynamic forc
XV is proportional to the radial gradient of theO (d0) radial
electric field@see Eq.~10!#.

IV. PFIRSCH–SCHLÜTER REGIME

In the Pfirsch–Schlu¨ter regime, the ratio of the particles
mean-free path to the equilibrium scale leng
l[vTataa /L is used as a small ordering parameter, wh
vTa[A2Ta /ma is the thermal velocity andtaa the collision
time defined in Ref. 6. In this section, we derive the f
neoclassical transport equations for the rotating plasma
sisting of electrons and single-species ions in the Pfirs
Schlüter regime. Here we retain terms up toO @(me /mi)

1/2#
in order to obtain the electron transport coefficients, wh
Phys. Plasmas, Vol. 4, No. 6, June 1997
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are not considered in Refs. 8 and 9. In Ref. 8, the rotat
speed divided by the ion thermal velocityV0 /vTi is assumed
to be as small asl1/2 although, without this assumption, ou
results here are valid even forV0;vTi .

According to the conventional analytical techniqu
for the Pfirsch–Schlu¨ter transport, let us expand theO (d)
distribution functionḡa in terms of the expansion paramet
l as

ḡa5ḡa
~21!1ḡa

~0!1ḡa
~1!1•••. ~31!

In the lowest-order with respect tol, the linearized drift
kinetic equation~8! reduces toCa

L(ḡa
(21))50, from which

we have

ḡa
~21!5S aa

~21!1
ma

Ta
ui1

~21!v i81
Ta1

~21!

Ta

ma~v8!2

2Ta
D

3 f a0~«,C!. ~32!

Here, theO (dl21) quantitiesaa
(21) , ui1

(21) , andTa1
(21) are

independent of the velocity variables («,m). In Appendix B,
some relations on the parallel flows and the parallel mom
tum balance equations are derived from the drift kine
equation. The quantityui1

(21) represents theO (dl21) aver-
age parallel flow velocity, and is related by Eq.~B4! in Ap-
pendix B to O (dl21) surface quantitiesGau

(21)(C) and
qau
(21)(C) as naui1

(21)5BGau
(21) and qia1

(21)5Janaui1
(21)

5 Bqau
(21) . Then, we haveJaGau

(21)5qau
(21) , and therefore

obtainui1
(21)5Gau

(21)5qau
(21)50 by noting from Eqs.~4! and

~7! thatJa is dependent on the poloidal angleu. In the next
order with respect tol, the linearized drift kinetic equation
~8! is written as

Ca
L~ ḡa

~0!!5v i8b•¹ḡa
~21!2

1

Ta
f a0WaEXE , ~33!

whereXE[^BEi
(A)&/^B2&1/2 is considered to be on the orde

of l (21) since it is balanced with the parallel current mul
plied by the resistivity (}l (21)) although the other thermo
dynamic forcesXa1, Xa2, and XV are regarded asO (l0)
quantities.

In the derivation of the transport equations for t
Pfirsch–Schlu¨ter regime, only the leading order terms
O (d2l21) are retained in the radial fluxes of the particle
heat, and toroidal momentum, which are written from E
~27! as

Ge
ncl1Ge

H52cI^ne&
^BEi

~A!&

^B2&
1
cI

e K F ie1

B L ,
1

Te
~qe

ncl1qe
H!52cI^neDe&

^BEi
~A!&

^B2&
1
cI

e K F ie1De

B L
1
cI

e K F ie2

B L ,
1

Ti
~qi

ncl1qi
H!52

cI

Zi
^neD i&

^BEi
~A!&

^B2&
1

cI

Zie
K F ie1D i

B L
2

cI

Zie
K F i i2

B L ,
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P i
ncl1P i

H52
cI

Zi
miV

z^neR
2&

^BEi
~A!&

^B2&

1
cI

Zie
miV

zK F ie1

B
R2L , ~34!

where we have used the definitionsDa[Ja /Ta ,
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the momentum balanceFe11Fi150 in collisions.

Multiplying Eq. ~33! by mav i8(21) jL j
(3/2)(x2)

( j50,1,2,...) @L0
(3/2)(x2)51, L1

(3/2)(x2)55/22x2,... : the
Laguerre polynomials;x2[ma(v8)2/2Ta# and integrating
them in the velocity space give theO (dl (21)) parallel mo-
mentum balance equations. Then, we obt
F ia j[*d3vmavi8(21) j21L j21

(3/2)(x2)Ca( f a)50 for j>3 and
e

FTeB•¹ae
~21!1 5

2B•¹Te
~21!2Te

~21!B•¹De1eB2^BEi
~A!&/^B2&

5
2B•¹Te

~21! G
5FBFie1 /ne

BFie2 /ne
G52

me

netee
F l̂11

e 2l̂12
e

2l̂12
e l̂22

e GF ne~uie1
~0! 2ui i1

~0!!B

2
5 ~qie1

~0! /Te2Deneuie1
~0! !B

G , ~35!

5

2
B•¹Ti

~21!5B
F i i2

ni
52

mi

nit i i
l̂22
i 2

5 S qi i1
~0!

Ti
2D iniui i1

~0!DB, ~36!

which correspond to the leading-orderO (dl21) parts of Eqs.~B5!. Here, the dimensionless friction coefficientsl̂11
e , l̂12

e ,
l̂22
e , andl̂22

i are related to the dimensionless coefficientss̃ i , ã i , k̃ i
e , andk̃ i

i given in Ref. 7 as

Le[F l̂11
e 2l̂12

e

2l̂12
e l̂22

e G5F s̃ i 2A2
5ã i

2A2
5ã i

2
5 k̃ i

e G21

, l̂22
i 5S 25 k̃ i

i D 21

. ~37!

Using the results of the 29-moment~29M! approximation in Ref. 7, we havel̂11
e 50.672, l̂12

e 50.558, l̂22
e 51.945, and

l̂22
i 51.110 for the case ofZi51.
Using the magnetic surface average operations^•& and ^Da•& (Da[Ja /Ta ;a5e,i ) in the parallel momentum balanc

equations~35! and ~36!, we obtain the following equations:

F ^DeB•¹Te
~21!&1e^BEi

~A!&

0 G52
me

netee
F l̂11

e 2l̂12
e

2l̂12
e l̂22

e G S F ^B2&~Geu
~0!2ZiG iu

~0!!

2

5
^B2&qeu

~0!/Te2
2

5
^B2De&Geu

~0!G
2
cI

e F ^ne&Xe1* 1^neDe&Xe21^neD i&Xi2 /Zi1miV
z^neR

2&XV /Zi

^ne&Xe2
G D , ~38!

5

2
^DeB•¹Te

~21!&52
me

netee
@2l̂12

e l̂22
e #S F ^B2De&~Geu

~0!2ZiG iu
~0!!

2
5 ^B2De&qeu

~0!/Te2
2
5 ^B2De

2&Geu
~0!G2

cI

e F ^neDe&Xe1* 1^neDe
2&Xe2

^neDe&Xe2
G

2
cI

e F ^neDeD i&Xi2 /Zi1miV
z^neR

2De&XV /Zi

0 G D , ~39!

2

5 S ^B2&
qiu

~0!

Ti
2^B2D i&G iu

~0!D 1
cI

Zie
^ni&Xi250, ~40!

2

5 H ^B2D i&
qiu

~0!

Ti
2^B2D i

2&G iu
~0!J 1

cI

Zie
^niD i&Xi252

5

2

nit i i

mi l̂22
i ^D iB•¹Ti

~21!&, ~41!

where it should be noted thatnataa (a5e,i ) are independent of the poloidal angleu. We also have from Eq.~B6!,

Ze^DeB•¹Te
~21!&1^D iB•¹Ti

~21!&50. ~42!
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Now, using Eqs.~38!–~42! and~B4!, we can express theO (dl (0)) poloidal flows (Gau

(0) ,qau
(0)), theO (dl (0)) parallel flows

(uia1
(0) ,qia1

(0) ), and the parallel friction forces (F ia1 ,F ia2) in the linear forms of the thermodynamic force
(Xe1* ,Xe2 ,Xi2 ,XV ,XE). Then, we can calculate the transport fluxes in Eq.~34! and obtain the transport coefficients in Eq.~29!.
The resultant transport coefficients for the Pfirsch–Schlu¨ter regime are given by

FL11ee L12
ee

L12
ee L22

eeG5
me

netee

c2I 2

e2 S K ne2B2Ue
TLeUeL 2^neUe

TLeVe
T&^B2VeLeVe

T&21^neVeLeUe& D , ~43!

FL12eiL22
eiG5FL21ieL22

ieG5
me

netee

c2I 2

e2 H 52 $^B2&^neD i&2^B2D i&^ne&%

$^B2&^B2D i
2&2^B2D i&

2%
^neUe

T&1K ne2B2D iUe
TL 2^neUe

TLeVe
T&

3^B2VeLeVe
T&21S 52 $^B2&^neD i&2^B2D i&^ne&%

$^B2&^B2D i
2&2^B2D i&

2%
^B2Ve&1^neD iVe& D J F l̂11

e

2l̂12
e G , ~44!

FL1VeL2Ve G5FLV1eLV2e G5
me

netee

c2I 2

e2
miV

z

Zi
S K ne2R2

B2 Ue
TL 2^neUe

TLeVe
T&^B2VeLeVe

T&21^neR
2Ve& D F l̂11

e

2l̂12
e G , ~45!

FL1Ee
L2E
e G52FLE1e

LE2
e G5cIS ^neUe

TLeVe
T&^B2VeLeVe

T&21F ^B2&1/2

0 G2
1

^B2&1/2F ^ne&

^neDe&
G D , ~46!

L22
i i 5

mi l̂22
i

nit i i

c2I 2

Zi
2e2 S K ni2B2 L 1@^ni& ^niD i&#F ^B2& ^B2D i&

^B2D i& ^B2D i
2&G

21F ^ni&

^niD i&
G D 1

me

netee

c2I 2

Zi
2e2 H l̂11

e S K ne2D i
2

B2 L
15^neD i&

$^B2&^neD i&2^B2D i&^ne&%

$^B2&^B2D i
2&2^B2D i&

2%
1
25

4
^B2&

$^B2&^neD i&2^B2D i&^ne&%
2

$^B2&^B2D i
2&2^B2D i&

2%2 D 2@ l̂11
e 2l̂12

e #

3S 52 $^B2&^neD i&2^B2D i&^ne&%

$^B2&^B2D i
2&2^B2D i&

2%
^B2Ve

T&1^neD iVe
T& D ^B2VeLeVe

T&21S 52 $^B2&^neD i&2^B2D i&^ne&%

$^B2&^B2D i
2&2^B2D i&

2%
^B2Ve&

1^neD iVe& D F l̂11
e

2l̂12
e G J , ~47!

L2V
i 5LV2

i 5miV
z
me

netee

c2I 2

Zi
2e2 H l̂11

e S K ne2R2D i

B2 L 1
5

2
^neR

2&
$^B2&^neD i&2^B2D i&^ne&%

$^B2&^B2D i
2&2^B2D i&

2% D 2@ l̂11
e 2l̂12

e #

3S 52 $^B2&^neD i&2^B2D i&^ne&%

$^B2&^B2D i
2&2^B2D i&

2%
^B2Ve

T&1^neD iVe
T& D ^B2VeLeVe

T&21^neR
2Ve&F l̂11

e

2l̂12
e G J , ~48!

L2E
i 52LE2

i 52
cI

Zi
H S ^neD i&

^B2&1/2
1
5

2
^B2&1/2

$^B2&^neD i&2^B2D i&^ne&%

$^B2&^B2D i
2&2^B2D i&

2% D 2@ l̂11
e 2l̂12

e #

3S 52 $^B2&^neD i&2^B2D i&^ne&%

$^B2&^B2D i
2&2^B2D i&

2%
^B2Ve

T&1^neD iVe
T& D ^B2VeLeVe

T&21F ^B2&1/2

0 G J , ~49!

LVV5mi
2~Vz!2

me

netee

c2I 2

Zi
2e2 S l̂11

e K ne2R4

B2 L 2@ l̂11
e 2l̂12

e #^neR
2Ve

T&^B2VeLeVe
T&21^neR

2Ve&F l̂11
e

2l̂12
e G D , ~50!

LVE52LEV52miV
z
cI

Zi
S ^neR

2&

^B2&1/2
2@ l̂11

e 2l̂12
e #^neR

2Ve
T&^B2VeLeVe

T&21F ^B2&1/2

0 G D , ~51!

LEE5
neteee

2

me
@^B2&1/2 0#^B2VeLeVe

T&21F ^B2&1/2

0 G , ~52!
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where terms up toO @(me /mi)
1/2# are retained, and the

232 matricesLe , Ue , andVe are defined by Eq.~37! and

Ue[F1 De

0 1 G , Ve[F 1 2
2

5
De

0 1
G . ~53!

In Eqs.~43!–~52!, MT denotes the transpose ofM and ^M &
is defined by ^M &[@^M jk&# for an arbitrary matrix
M5@M jk#.

It is found that, even if there is no up–down symmet
the Pfirsch–Schlu¨ter transport coefficients in Eqs.~43!–~52!
satisfy the restricted version of the Onsager symmetry gi
in Eq. ~25! since the inhomogeneity of the magnetic field
ignored within the mean free path in the Pfirsch–Schlu¨ter
regime @see also Eq.~A3! in Appendix A showing that the
restricted version of the Onsager symmetry is also valid
the classical transport coefficients#.

V. BANANA REGIME

In order to analytically obtain the neoclassical transp
coefficients for the banana regime, we hereafter consider
large aspect ratio toroidal system and use the toroidal c
dinates (r ,u,z) where the minor radiusr is a label for mag-
netic surfaces. The major radius is given byR5R01rcosu
(R0: the distance between the major axis and the magn
axis! and r /R0!1 is assumed. The banana regime is rep
sented byvTataa@(R0 /r )

3/2 wherevTa[vTa /(qR0) is the
transit frequency andq[rBT /(R0BP) is the safety factor.
WhenvTataa@1, the dominant parts of the radial transpo
fluxes in Eq.~27! are given by

Ge
ncl1Ge

H.
cI

eB0
2 K E d3vme~v i8!2B•¹h̄eL ,

1

Te
~qe

ncl1qe
H!.

cI

eB0
2 K E d3vme~v i8!2

3Sme~v8!2

2Te
2
5

2DB•¹h̄eL ,
~54!

1

Ti
~qi

ncl1qi
H!.2

cI

ZieB0
2 K E d3vmi~v i8!2

3Smi~v8!2

2Te
2
5

2DB•¹h̄i L
2

cI

ZieB0
2 ^D i&K E d3vmi~v i8!2B•¹h̄i L ,

P i
ncl1P i

H.2
mic

2Zie
K E d3v

3Smi

I 2

B2 ~v i8!21m
R2BP

2

B DCi
L~ ḡi !L

2miR0
2Vz

cI

ZieB0
2 K E d3vmi~v i8!2B•¹h̄i L ,

where the distribution functionsh̄a (a5e,i ) are defined by
Eq. ~B2!.
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It is shown from Eqs.~4!, ~6!, and~7! that, in the lowest-
order with respect to the inverse aspect ratior /R0!1, the
electron and ion densities are also regarded as surface f
tions: ne5Zini.Ne whereO (me /mi) terms are neglected
Then, the surface-averaged parallel momentum bala
equations forvTataa@1 are obtained from Eqs.~B4!, ~B5!,
and ~B6! as

F K E d3vme~v i8!2B•¹h̄eL 1nee^BEi
~A!&

K E d3vme~v i8!2Sme~v8!2

2Te
2
5

2DB•¹h̄eL G
52

me

tee
F l̂ 11

e 2 l̂ 12
e

2 l̂ 12
e l̂ 22

e G S B0
2F ~Geu2ZiG iu!

2

5
q̄eu /Te

G
2
necI

e FXe1* 1^D i&Xi2 /Zi1miR0
2VzXV /Zi

Xe2
G D , ~55!

K E d3vmi~v i8!2Smi~v8!2

2Te
2
5

2DB•¹h̄i L
52 l̂ 22

i mi

t i i
S 25B0

2 q̄iu
Ti

1
nicI

Zie
Xi2D , ~56!

K E d3vme~v i8!2B•¹h̄eL 1 K E d3vmi~v i8!2B•¹h̄i L 50,

~57!

where the dimensionless friction coefficients are given by

l̂ 11
e 5Zi , l̂ 12

e 5
3

2
Zi , l̂ 22

e 5A21
13

4
Zi , l̂ 22

i 5A2. ~58!

In Eqs. ~55! and ~56!, we have used the notatio
q̄au[qau2^Ja&Gau (a5e,i ) and the 13-moment~13M! ap-
proximation to express the friction forces in terms of t
flows.

Now, let us use the banana regime parame
(R0 /r )

3/2(vTataa)
21!1 to expand the distribution function

as

ḡa5ḡa
~0!1ḡa

~1!1•••,
~59!

h̄a5h̄a
~0!1h̄a

~1!1•••.

The lowest order of the linearized drift kinetic equation
written asv i8b•¹h̄a

(0)50 which shows thath̄a
(0) is indepen-

dent of the poloidal angleu:

h̄a
~0!5h̄a

~0!~«,m;C!. ~60!

Thus h̄a
(0) (a5e,i ) make no direct contribution to the neo

classical fluxes as shown by substituting Eq.~60! into Eq.
~54!. In the next order, the linearized drift kinetic equatio
gives
H. Sugama and W. Horton
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v i8b•¹h̄a
~1!5Ca

L~ h̄a
~0!!1

1

Ta
Ca
L@ f a0~Ua1Xa11Ua2Xa2

1UaVXV!#1
1

Ta
f a0WaEXE . ~61!

Then, we have the solvability conditions6 for Eq. ~61! as

R dl

v i8
Ca
L~ h̄a

~1 !!

52 R dl

v i8
Ca
LF f a0 mac

eaTa
H ma~v8!2

2Ta
R2VzXa2

1
1

2 Sma

I 2

B2 ~v i8!21m
R2BP

2

B DXVJ G , ~62!

R dl

v i8
Ca
L~ h̄a

~2 !!

52 R dl

v i8
SCa

LF f a0v i8
macI

eaTaB
HXa11S «

Ta
2
5

2DXa2

1maR
2VzXVJ G1

ea
Ta

B

^B2&1/2
v i8XED , ~63!

whereh̄a
(0) is divided into the even (1) and odd (2) parts in

v i8 :

h̄a
~0!5h̄a

~1 !1h̄a
~2 ! . ~64!

We need to calculate the lowest-order parallel viscosi
^*d3vma(v i8)

2B•¹h̄a
(1)& and ^*d3vma(v i8)

2{ @ma(v8)2/

2Ta]2
5
2% B•¹h̄a

(1)& (a5e,i ) in order to obtain the radia
fluxes in Eq.~54!. It is found from Eq.~61! that only the odd
part h̄a

(2) is necessary for calculation of those lowest-ord
parallel viscosities. Following the standard procedure by H
shman and Sigmar,6 we can obtain the solutionĥa

(2) of Eq.
~63! and derive the parallel viscosities, which are written
the linear forms of the poloidal flows:

F K E d3vma~v i8!2B•¹h̄aL
K E d3vma~v i8!2~ma~v8!2/2Ta2

5
2!B•¹h̄aL G

51.469S r

R0
D 1/2ma

taa
B0
2F m̂a1 m̂a2

m̂a2 m̂a3
GF Gau

2
5q̄au /Ta

G . ~65!

The dimensionless coefficientsm̂a j (a5e,i ; j51,2,3) are de-
fined by

m̂a j5
8

3Ap
E
0

`

dxx4e2x2S x22 5

2D
j21

3S 11
Y

x2D
1/2

taanD
a ~x! ~a5e,i ; j51,2,3!, ~66!

where the velocity-dependent collision frequen
nD
a 5nD

a (x) (x[v8/vTa) is defined in Ref. 6, andY denotes
the square of the toroidal flow velocity normalized by t
sound wave velocity:Y[miV0

2/(ZiTe1Ti). For 0<Y<1,
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the banana regime dimensionless coefficientsm̂a j

(a5e,i ; j51,2,3) defined by Eq.~66! are fitted as

m̂e150.533~110.923Y20.501Y210.199Y3!

1~112.064Y21.690Y210.765Y3!Zi ,

m̂e2520.625~111.551Y20.960Y210.392Y3!

21.500~113.124Y22.709Y211.239Y3!Zi ,

m̂e351.386~111.533Y20.998Y210.414Y3!

13.250~113.392Y23.029Y211.395Y3!Zi , ~67!

m̂ i150.533~110.923Y20.501Y210.199Y3!,

m̂ i2520.625~111.551Y20.960Y210.392Y3!,

m̂ i351.386~111.533Y20.998Y210.414Y3!,

where the ion–electron collision contributions
O (me /mi) are neglected. Appendix C shows the parallel v
cosity coefficients for the plateau regime, from which all t
plateau transport coefficients except forLVV can be derived.

Now, by using Eqs.~55!–~57!, ~65!, and ~B4!, we can
express the parallel viscositieŝ*d3vma(v i8)

2B•¹h̄a&,
^*d3vma(v i8)

2$@ma(v8)2/2Ta# 2 5
2%B•¹h̄a& (a5e,i ) and the

parallel currentJE5e^ne(ui i2uie)&/^B
2&1/2 in the linear

forms of the thermodynamic forces (Xe1* ,Xe2 ,Xi2 ,XV ,XE).
We find that the effects of the toroidal flow velocity~not its
shear! on the electron and ion parallel viscosities for t
banana regime are included only throughY in Eq. ~66!. As
in Ref. 8, we have used here the approximate expression
the parallel velocityv i8 of the trapped particle in the toroi
dally rotating plasma with the large aspect ratio

ma~v i8!2

2Ta
.x2F12

mB0

Tax
2 1

r

R0
S 11

Y

x2D cosuG ~a5e,i !.

~68!

In the right-hand side of Eq.~68!, the term proportional to
Y is derived from the poloidal dependent part of the pote
tial functionJa which consists of the electrostatic potenti
and the effective gravity potential due to the centrifugal for
@see Eqs.~2!, ~4!, and~7!#. The sum of this poloidal variation
J̃a and the poloidal magnetic variation forms the well f
trapped particles, which is expressed by (r /R0)
3(11Y/x2)cosu in Eq. ~68!. Thus, the toroidal rotation in-
creases the trapped particles’ population and accordingly
parallel viscosity coefficients as shown by the enhancem
factor (11Y/x2)1/2 in the right-hand side of Eq.~66!.

In order to obtain the full transport equations, we need
also derive the linear thermodynamic expression
^*d3v@miI

2(v i8)
2/B21mR2BP

2 /B#Ci
L(ḡi)& which is neces-

sary for the radial flux of the toroidal momentum in Eq.~54!.
This requires the solutionĥi

(1) of Eq. ~62!, which can be
given as in Ref. 8 by minimizing the positive definite fun
tional:
2223H. Sugama and W. Horton
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K E d3v
1

f i0
F ĥi~1 !1

micXV
2ZieTi

f i0Smi

I 2

B2 ~v i8!21m
R2BP

2

B D G
3Cii

L F ĥi~1 !1
micXV
2ZieTi

f i0Smi

I 2

B2 ~v i8!21m
R2BP

2

B D G L ,
~69!

whereCii
L denotes the linearized ion–ion collision opera

with the ion–electron collisions neglected. Then we have
approximate solution

ĥi
~1 !5

micI
2XV

ZieTi

^ni
2/B3&

^ni
2/B2&

m f i0 , ~70!

from which ^*d3v@miI
2(v i8)

2/B21mR2BP
2 /B#Ci

L(ḡi)& is
given in the linear form ofXV .

Thus, the final banana transport formulas form a 535
system of the coefficients as follows:

FL11ee L12
ee

L12
ee L22

eeG51.469S r

R0
D 1/2nemec

2u¹Cu2

e2BP
2tee

F m̂e1 m̂e2

m̂e2 m̂e3
G ,

~71!

FL12eiL22
ei G5FL21ieL22

ie G5
1

Zi
S m̂ i2

m̂ i1

2
miV0

2

2Ti
D FL11eeL12

eeG , ~72!

FL1Ve
L2V
e G5FLV1e

LV2
e G5

miR0V0

Zi
FL11ee
L12
eeG , ~73!

FL1EeL2Ee G52FLE1eLE2e G
521.469S r

R0
D 1/2

nec

BP

u¹Cu

@ l̂ 11
e l̂ 22

e 2~ l̂ 12
e !2#

3F m̂e1 m̂e2

m̂e2 m̂e3
GF l̂ 22e
l̂ 12
e G , ~74!

L22
i i 51.469S r

R0
D 1/2nimic

2u¹Cu2

Zi
2e2BP

2t i i
S m̂ i32

~m̂ i2!
2

m̂ i1
D

1
1

Zi
2 S m̂ i2

m̂ i1

2
miV0

2

2Ti
D 2L11ee, ~75!

L2V
i 5LV2

i 5
miR0V0

Zi
2 S m̂ i2

m̂ i1

2
miV0

2

2Ti
D L11ee, ~76!

L2E
i 52LE2

i 5
1

Zi
S m̂ i2

m̂ i1

2
miV0

2

2Ti
D L1Ee , ~77!

LVV5
A2
10 S r

R0
D 2niTimi

2c2R0
2u¹Cu2

Zi
2e2BP

2t i i
1
mi
2R0

2V0
2

Zi
2 L11

ee, ~78!

LVE52LEV5
miR0V0

Zi
L1E
e , ~79!
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LEE5sSS 12
1.469~r /R0!

1/2

l̂ 22
e @ l̂ 11

e l̂ 22
e 2~ l̂ 12

e !2#
@ l̂ 22

e l̂ 12
e #F m̂e1 m̂e2

m̂e2 m̂e3
G

3F l̂ 22e
l̂ 12
e G D , ~80!

where sS[(e2netee/me) l̂ 22
e /@ l̂ 11

e l̂ 22
e 2( l̂ 12

e )2# denotes the
Spitzer resistivity andBP[u¹Cu/R represents the poloida
magnetic field. The dimensionless friction coefficientsl̂ jk

e

( j ,k51,2) are written in Eq.~58! and the dimensionless vis
cosity coefficientsm̂a j (a5e,i ; j51,2,3) are given by Eqs
~66! and ~67!. Recall thatC is used to define the radia
transport fluxes and the radial thermodynamic forces in s
a way thatqa[^qa•¹C& and Xa2[2]Ta /]C. When we
user instead ofC to define the radial fluxes and forces, th
resultant transport coefficients are immediately given by
placing u¹Cu in Eqs.~71!–~80! with the unity.

We find that, in the large aspect ratio system, the ban
transport coefficients in Eqs.~71!–~80! are much larger than
the classical transport coefficients in Eq.~A2! by a factor of
O @q2(R0 /r )

3/2# except for the diagonal banana coefficie
for the toroidal momentum transportLVV.(1/10A2)
3 q2(r i

2/t i i )nimiR0
2u¹Cu2 which is comparable to the clas

sical oneLVV
cl .(3/5A2)(r i

2/t i i )nimiR0
2u¹Cu2. All the coef-

ficients in Eqs.~71!–~80! are functions ofV0 as seen from
the explicit appearance ofV0 and from the flow-dependen
viscosity coefficients@see Eq.~66!#. From Eq.~75! with the
small electron mass terms neglected, the toroidal flow dep
dence of the ion thermal diffusivityL22

i i appears through

@m̂ i32(m̂ i2)
2/m̂ i1#[0.653F(Y) where the enhancement fac

tor F(Y) for the ion thermal diffusivity is fitted for
0<Y<1 as

F~Y!5110.765Y20.631Y210.280Y3. ~81!

This enhancement factor is in good agreement with t
given by Cattoet al.,9 F(Y)5110.75Y20.60Y210.26Y3

@see Eq.~98! in Ref. 9 and note thatY is written asX in their
notation#, in spite of the difference between the solutio
methods: our calculation is based on the moment expan
method with the 13M approximation while they use t
variational technique. We find from Eqs.~67!, ~71!, and~81!
that the banana particle diffusivity and the banana elect
and ion thermal diffusivities are monotonically increasi
functions ofY. This is because the potential well due to t
toroidal rotation increases the number of the trapped p
ticles as mentioned after Eq.~68!.

The transport coefficients in Eqs.~71!–~80! satisfy the
restricted version of the Onsager symmetry given in Eq.~25!
since we have used the large aspect ratio approxima
where the magnetic surfaces (r5 const) have circular cros
sections. A well-known pair of Onsager symmetric neocl
sical transport coefficients is that ofL1E

e andLE1
e (52L1E

e )
@see Eq.~74!#. The off-diagonal coefficientL1E

e ,0 indicates
that the parallel electric fieldXE gives the inward particle
flux Ge5L1E

e XE,0 due to trapped particles, which is know
as the Ware pinch effect.12 The counterpartLE1

e (52L1E
e )

represents that the thermodynamic forceXe1* produces the
parallel current~the bootstrap current! JE5LE1

e Xe1* . Since
H. Sugama and W. Horton
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the toroidal momentum transportP i and the flow shearXV

enter the transport equations for the toroidally rotat
plasma as a new conjugate flux-force pair, there appea
new physically important pair of Onsager symmetric ne
classical transport coefficientsLVE andLEV(52LVE). The
coefficientLVE5(miR0V0 /Zi)L1E

e @see Eq.~79!# shows that
the parallel electric fieldXE gives the inward toroidal mo
mentum fluxP i5LVEXE ~which has the opposite sign t
V0) due to the pinched trapped ions with the mean toroi
velocityV0. From its partnerLEV(52LVE), we find that the
flow shearXV drives the parallel currentJE5LEVXV .

It is shown from Eqs.~4!, ~6!, ~30!, and~79! that the sum
of the currents driven byXe1* and XV is rewritten
as LE1

e @Xe1* 1(miRV0 /Zi)XV#5(LE1
e /neu¹Cu)@2(]P/]r )

1nimi(V0
2/R)(]R/]r )2(nimiV0

2/2Ti)(]Ti /]r )# with the
flow shear term canceled. Here the total pressure grad
term ]P/]r[](neTe1niTi)/]r and the centrifugal force
term nimi(V0

2/R)(]R/]r )52nimiV0•¹V0•¹R appear
since they give the perpendicular currentJ' through the
equilibrium equationJ3B/c5¹P2nimiV0•¹V0 and ac-
cordingly drive the electron poloidal flow, from which th
electron parallel viscosity@see Eq.~65!# and therefore the
neoclassical parallel current are produced.

Using the current coefficients in Eqs.~74!, ~77!, ~79!,
and~80! with the viscosity coefficients~67!, the full expres-
sion of the parallel current for the toroidally rotating plasm
is written as

JE52S r

R0
D 1/2 cBP

F2.411FE1
e ~Y!

dP

dr

21.800FE2
e ~Y!ne

dTe
dr

22.828FE2
i ~Y!ni

dTi
dr G

1sSF121.832S r

R0
D 1/2FEE~Y!GXE , ~82!

with the enhancement factors

FE1
e ~Y!5110.868Y20.539Y210.229Y3,

FE2
e ~Y!5112.248Y21.661Y210.727Y3,

~83!
FE2
i ~Y!5111.494Y21.022Y210.434Y3,

FEE~Y!5110.431Y20.184Y210.072Y3,

whereZi51 and 0<Y<1 are assumed, and the centrifug
force term ofO @Y(r /R0)(dP/dr)# is neglected.

VI. CONCLUSIONS AND DISCUSSION

In this work, we have studied neoclassical transport
the axisymmetric system with the large toroidal flow veloc
(;vTi). In the toroidally rotating plasma, the transport equ
tions involve a new pair of the transport flux and the th
modynamic force: the radial flux of the toroidal momentu
and the toroidal flow shear which is proportional to the rad
electric field shear. For general rotating plasmas consis
of multi-species particles in arbitrary collisional regimes, t
Onsager symmetry of the neoclassical transport matrix
proved by using the formal solution of the linearized dr
kinetic equation with the self-adjoint collision operator, a
Phys. Plasmas, Vol. 4, No. 6, June 1997
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its restricted form for the system with up–down symmetry
also shown. The complete neoclassical electron and
transport equations are derived for the Pfirsch–Schlu¨ter and
banana regimes in the case of single-species ions and
Onsager symmetry is directly confirmed by them.

We have found that the toroidal rotation causes the c
trifugal force and the poloidal variation of the electrosta
potential, which result in the increase of the trapped partic
and therefore the enhancement of the parallel viscosities
particle and thermal diffusivities, and the transport coe
cients concerned with the pressure gradient driven~boot-
strap! current and the Ware pinch. It is also shown that t
parallel inductive electric field drives the inward banana fl
of the toroidal momentum in addition to the Ware pinch
the particles. These inward particle and momentum flu
driven by the parallel electric field are related through tw
pairs of the Onsager symmetric off-diagonal coefficients
the parallel currents driven by the radial thermodynam
forces conjugate to the inward fluxes, respectively. For la
toroidal flows such as observed in JT-60U,4,13 toroidal flow
effects on the parallel current coefficients@see Eqs.~82! and
~83!# are roughly estimated to reach the order of;10% of
those without taking account of the flow effects, and th
should not be neglected for accurate calculation of the c
rent profile and the magnetic configuration.

Nagashimaet al.13 obtained from the JT-60U experi
ment the toroidal momentum diffusivityxf and the inward
velocity v inward for the toroidal momentum transport. Thes
are related to the transport coefficients given in the pres
paper by LVV5nimiR0

2xfu¹Cu2 and LVE
e XE

52 nimiR0V0v inwardu¹Cu, and are written from the result
in Sec. V as xf5(1/A2)( 1

10q
21 3

5)r i
2/t i i and v inward

5 2.411Zi
21FE1

e (Y)(r /R0)
1/2cEi /BP for the banana regime

Their experimental results give typicallyxf;1 m2/s and
v inward;1 m/s, which are much larger than the predictions
the above neoclassical modelxf;1024 m2/s and
v inward<0.1 m/s. Thus, the radial transport of the toroid
momentum is considered to be dominated by the anoma
processes. In our previous paper,10 the anomalous transpor
fluxes for the rotating plasma are formulated based on
gyrokinetic equations, and the simple expression for
anomalous toroidal momentum diffusivity is given for th
mixing length level of the ion temperature gradient~ITG!
driven turbulence@see Eq.~66! in Ref. 10 wherem i

A corre-
sponds toxf#. This mixing length type estimation can give
larger momentum diffusivity on the order of the experime
tally observed one. However, in order to describe the ano
lous pinch of the toroidal momentum and explain the sign
cant reduction of the transport at the ITB, a more elabor
investigation on the anomalous transport fluxes in the ro
ing plasma is required as a future task.
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APPENDIX A: CLASSICAL TRANSPORT FOR
TOROIDALLY ROTATING PLASMAS CONSISTING OF
ELECTRONS AND SINGLE-SPECIES IONS

The classical transport equations for the rotating plas
consisting of electrons and multi-species ions are derive
Appendix A of Ref. 10. In the case of single-species io
they are written as

3
Ge
cl

1

Te
qe
cl

1

Ti
qi
cl

P i
cl

4 5F ~Lcl!11
ee ~Lcl!12

ee ~Lcl!12
ei ~Lcl!1V

e

~Lcl!21
ee ~Lcl!22

ee ~Lcl!22
ei ~Lcl!2V

e

~Lcl!21
ie ~Lcl!22

ie ~Lcl!22
i i ~Lcl!2V

i

~Lcl!V1
e ~Lcl!V2

e ~Lcl!V2
i ~Lcl!VV

G
3FXe1*

Xe2

Xi2

XV

G , ~A1!

where the classical transport coefficients are given by

F ~Lcl!11
ee ~Lcl!12

ee

~Lcl!21
ee ~Lcl!22

eeG5K neme

tee

c2R2BP
2

e2B2 F 1 0

De 1G
3F l̂ 11

e 2 l̂ 12
e

2 l̂ 12
e l̂ 22

e GF1 De

0 1 G L ,
F ~Lcl!12

ei

~Lcl!22
eiG5F ~Lcl!21

ie

~Lcl!22
ieG5K neme

tee

c2R2BP
2

Zie
2B2 D iF 1 0

De 1G
3F l̂ 11

e

2 l̂ 12
e G L ,

F ~Lcl!1V
e

~Lcl!2V
e G5F ~Lcl!V1

e

~Lcl!V2
e G5KmiR

2Vz
neme

tee

c2R2BP
2

Zie
2B2 F 1 0

De 1G
3F l̂ 11

e

2 l̂ 12
e G L ,

~A2!

~Lcl!22
i i 5K nimi

t i i

c2R2BP
2

Zi
2e2B2 S l̂ 22i 1 l̂ 11

e D i
2nemet i i
nimitee

D L ,
~Lcl!2V

i 5~Lcl!V2
i 5KmiR

2Vz
neme

tee

c2R2BP
2

Zi
2e2B2 D i l̂ 11

e L ,
~Lcl!VV5

mi
2c2

Zi
2e2 KR2BP

2

B2 S ~R2BP
214I 2!

4B2

niTi
t i i

l̂ V
i

1R4~Vz!2
neme

tee
l̂ 11
e D L .
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Here, the poloidal magnetic field is given byBP5u¹Cu/R
and the collision timestaa (a5e,i ) are defined in Ref. 6.
The dimensionless friction coefficients are given
l̂ 11
e 5Zi , l̂ 12

e 5 3
2Zi , l̂ 22

e 5A21 13
4Zi , l̂ 22

i 5A2, and l̂ i
V5 3

5A2.
The classical ion particle flux is given from the electron p
ticle flux through the intrinsic ambipolarity conditio
G i
cl5Ge

cl/Zi . With respect to the small mass ratiome /mi , we
have retained the terms up toO @(me /mi)

1/2# in Eqs. ~A1!
and~A2! although the terms ofO (me /mi) such asPe

cl have
been neglected. We see from Eqs.~A2! that the classical
transport coefficients satisfy the Onsager symmetry

~Lcl!mn
ab ~Vz!5~Lcl!mn

ab ~2Vz!5~Lcl!nm
ba ~Vz!

~a,b5e,i ;m,n51,2!,

~Lcl!mV
a ~Vz!52~Lcl!mV

a ~2Vz!5~Lcl!Vm
a ~Vz!

~a5e,i ;m51,2!, ~A3!

~Lcl!VV~V
z!5~Lcl!VV~2Vz!,

which has the same form as Eq.~25! and is valid even with-
out up–down symmetry since the classical transport is a s
tially local process.

APPENDIX B: THE FIRST-ORDER PARALLEL FLOWS
AND PARALLEL MOMENTUM BALANCE
EQUATIONS

From Eqs.~8! and~11!, the linearized drift kinetic equa
tion is rewritten as

v i8b•¹h̄a2Ca
L~ ḡa!5

1

Ta
f a0WaEXE , ~B1!

where

h̄a[ḡa2
1

Ta
f a0~Ua1Xa11Ua2Xa21UaVXV!. ~B2!

Multiplying Eq. ~B1! by the unity and («/Ta25/2), and in-
tegrating them in the velocity space give the continuity eq
tion and the energy balance equation ofO (d) as

B•¹S E d3vh̄a
v i8

B D 5B•¹S na uia1

B D 1¹•~nau'a1!50,
~B3!

B•¹F E d3vh̄aS «

Ta
2
5

2D v i8

B G5B•¹S qia1

B D 1¹•~q'a1!50.

Integrating Eq.~B3! along the magnetic field line, we hav
theO (d) parallel flows:

nauia1[E d3v f̄ a1v i8

5BGau~C!1
nacI

eaB
~Xa11DaXa21maR

2VzXV!,

~B4!
H. Sugama and W. Horton
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qia1

Ta
[E d3v f̄ a1S «

Ta
2
5

2D v i85B
qau~C!

Ta

1
nacI

eaB
FDaXa11S 521Da

2DXa21DamaR
2VzXVG ,

where the surface quantitiesGau(C) and qau(C) are ob-
tained as integration constants.

Multiplying Eq. ~B1! by mav i8 and
mav i8@ma(v8)2/2Ta25/2#, and integrating them in the veloc
ity space gives the parallel momentum balance equation
O (d):

E d3vma~v i8!2b•¹h̄a2naeaB
^BEi

~A!&

^B2&

5E d3vmav i8Ca
L~ ḡa![F ia1 ,

~B5!

E d3vma~v i8!2Sma~v8!2

2Ta
2
5

2Db•¹h̄a
5E d3vmav i8Sma~v8!2

2Ta
2
5

2DCa
L~ ḡa![F ia2 .

Using the charge neutrality(anaea50 and the momentum
conservation in collisions(aFa150 with Eq. ~B5!, we ob-
tain

(
a
E d3vma~v i8!2b•¹h̄a50. ~B6!

Equation~B6! expresses the balance of the total stresse
the rest frame of the plasma.

APPENDIX C: PARALLEL VISCOSITY COEFFICIENTS
FOR THE PLATEAU REGIME

Here, we derive the parallel viscosity coefficients for t
plateau regime for the large aspect ratio toroidal system@see
Eqs. ~65! and ~66! for the banana regime# where
(R0 /r )

3/2@vTataa@1 is satisfied. For that purpose, it
convenient to rewrite theO (d) distribution functionh̄a as

h̄a5h̄a
~ l51!1 k̄a , ~C1!

whereh̄a
( l51) is the l51 component in the expansion by th

Legendre polynomialPl(h) of h[v i8/v8, which is written in
the 13M approximation as

h̄a
~ l51![ f a0

mav i8

Ta

B

na
FGau1

2

5

q̄au

Ta
Sma~v8!2

2Ta
2
5

2D G .
~C2!

Then, let us dividek̄a into the even (1) and odd (2) parts
k̄a
(1) and k̄a

(2) with respect to the transformatio
(v i ,u)→(2v i ,2u): k̄a5 k̄a

(1)1 k̄a
(2) . It should be noted

that only the odd partk̄a
(2) contributes to the parallel viscos

ties ^*d3vma(v i8)
2B•¹h̄a& and ^*d3vma(v i8)

2$@ma(v8)2/
2Ta] 2 5

2%B•¹h̄a&. From Eq.~C1!, ~C2!, and~B1!, we have
the drift kinetic equation fork̄a

(2) in the plateau regime as
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S h
]

]u
2

n̄a
2

]2

]h2D k̄a~2 !5
1

2

r

R0
sinuS 11

Y

x2D f a0mav8

Ta

B0

na

3FGau1
2

5

q̄au

Ta
Sma~v8!2

2Ta
2
5

2D G ,
~C3!

which is solved to give

k̄a
~2 !5

r

R0
S 11

Y

x2D f a0mav8

2Ta

B0

na

3FGau1
2

5

q̄au

Ta
Sma~v8!2

2Ta
2
5

2D G n̄ a
21/3

3E
0

`

dt sin~u2 n̄ a
21/3ht!e2t3/6, ~C4!

where n̄a[(vTataa)
21taanD

a (x)/x (x[v8/vTa). Then, by
using Eq.~C4!, we obtain the parallel viscosities as

F K E d3vma~v i8!2B•¹h̄aL
K E d3vma~v i8!2Sma~v8!2

2Ta
2
5

2DB•¹h̄aL G
5

Ap

2
maB0

2S r

R0
D 2 vTaqR0

F m̂a1 m̂a2

m̂a2 m̂a3
GF Gau

2

5
q̄au /Ta

G . ~C5!

Here the dimensionless coefficientsm̂a j( j51,2,3) are de-
fined by

m̂a j5E
0

`

dx x5e2x2S x22 5

2D
j21S 11

Y

x2D
2

~a5e,i ; j51,2,3!, ~C6!

which gives

m̂a1511Y1
1

2
Y2,

m̂a25
1

2
2
1

2
Y2

3

4
Y2, ~C7!

m̂a35
13

4
1
9

4
Y1

13

8
Y2.

Noting that Eqs.~54!–~57! are still valid for the plateau re
gime and using them with Eqs.~C5!–~C7!, we can express
the parallel viscosities ^*d3vma(v i8)

2B•¹h̄a&,
^*d3vma(v i8)

2$@ma(v8)2/2Ta# 2 5
2%B•¹h̄a& (a5e,i ) and the

parallel currentJE5e^ne(ui i2uie)&/^B
2&1/2 in the linear

forms of the thermodynamic forces (Xe1* ,Xe2 ,Xi2 ,XV ,XE).
Accordingly, we can obtain all the transport coefficien
in Eq. ~29! for the plateau regime except forLVV , which
are immediately given from Eqs.~71!–~77!, ~79!, and
~80! by replacing the banana parallel viscositi
1.469maB0

2(r/R0)
1/2taa

21m̂a j (a 5 e,i ; j 5 1,2,3) @see Eqs.
2227H. Sugama and W. Horton
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~65!–~67!# in them with the plateau viscositie
(Ap/2)maB0

2(r /R0)
2(vTa /qR0)m̂a j (a5 e,i ; j 5 1,2,3)@see

Eqs.~C5!–~C7!#.

1ASDEX Team, Nucl. Fusion29, 1959~1989!.
2F. M. Levinton, M. C. Zarnstorff, S. H. Batha, M. Bell, R. E. Bell, R. V
Budny, C. Bush, Z. Chang, E. Fredrickson, A. Janos, J. Manickam
Ramsey, S. A. Sabbagh, G. L. Shmidt, E. J. Synakowski, and G. Ta
Phys. Rev. Lett.75, 4417~1995!.

3H. Ninomiya and the JT-60 Team, Phys. Fluids B4, 2070~1992!.
4Y. Koide, T. Takizuka, S. Takeji, S. Ishida, M. Kikuchi, Y. Kamada,
2228 Phys. Plasmas, Vol. 4, No. 6, June 1997

Downloaded¬19¬Jun¬2009¬to¬133.75.139.172.¬Redistribution¬subject¬
.
r,

Ozeki, Y. Neyatani, H. Shirai, M. Mori, and S. Tsuji-Iio, Plasma Phy
Controlled Fusion38, 1011~1996!.

5F. L. Hinton and R. D. Hazeltine, Rev. Mod. Phys.42, 239 ~1976!.
6S. P. Hirshman and D. J. Sigmar, Nucl. Fusion21, 1079~1981!.
7R. Balescu,Transport Processes in Plasmas~2 vols.! ~North-Holland,
Amsterdam, 1988!.

8F. L. Hinton and S. K. Wong, Phys. Fluids28, 3082~1985!.
9P. J. Catto, I. B. Bernstein, and M. Tessarotto, Phys. Fluids30, 2784
~1987!.

10H. Sugama and W. Horton, Phys. Plasmas4, 405 ~1997!.
11H. Sugama and W. Horton, Phys. Plasmas3, 304 ~1996!.
12A. A. Ware, Phys. Rev. Lett.25, 15 ~1970!.
13K. Nagashima, Y. Koide, and H. Shirai, Nucl. Fusion34, 449 ~1994!.
H. Sugama and W. Horton

to¬AIP¬license¬or¬copyright;¬see¬http://pop.aip.org/pop/copyright.jsp


