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Neoclassical electron and ion transport in toroidally rotating plasmas
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Neoclassical transport processes of electrons and ions are investigated in detail for toroidally
rotating axisymmetric plasmas with large flow velocities on the order of the ion thermal speed. The
Onsager relations for the flow-dependent neoclassical transport coefficients are derived from the
symmetry properties of the drift kinetic equation with the self-adjoint collision operator. The
complete neoclassical transport matrix with the Onsager symmetry is obtained for the rotating
plasma consisting of electrons and single-species ions in the Pfirschie®chid banana regimes.

It is found that the inward banana fluxes of particles and toroidal momentum are driven by the
parallel electric field, which are phenomena coupled through the Onsager symmetric off-diagonal
coefficients to the parallel currents caused by the radial thermodynamic forces conjugate to the
inward fluxes, respectively. €997 American Institute of Physid$1070-664X97)00806-9

I. INTRODUCTION andl (¥)=RBy. In the axisymmetric systems, the poloidal
flow decays in a few transit or collision times and the lowest-

Improved confinement modes of tokamak plasmas suchrder flow velocityV,, is in the toroidal directiof:

as high-confinement modési-modes! and reversed shear

configuration% are attracting considerable attention as prom- Vo:VoZ- Vo=RV=— Rcdy(W), 2

ising means for achieving controlled fusion. Such a reduction

of the transport level is generally considered as caused by thehere ® (V) denotes the lowest-order electrostatic poten-

large radial electric field sheéor sheared floy In the Japan tial in & (which corresponds td _, in the paper by Hinton

Atomic Energy Research Institute Tokamak-60 Upgradeand Wong) andEy=—Vd,=—®{VWV. The toroidal angu-

(JT-600),° the internal transport barrigfTB) with the steep lar velocity V¢= —c®y is directly given by the radial electric

ion temperature gradient is formed in the region where thdield and is a flux-surface quantity.

gradient of the toroidal flow is steepdsin rotating plasmas For particle speciea with the masan, and the charge

with the large flow velocities on the order of the ion thermale,, the phase space variablegs’ (e,u,£) are defined in

speedvt;, the toroidal flow shear influences the transport ofterms of the spatial coordinat&sn the laboratory frame and

particles, heat, and momentum as an additional thermodythe velocityv’' =v—V in the moving frame &0

namic force, although, in conventional neoclassical

theories;’ the flow velocities are assumed to be on the or- ey ee Em e _ my(v])?
der of svy; and the direct effects of the flow shear on the =X, €= My(v Sar HTTHR T
transport do not appear in the lowest order. H&sep; /L is ©)

!

the drift ordering parametep; the ion thermal gyroradius, v )
andL the equilibrium scale length. It is important to derive U—/=91COS§+ &sin &.
the transport equations including the flow shear effects at the +

same order as particle and thermal transport for understangiere (g,,e,,b=B/B) are unit vectors which form a right-
ing the ITB physics. Neoclassical ion transport equations fohanded orthogonal system at each poimt=vb+v],
rotating plasmas were obtained by Hinton and Whagd by v[=V'-b, and

Catto et al® However, neoclassical electron fluxes are also
required for a comprehensive description of transport pro-
cesses. For example, the neoclassical pardt@tstrap cur-
rent is associated with the parallel electron viscosity and is
necessary for determining the equilibrium configuration selfyhere Eplsq>l_<q>1>[:g(5)] is the poloidal-angle-
consistently. In the present work, we derive full transportdependent part of the electrostatic potential. The magnetic
equations for neoclassical electron and ion fluxes in the roflux surface average is denoted by . The lowest-order dis-
tating plasma with the toroidal flow velocity on the order of tribution function is the Maxwellian which is written as

the ion thermal speed.

~ 1 2
a= eaq)l - E maVOv (4)

I

Hereafter we consider only axisymmetric systems, for B m, |%? my(v')?
which the magnetic field is given by fao="a 2T, AT o,
B=1(")VI+VIXVV, (1) m, |32 e
: . . = Na(_ exp( - —) : )
where( is the toroidal angleW represents the poloidal flux, 27T, Ta
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where the temperatur®,= T,(V) andN,=N,(W¥) are flux-
surface functions although generally the densifydepends
on the poloidal angl® throughZ, and is given b¥

“a
n,= Naex;{ - T_a) .

This dependence of the density on the poloidal anglé® is

(6)

one of the causes which complicates the derivation of the
classical and neoclassical transport coefficients for the rotat-
ing plasma. For plasmas consisting of electrons and single-

species ions with chargg=Z;e, we havé

e~ m(VHAR—(R?)
2(ZiTe+Ty)

Te

(7)
mi(V9)%(R?)
2T,

)

where the charge neutrality conditidhe,n,=0 is used and
me/m;(<€1) is neglected.

In toroidally rotating axisymmetric systems, the linear-
ized drift-kinetic equation is written 8s'°

ZiNi(‘I’)ZNe(‘P)eXl{ -

ao(Walxal +WaoXa2

v[b-Vg,—C5(ga)=

+ WayXy+WaeXe), (8)

whereC‘.';1 denotes the linearized collision operafsee Eq.
(8) in Ref. 11 and g, is defined in terms of the first-order
gyrophase-averaged distribution functibp as

ot 5 (BEﬁ

BZ
<BZ> <B Eh2)> :

fal_

Idl

S ©

0,=

Here ['d|l denotes the integral along the magnetic field line,

andE{?'=b- (= V@ —c~19A/4t) is the second-order par-
allel electric field. The thermodynamic forces
(Xa1,Xa2, Xy, Xg) are flux-surface quantities defined by

_ 1 &(NaTa) 0-'<q)l> _ aTa
al™ N, ¥ @ g 0 a2 Gy
(10
Nt FPD, (BE[™)
A== =Cogz, Xe= (BYTZ
The functions W,1, W, , W,y ,W,e) are defined by
_maC ’ 2\ /¢ | P
Wal=e—aUHb'V R“V +§U” =U”b'VUa1,
e 5 ,
Wao=Wy, T. 2 =v|b-VUg,,
11
2 2p2
Mg | oz I, R“Bp
Wav=2—eavb~V[ma(R A +Ev” +u B
EU‘ib'VUa\/,
eavﬁB
aEEW'
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The neoclassical entropy producti8i® is kinetically de-
fined in terms off ;; and C'a; and is rewritten in the thermo-
dynamic form by using Eq(8). The surface-averaged total
neoclassical entropy production is given by

2 Ta(oph =~ E T < f d3v— a(fal>>

-3

a

(ngxal+ 90X, 2+H2dxv)

+JeXe, (12

where the neoclassical transport fluxd&¢,qi%T, 115,
Je) conjugate to the forcesXg, , X2, Xy , Xg) are deflned by

_ 1 —
FQC|E< f dgvga al>- _q < j d3vgaWa2>-
chlz< j d3vgwav>,

ncl_—
a

(13

_BY s ([ e
< 2>17? vgaWag ) -
a
HereI'2®, g, andI1}® denote the surface-averaged radial

fluxes of particles, heat, and toroid@ngulay momentum,
respectively, andg represents the surface-averaged parallel
current. The neoclassical transport equations connecting the
conjugate pairs of the fluxes and forces are written as

ry= Eb: (LEXp1 + L35 p2) + L Xy+ L Xe,

ncl__

_Qa = E (L32Xp1 + L 35X p2) + L3y Xy+L3eXe,

(14)

2{; = Eb (L1 Xp1+ LYo Xp2) + LyyXy+ LyeXe,

Je= Eb (L2 Xp1+ LEXpo) + LeyXy+ LeeXe,

where the transport coefficients are dependent on the radial
electric field through the toroidal angular velocity
Vi=—cdy.

The remaining parts of this work are organized as fol-
lows. In Sec. Il, using the formal solution of the linearized
drift kinetic equation(8), we prove the Onsager symmetry of
the neoclassical transport matrix for the rotating plasma con-
sisting of electrons and multi-species ions with arbitrary col-
lision frequencies. In Sec. lll, we describe the transport
fluxes other than the neoclassical fluxes to give the total
transport of the particles, heat, and toroidal momentum. In
the cases of single-species ions, the explicit forms of the
neoclassical transport matrices for the Pfirsch—8ehland
banana regimes are given in Sec. IV and Sec. V, respec-
tively. Conclusions and discussion are given in Sec. VII.
Appendix A shows the classical transport coefficients for the
rotating plasma. In Appendix B, the first-order parallel flows
and the parallel momentum equations, which are useful to
derive the neoclassical transport equations, are obtained from
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the drift kinetic equation. The parallel viscosity coefficients . L e s 1 .
for the plateau regime, from which all the plateau transporvub'VGabm_Z Caa(Gabm:Garpm) = 5ab-|beboWbm ;
coefficients except fot,, can be derived, are shown in a

Appendix C. , __ L -
PP 0{b-VGapm= 2 Coa(Ganm G =0,
) (19
/ ++ L —+ -+ \_
Il. ONSAGER SYMMETRY OF NEOCLASSICAL 0[b-VGapm~ 2 Caw(Gapm Garpm) =0,
a

TRANSPORT EQUATIONS FOR ROTATING PLASMAS

1
In order to prove the Onsager symmetry of the nGOC|aSU\ib'VGa+b:11_Z Caa(Gabm Garpm) = SabT FooWbm
sical transport equations, it is useful to note that the solution a b
of the linearized drift kinetic equatio8) is written as (m=1,2).
Similarly, the second equation in Eq4.6) is divided into
@:Z (GapiXp1+ GapaXp2) + GayXy+GaeXe, (15 parts with these symmetries, which is straightforward and
b not shown here. Next, we regard the transport coefficients as
functions ofV¢ and write them as the sum of even and odd
parts with respect tv/¢: for example L2 (m,n=1,2) given
in Eq. (17) are written as

where G,pm (M=1,2) andG,y (M=V,E) are defined as
the solutions of the following equations:

, 1 Lab=pabtpab= mn=12), (20)
v[b: VGapm— 2 C;ar(Gabvaa’bm):5abT_fb0Wbm momn e
a’ b where
(m=1,2), 6 Lo (VO=LE (=V9)
) 1 :<fd3v(w**e+*+we)>,
0{b-VGam— 2 Coy(Gam Garm) = 1 FaoWan e Tt
a’ a
L (VO =—Lam(=V4)
(M=V,E).
=( | B (W! G/ +W, - G.." >
Substituting Eq.(15) into Eq. (13), and comparing it with <j 0 (Wam Gaon* Wam Gapn)
Eq. (14), we find that the neoclassical transport coefficients _
. (m,n=1,2).
are given by
From Egs.(19) and(21), we obtain
b_ _
L;n_<J'd3UWamGabn> (mn=1,2), L;anr:_ 2 Ta’<fd3vfl
a’,b’ a’o
++ AL ++ ++
L?nM:<jd30WamGaM> (m=1,ZM=V.E), ><[Ga’bnca/b'(Ga’am'Gb/am)
17 —— L -
+Ga’ana'b’(Ga'am'Gb’am)
L= <fd3 WG > m=1,2M=V,E), - AL - -
Mm ; v am=abm ( ) +G;’amca’b’(G;’bn'G;’bn)
-+ AL -+ -+ _ b
Lun=> <fd3vwaMGaN> (M,N=V,E). +Ga’amca’b’(Ga’bn'Gb’bn)]>_Ln?n+' o
a 22

1 _ _
Here, let us consider separately two types of variable trans- Lab = E Ta,< f dsvm[G;bnv”’bVGa,;m
formations, i.e.v|— —v| and V— —V*. For an arbitrary a é
function F of v| and V¢, we defineF**, F*~, F~*, and +G, 50 (b VG am— Gaen[0- VG oo
F~~ as parts ofF which are even—even, even—odd, odd—
even, and odd—odd with respect to the transformations -, v\ ba B
v[——v| and V‘——V¢, respectively. From Eq(11), we ~Gaan?[PVGapnl ) = ~Lom  (MN=1.2),

m

find that . . :
! where we have used the self-adjointness of the linearized
W =WEF+Woo . Wi =W =0 (m=12), collision operatoffsee Eq.(9) in Ref. 11 and the antisym-
am “Tam - Tram am - tram ( ) (18  metry relation
Wou=Wiy +Won, Win=W,,=0 (M=V,E).
au au au an an <fd3vXU|ib‘V¢>=—<fdsvlﬁv’b~VX>
Then, the first equation in Egg16) is divided into the
++, +—, —+, and— — parts as (x,: arbitrary functions. (23
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Equation (22) gives the Onsager symmetry for the the classical transport coefficients for the rotating plasma are
coefficients L (m,n=1,2) which is rewriten as shown in Ref. 10. The momentum conservation in collisions
L;bn(v4)=L2;(—v§). In the same way as above, we canassures the intrinsic ambipolarity of the classical particle
derive the Onsager symmetry for the other coefficients. Tdluxes, which implies thaEaeaFg'=0 is valid for arbitrary
summarize, the Onsager relations for all the neoclassicalalues of the radial electric field. In Appendix A, the classi-
transport coefficients are given by cal transport coefficients for the case of single-species ions

L2 (vE) =122 _vE) (mn=1,2) are given. The fluxeff?, ) ar)ngE) [see Eq.(20) in

' o Ref. 10 for their definitionsare given from the inductive

Lun(VE)=Lym(—V4) (M,N=V,E), (24)  electric fieldE®=—c~1gA/dt and do not contribute to the
2 . . _ entropy production. The anomalous transport fluk&s™,
Lom(VO)=~Lum(—V*) (M=12M=V,E). ga"°™, andIT"Mare driven by turbulent fluctuations and are
We can see from the derivation here that the Onsager rel&lefined in terms of the fluctuation—particle interaction opera-
tions in Eq.(24) are robustly valid even for the cases of tor [see Eq(26) in Ref. 10. Then, the intrinsic ambipolarity
multi-species ions and arbitrary collision frequencies. of the particle fluxed 3" and I'{") are separately derived

Here, let us consider the case in which the system hafom the charge neutrality= ,e,['3""™=5e,I'{”'=0. The
up—down symmetnB(6) =B(— 6) (6: a poloidal angle de- fluxes T, g, andII] are defined in Ref. 10, and are
fined such that=0 on the plane of reflection symmelryn  related to the thermodynamic forces,;, Xa», and Xy
this case, it is convenient to use the transformatiorfhrough thenondissipative antisymmetritransport coeffi-
T (vf ,9,\/4)%(_0‘1 ,—6,—V?%). We note that, under the cients which §atisfy the Onsager ;ymmetry &24) [see Egs.
transformation7, W,y is invariant whileW,(m=1,2) and (23 and(24) in Ref. 10 and vanish if the system has up-
W,e change their signs. Also, the operatorh-V andC; ~ down symmetry.

commute with7. Therefore, we see th&@,y is symmetric It can be shown that the sum of the neoclassical fluxes
’ . av | 4 rnel gnel ppnel dac” oo 11 ai
andG,p, (M=1,2) andG,¢ are antisymmetric with respect (I'a .05, 1I3") and U3 0, ,I13) gives
to.7. Then, it is found from Eq(17) thatL3%, L2, Lyy, (BE) ol [F
andLgg are even whild_3,, andLyg are odd inV,. Thus, ey rH=—ci(n,) |2 B _< 3 >
for the system with up—down symmetry, we obtain the re- (B%) e\ B
strlcte: forms ofbthe Onsagber relations, i( iy o el n % <BEﬁA)>
Lam(VE=Lim(—=VH=L3(VE) (mn=1,2), T, (02 +0a)= 2T, | By
LEAVH)=—LE(—V =L (V) (m=12), c o/
a a a -— fd%ma F”+szﬁ
me(VO)=Lag(—VH)=—LE (V") (m=12), (25) €a
Lye(V9) = —Lye(— V9= —Lgy(V9), A PR
VE( ) VE( ) EV( ) X T__ E C;(ga) ,
Luv(VE) =Lyu(—V9), : (27)
BE™
Lee(VO)=Lee(—V9). e+ 11 = —maclvg(naR2><ﬁi>—>
Ill. TRANSPORT FLUXES OTHER THAN m.c | 2
NEOCLASSICAL FLUXES _ 2; < f d3 ma( R2V{ -+ Evi)
a
The particle, heat, and toroidal momentum fluxes for
. . . R2B2
speciesa consist of the neoclassical and other transport n P CL(ga)
parts, and are written &% “TB a\vai /e
3 where Fj,, is the parallel component of the friction
r,= d°vfv- V¥ =43 , i
force F;=/d°vmyv’'C,(f,). Those fluxes in Eq(27) that

oy oy pH 4 (B 4 panom include (3 ,q5,I13) are referred to as the neoclassical
a’'“a a’ "a a fluxes by Hinton and Wong and by Catét al. In Ref. 10
and in the present workI'(} ,q" ,IT') are considered sepa-
anTa< J d3f, V-V‘I’> rately from the neoclassical fluxes since the former result
(26)  from the collisionless particles’ gyromotion and are related
=q§'+ q20'+ gt +q® +qanm, to the nondissipative parallel gyroviscosity. Now that the
Onsager symmetry is shown to be satisfied by the transport
Ha5<f d3vfamav§V-V\I’> coefficients for both KQC',qQC',HQC') and ('} g3 I13), the
symmetry is also valid for the transport coefficients for their
total fluxes in Eq.(27). From the charge neutrality and the
momentum conservation in collisions with E&7), we find
Here the classical fluxeES, q¢', and I1$' are caused by that the particle fluxesI{;®+T'Y) are intrinsically ambipo-
particles’ gyromotion with collisions. Their definitions and lar:

&
T, 2

_17cl ncl H E) anom
=TI8+ T109+ I + 1 + 112,

2218 Phys. Plasmas, Vol. 4, No. 6, June 1997 H. Sugama and W. Horton
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A are not considered in Refs. 8 and 9. In Ref. 8, the rotation

2 e(TP+TH)=0. (28)  speed divided by the ion thermal veloch /v is assumed

2 to be as small aa*? although, without this assumption, our
Using the ambipolarity condition in E¢28), the number of  results here are valid even fdfy~uv ;.
the pairs of the particle fluxed'(°+T'}) and the conjugate According to the conventional analytical technique
thermodynamic forces appearing in the transport equation®r the Pfirsch—Schler transport, let us expand the(s)
can be reduced by one without breaking the Onsager symtistribution functiong, in terms of the expansion parameter
metry of the transport matri¥ In the following sections, we )\ as
con5|der the case of single-species iom¥y With charge _(_ =10 L =11

=Z,e per particle, and derive the transport equations com-  9a=05 VH+gP+g M+ (31)
b|n|ng the five transport fluxe(I'™+T'"), (q2+q5)/Te,
(q"+qgy/ T, (IIM'+ 1), 3¢] with the five thermodynamic
forces (X&;,Xez, Xi2, Xy, Xg):

In the lowest-order with respect tv, the linearized drift
kinetic equation(8) reduces toC5(g% *))=0, from which

we have
red+ry (-1)
- i - - - Ma (g, Tar Myv’)
L L5 L L L Lk E R
T_(qe AL I T TR S
1 \ E
: : ., : X fa0(e,¥). (32
o |=| L5 LS Lh Ly Lk i o
(q| a) Lo Lo L Lo L Here, the<’(o\~?) quantitiesa$ v, uf; ¥, and T are
an| p_— viomvz Bv2e BV RVE independent of the velocity variables, ). In Appendix B,
BREL LLE: Lg» Lex Lev Leed some relations on the parallel flows and the parallel momen-
i Je | tum balance equations are derived from the drift kinetic

) equation. The quantity; ») represents the’(s\ 1) aver-
age parallel flow velocity, and is related by E&4) in Ap-
Xeo pendix B to @(S\~1) surface quantitied“(’l)(\lf) and

«| x 29 qa(,l)(\lf) as nuuf; V=Bri," and q@ =Eanaufy Y
2 = Bq{,”. Then, we havé F( ,V=q{,", and therefore
Xv obtalnuﬁ 1)—F( ,P=q, 1)—0 by noting from Eqgs(4) and

XE (7) that2, is dependent on the poloidal angle In the next

- .. order with respect ta., the linearized drift kinetic equation
where the Onsager symmetry for th&5 transport matrix is (8) is written as

already guaranteed. Here, we have negleckef'+II"
which is @(m./m;) smaller thanl'[“c'+1'[H The first ther- — 1
modynamic forceX}, is defined by Ca(ga)) = vjb- vy Y T_faOWaEXE’ (33

X* =X Ll L d(NeTe) 1 a(NiTi)_ (30 WhereXe= (BEﬁA))/(BZ)l’2 is considered to be on the order
er= Rt Zi Ne ¥ ZiN; ¥ of A("1 since it is balanced with the parallel current multi-

With this reduction, we see that the( 5) radial electric field ~ Plied by the resistivity €\"") although the other tbergno-
—&(®,)/a¥ disappears from the thermodynamic forces.dynamic forcesXa;, Xa,, and Xy are regarded as'(17)
Thus, in the axisymmetric toroidally rotating system, theduantties. _

~(8) radial electric field neither affects the transport nor is__ !N the derivation of the transport equations for the
determined by the ambipolar condition. Recall that the transpf'rszCh 1Schlter regime, only the leading order terms of
port coefficients in Eq(29) depend on the radial electric A(6°\" ") are retained in the radial fluxes of the particles,
field of (&% [not <°(8)] through the toroidal angular ve- heat, and toroidal momentum, which are written from Eq.
locity Vé=—ca®,/a¥ and that the thermodynamic force (27) as

Xy is _pro_portional to the radial gradient of th&( %) radial o (BEﬁ > ¢l /Fley
electric field[see Eq(10)]. I+ Tg=—cl{ng) (B9 —< > ,

(BEM) cI<FelA >

(qu|+qe)_ cl(ne Ae><_2>_ 5

IV. PFIRSCH-SCHLUTER REGIME

In the Pfirsch—Schter regime, the ratio of the particles’

mean-free path to the equilibrium scale length cl/Fje

N=vt,7Taa/L is used as a small ordering parameter, where + e\ B /!

v1a=V2T,/m, is the thermal velocity and,, the collision

time defined in Ref. 6. In this section, we derive the full nl (BEﬁ ) Fleidi
neoclassical transport equations for the rotating plasma con- —(q, +q, )=-— < NeA ><_2>_+ Ze B
sisting of electrons and single-species ions in the Pfirsch—

Schliter regime. Here we retain terms up 4d (m./m;)*?] _ ¢l [Fji2

in order to obtain the electron transport coefficients, which Ze\ B |’
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(BE[M) Fao=Jd3vmyv'[m,(v')?/2T,—5/2]C,(f,) (a=e,i), and

e+ 11 = — ZI iVE(ngR?) B9 the momentum balandg,, + F;;=0 in collisions.
Multiplying Eg. (33) by muf(~— 1)JL<3’2>(x2)
. cl m-V5<ER2> 34 (1=0,1,2...) [L&?x®) =1, LE(x?)=5/2—x>,... : the
Ze | ' Laguerre polynomialsx®>=m,(v')?/2T,] and mtegratlng
them in the velocity space give the(S\(~1) parallel mo-
mentum  balance  equations. Then, we obtain
where we have used the definitiond,=5,/T,,  Fa=Sd%muv[(—1) LD (x?)C,(f,)=0 for j=3 and

TeB-Vay '+ 3B-VTL V=T, VB VA +eBXBE/Y)/(B?)

$B.VTL Y
| BFjea/Ne|  me N G ne(uje1—ufid)B a5
BFHeZ/ne NeTee —Xiz (qﬁg)l/Te_AeneUhg)l)B )
5 Fji m ., 2(qf)
2g.yT-b_g_liz_ i lix
,B- VT =B nT“xﬂS( —Ainiuf} |B, (36)

which correspond to the leading-ordéi( 6\ ~*) parts of Eqs(B5). Here, the dimensionless friction coefficient§,, AS,,
A$,, and)}, are related to the dimensionless coefficienfs |, «[, andx| given in Ref. 7 as

- - ~ _1-1 -1
A { A1 —7\?2] { o —\/ém] N <2~i> -
o= N R = - _ , 2= | ZK| .
R STRD T - \/éa” %Kﬁ 5

Using the results of the 29-momef29M) approximation in Ref. 7, we havk$,=0.672, A%,=0.558, \5,=1.945, and
Ab,=1.110 for the case df;=1.

Using the magnetic surface average operationsand{A,-) (A,=E,/T,;a=e,i) in the parallel momentum balance
equationg35) and(36), we obtain the following equations:

(B?)(I'eg—ZI'{y)

(AB-VTS Dy +e(BEPY) ST A

0

Me

NeTee

- - 2 2
_)\iz )\gz §<Bz>q(e00)/Te_ §<BZAE>F§)€)

¢l (Ne) X1+ (Nede)Xea+(NeA ) Xi /Zi+ mVE(NRZ) Xy 1Z, 38)
e <ne>x92 ’
5 -1 ce <BZA9>(F£9%)_ZiFi(2)) I{{neA e>X 1+(neA e>xe2
§<AeB'VTfa )= [ INPRR VY 2/R2 (0) 2/R2AZTO) | e
e, §<B Ae>qe0/Te_§<B Ae>1_‘e0 e <ne e>xe2
cl | (NAA)Xi2/Z+ mVE(NR?A )Xy 1Z;
- : (39
e 0
(0)
Gig cl
<<52> — —(B2A)T() | + E<ni>xi2:0, (40
|
2 cl
{(BZA >q"" (BZAZ)F(°>]+—<niAi)Xi2:— T a . VT, (42)
Zie 2 mI)\22
where it should be noted that,7,, (a=e,i) are independent of the poloidal angleWe also have from EqB6),
Z(AB-VTL VY +(AB- VT V)=0. (42)
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Now, using Eqs(38)—(42) and(B4), we can express the( s\ (?) poloidal flows €% ,q'%), the /(51 (?) parallel flows
(uf2.afd)), and the parallel friction forces F{a,Fjap) in the linear forms of the thermodynamic forces
(X%1,Xe2,Xi2, Xy, Xg). Then, we can calculate the transport fluxes in B¢) and obtain the transport coefficients in E29).
The resultant transport coefficients for the Pfirsch—3ehltegime are given by

(LSS LSS m, c2?( [ n?

e e —
L% LSS Netee € (<§zUlAeUe>—<neUZAeVZ><BzveAevl> 1<neveAeue>), (43
L=12 22 e’‘ee

Me C2|2 5{<BZ><neAi>_<BzAi><ne>} T né T T T
:E?[ E {(BZ><BZAi2>_<BZAi>2} <neUe>+<¥AiUe> _<neUeAeVe>

L] [
I

4[5 {(BH(neA)) —(B2A ) (ng)} A
X<BZVeAeVl> 1(5 {<Bz><BzAi2>—<BzAi>2} <BZV6>+<neAiVe>)] _Aiz! (44)
syl [Le, me c22mV¢|[ [ n2R? ~ AS,
_LSVHL% "t @ % < =2 UZ>—<neUZAeVZ><BzveAeVZ> HNeR?Ve) —X‘zj’ (45)
[Le LE1 _ (B2 1 (ne)
e, =cl(<neUZAeVE><BzveAEVE> 1 o |"®5™ (nay ) (46)
mfby c212 [ [ n? (8 (B2AN] T (n, e c22 [ [ [n2A?
Lgfmni—nziz%(%%w 0] g2y iah] | +nlg_e{h(<nB_>
B2)(neA))—(B2A){(ng)} 25 BA(neA ) —(BZA NN} | o o
TR o e L e ) S e
5 {(B2){(nA;)—(B2A;}{ng [ 5{(BA(neA;)—(B?A;)(n,
(E{<{<B>2<>TBZA>?><_<BZZf;]2}>}<Bzvl>+<neAiV-le-> <BZVeAeVl> ! 5{{{<B>2<)?BZA>?)<—<BZZ<;2}?}<BZV€>
+<neAiVe> )\nli ” ) (47)
_A12
. . e A% (. 2R?A;\ 5 B2)(neA;)—(B?A;) (N, o o
LEV:LK/ZZmng%Tee%[ il(<n?>+§<neR2>{<{<B>2<>?BZA>i2><_<822<i;]2}>})_[)\11 _)\lﬂ
5 {(B?)(neA;) — (B2A;){(n, AS
> {f{ <B>2<>?Bz A>?><— <BZ<;}> LEVD +navD | (BVAND HnRevy)| AJ } , (48)
i P cl <neAi> 5 {<Bz><neAi>_<BzAi><ne>} e e
tem v~ | (Bt 58 Carain e | T
5 {(B2)(neA;)—(B2A;)(n,  [(BA)?
(5{<{<B>2<>QBZA>3><_<BZZ$2}>}<82vl>+<neAivz>)<BzveAevz> 1[< K ” @9)
2p4 se
Loy=me(ve? e ;ﬁ';(xa< Ca >—[xa ~ REINRAVIY(BAANT) HnoRAV.) \“]), (50
eTee 4 — (152
| R? A A B2)1/2
LVE:_LEv:_mivg%(igﬁé_[kil —k‘iﬂ<neR2Vl><BzVeAeVl>1{< O> Dv (51
2 2\1/2
L= (B2 0]<BzveAeVZ>l[<Bo> } (52
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where terms up to?[(m./m;)*?] are retained, and the It is shown from Eqs(4), (6), and(7) that, in the lowest-
2X2 matricesA., U, andV, are defined by Eq.37) and  order with respect to the inverse aspect rati®,<1, the
electron and ion densities are also regarded as surface func-

1 A, 1 _er tions: ne=2Z;n;=N, where #(m./m;) terms are neglected.
Ue= o 1/ Ve= . (53 Then, the surface-averaged parallel momentum balance
0 1 equations forwt,7,,>1 are obtained from Eq$B4), (B5),
and (B6) as

In Egs.(43)—(52), MT denotes the transpose &f and(M)

is defined by (M)=[(M)] for an arbitrary matrix o

M=[M]. <J d3vme(v|’)ZB~Vhe> +nee(BE/)
It is found that, even if there is no up—down symmetry,

the Pfirsch—Schter transport coefficients in Eq&43)—(52) f Eomu(v!)? me(v )? > 5.V

satisfy the restricted version of the Onsager symmetry give vy 2 €

in Eq. (25 since the inhomogeneity of the magnetic field is

ignored within the mean free path in the Pfirsch—Swhlu e e (Teg—ZiT';p)
regime[see also Eq(A3) in Appendix A showing that the __Mel T T2 B2l 2
restricted version of the Onsager symmetry is also valid for Tee| —1%, 15, 0 gaelTe

the classical transport coefficiehts

V. BANANA REGIME neel | X+ (ApXip/Zi+m, ROVEXy 12 55
In order to analytically obtain the neoclassical transport Xe2
coefficients for the banana regime, we hereafter consider the
large aspect ratio toroidal system and use the toroidal coor, 3 o mi(v')? 5
dinates ¢, #,{) where the minor radius is a label for mag- f vmi(v)) 2T, 2 B-Vh;
netic surfaces. The major radius is given Ry Ry+rcos
(Ro: the distance between the major axis and the magnetic . m[2 .q, ncl
axi9) andr/Ry<1 is assumed. The banana regime is repre- = _Ilgz_(g o7 tZ X ) (56)
sented bywr,74 (Ro/1)%2 where wr,=v1,/(qRy) is the ! !
transit frequency andj=rB+/(RyBp) is the safety factor. )
When wr,7,.>>1, the dominant parts of the radial transport< f d3v me(v’)2B.Vhe> +< f d3v mi(U,)zB'VFi> =0,
fluxes in Eq.(27) are given by
(57)
cl —
F2°'+ r;': e_B(2)< J d% me(v’)zB~Vhe> , where the dimensionless friction coefficients are given by
cl A “ 3 “ 13 .
T ( o qe)~TBo<fd vm (U”) Iilzzi’ liZZEZi’ ISZZ\/§+ZZi' II22:\/5' (58)
me(v')?> 5 — In Egs. (55 and (56), we have used the notation
2T, 2 B-Vhe), Qas=0as— (Ea)l ag (a=e,i) and the 13-momen(L3M) ap-
(54)  proximation to express the friction forces in terms of the
flows
ncI H 3 (1112
(OI +qi)= Z|e53< f d*omi(v)) Now, let us use the banana regime parameter
(Ro/r)¥wra7aa) ~*<1 to expand the distribution functions
S UG as
2T, 2 '
_:_(-0)_{__(1)_{_
ZeB2'\"™ o ' ha=h® 4 4 ...
41 = — E<f 3y The lowest order of the linearized drift kinetic equation is
2Zie written asu|b- Vh®=0 which shows thah(® is indepen-
2 R2B2 o dent of the poI0|daI anglé:
X migZ(U\\,)2+ )C (9|)> — =
h?=hP(e, ;). (60)
-m RoV <J' d*om;(v[)?B-Vh; > Thush(® (a=e,i) make no direct contribution to the neo-

classical fluxes as shown by substituting E§O) into Eq.
where the distribution functlonls:a (a=e,i) are defined by (54). In the next order, the linearized drift kinetic equation
Eqg. (B2). gives
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o) ~LT0) 1 the banana regime dimensionless coefficienfsaj
vjb-Vha"=Caha™) + 3~ Cal fao(UarXar + UaoXa; (a=e,i;j=1,2,3) defined by Eq66) are fitted as
1 O _ 2 3
+HUavXy) ]+ 7 faoWaeXe- (61) fre1=0.5331+0.923( —0.501 *+0.199y °)
a

- L +(1+2.064Y —1.690v%+0.765Y3)Z;
Then, we have the solvability conditidhor Eq. (61) as

-~ _ 2 3
fﬁﬂd(ﬁﬂ) frey= —0.625 1+ 1.55IY —0.960v 2+ 0.392Y 3)
v > ° —1.5001+3.124Y —2.709/ 2+ 1.2393)Z, ,
dl my(v')?
T 3[)_’@1 f a2(T :
UH a

m,C
a0 eaTa

RV X frea=1.386 1+ 1.533 — 0.998Y 2+ 0.414Y 3)
+3.25Q 1+ 3.392 —3.029%Y 2+ 1.395Y %) Z; ,

1 12 R?B3 (67)
+ 5| Magz W)+ u—5=|Xv( |, (62 .
wip=0.5331+0.923Y — 0.501Y 2+ 0.199Y 3),
dl  —
—__cLtpn) ~
fﬁ ol Catha ) fip=—0.625 1+ 1.551Y — 0.960Y >+ 0.392v'3),
dl m,cl e 5 ~ 2 3
—— b—|ct i £ 2 iz=1.3861+1.533 —0.998Y 2+ 0.414 %),
§ U\i (Ca faOUH eaTaB[ a1+(-|-a Z)Xaz !
o B where the ion—electron collision contributions of
+mM.R2VIX ] I vIX ) 63 “(my/m;) are neglected. Appendix C shows the parallel vis-
2 VI Ta(BRYREITE 63 cosity coefficients for the plateau regime, from which all the

plateau transport coefficients except faf, can be derived.
Now, by using Egs(55—(57), (65), and (B4), we can
T ) express the parallel viscositiegfd*vm,(v[)?B-Vh,),
ha’=hy""+hy 7. 64 (JdPum,(v))H[Ma(v')?/2T,] — 3}B-Vh,) (a=e,i) and the
We need to calculate the lowest-order parallel viscositie?oar:i‘!e:)fiﬁget?]t;r%:o(ef’:qea(#]jc_;:)lfc)ég(§2>>l(/2 ';‘( th)? I|>r(1e)ar
3 "N2p . vhl) 3 N2 "2 y | 1172521V AE) -
{/d Un;a(v”) B_(lV)ha ) a.nd. (Jdumq(v) {[ma(v ) /_ We find that the effects of the toroidal flow velocityot its
ZTa]_.E} B-Vhy )_(a= &) in order to obtain the radial sheaj on the electron and ion parallel viscosities for the
fluxei(Lr; Eq.(54). Itis found from Eq.(61) that only the odd 531, regime are included only throughin Eq. (66). As
part h, is necessary for_calculatlon of those Iowest-ord_erin Ref. 8, we have used here the approximate expression for
parallel viscosities. Following the standard pr(zcedure by Hiryhe parallel velocityuﬁ of the trapped particle in the toroi-
shman and Sigm&rwe can obtain the solutioh{’ of Eq.  dally rotating plasma with the large aspect ratio
(63) and derive the parallel viscosities, which are written in
the linear forms of the poloidal flows: ma(UH')2 ) uBg Y _
2T, =X 1_TaX2+R_O 1+? cosf| (a=e,i).

< f d*omy(v])?B- Vh_a> (68)

whereh@ is divided into the even+) and odd () parts in
UH, .

In the right-hand side of Eq68), the term proportional to
Y is derived from the poloidal dependent part of the poten-
tial function £, which consists of the electrostatic potential

< f d3vma<v'>2(ma<v'>2/2Ta—%)B-Vh_a>

1/2 ~ ~
_146 r EBZ Ma1  Ma2 Lay 65) and the effective gravity potential due to the centrifugal force
' Ry Taa IZLaZ ,Ztas 2000/ Tal [see Egs(2), (4), and(7)]. The sum of this poloidal variation

) ] A o E., and the poloidal magnetic variation forms the well for
The dimensionless coefficients,; (a=e,i;j=1,2,3) are de- trapped particles, which is expressed byr/Rp)

fined by X (14 Y/x?)cosd in Eq. (68). Thus, the toroidal rotation in-
8 [ 5\i-1 creases the trapped particles’ population and accordingly the
;Laj:_f dxx“ex2<x2— _> parallel viscosity coefficients as shown by the enhancement
3y Jo 2 factor (1+Y/x?)'2in the right-hand side of Eq66).

12 In order to obtain the full transport equations, we need to
Vo (X) (a=e,i;j=1,2,3, (66) also derive the linear thermodynamic expression of
(Jd®[m12(v])?/B?*+ uR?BE/B]C(g;)) which is neces-
where the velocity-dependent collision  frequencysary for the radial flux of the toroidal momentum in Eg4).
3 =13(x) (x=v'lvy,) is defined in Ref. 6, and" denotes  This requires the solutioh{™) of Eq. (62), which can be
the square of the toroidal flow velocity normalized by thegiven as in Ref. 8 by minimizing the positive definite func-
sound wave velocityY =m;V3/(Z;Te+T;). For 0<Y=<1, tional:

X

1+ =
X2
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m;cX |2 R?B2
f(+) i \ . : 12 P
h; +22ie_|_iflo<m|78 (v)+p B

1
dio—
U “Fio

m;c X R2B3
XC:_l i V P

. 12

(+) . . N2

hi +Zzie-|—if|0(m|§2(v) +u B )
(69

Me1 Me2

Me2 Me3

1.469r/Ry)*?

S i [’I‘e ’I‘e
Tegieis, (52 2 2

LEE: 0'5( 1

) . (80)

. . . . .. — (2 T Te 17 T 2
whereCL denotes the linearized ion—ion collision operatorWhere os=(€“neree/Me)I5/[17,15,—(15,)°] denotes the
with the ion—electron collisions neglected. Then we have théPitzer resistivity andp=|VW¥|/R represents the poloidal

approximate solution

. m;c12Xy (n?/B%)
(f) 12 AV A :
= ZeT, (nzB3y Mo (70
from which (fd3[ml%(v|)%/B?+ uR?BE/B]C(g)) is
given in the linear form o, .
Thus, the final banana transport formulas form &%
system of the coefficients as follows:

1/2 - -
1w Lo 146%r) NeMeC?| VW |2 | ter  Me2
=1469 o> —QH2— |~ - |
_I-(le(z9 nge Ro e“BpTee Me2  Me3
(72)
L) (U] 1, mvE|[LE -
L% (L% Zi\my 2T J[L3)
iv__ lel B m;RyVo ?f (73
.Lgv_ Ls/z Zi Lig ’
Lie LEs
e |T 7 |,e
2E | E2
1
3 146% r) NeC V|
. Ro Bp [TilAgz_(ng)z]
. - e
Me1 Me2|| 22
I e | (74
Me2  HMes]l 12
112 -
i 146 L nimic2|V\P|2 /1 _(:U*iz)z
22 ’ RO Zi eZBPT“ 13 ;Lil
- 2
1z MV
+ 5| == —=—] LSS, 75
Z|2 it 2T| 11 ( )
_  mR\Vo [ i, mMV3
,:|:|00&_ iVol, ee
Lov=Lyv zZ \o. 2T Li1s (76)
i 1 pip mMV3
b= L= | =0 - | LS, (77
2E E2 Zi e 2T| 1E
. _E(L)ZniTimfczRélvwz mPRGVE .. a8
VW10 Ry Z2e’BaT; zz W
m;RoVo
Lve=— EV:T (19Ev (79
I
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magnetic field. The dimensionless friction coefficierﬁf§
(j,.k=1,2) are written in Eq(58) and the dimensionless vis-
cosity coefficients;&aj (a=e,i;j=1,2,3) are given by Eqgs.
(66) and (67). Recall thatV is used to define the radial
transport fluxes and the radial thermodynamic forces in such
a way thatg,=(q,-V¥) and Xpo=—9T,/d¥. When we
user instead of¥ to define the radial fluxes and forces, the
resultant transport coefficients are immediately given by re-
placing|V¥| in Egs.(71)—(80) with the unity.

We find that, in the large aspect ratio system, the banana
transport coefficients in Eq$§71)—(80) are much larger than
the classical transport coefficients in E§2) by a factor of
19%(Ry/r)%?] except for the diagonal banana coefficient
for the toroidal momentum transport.y=(1/10y2)

X q?(p?/7;;)nym;R3| V¥ |2 which is comparable to the clas-
sical oneL$\=(3/52)(p?/ 7;;)nim;R3| VW |2. All the coef-
ficients in Eqgs.(71)—(80) are functions oV, as seen from
the explicit appearance &fy and from the flow-dependent
viscosity coefficientgsee Eq.66)]. From Eq.(75) with the
small electron mass terms neglected, the toroidal flow depen-
dence of the ion thermal diffusivity.5, appears through

[ is— (fi0)? 1i1]1=0.653F(Y) where the enhancement fac-
tor F(Y) for the ion thermal diffusivity is fitted for
0<Y=<1 as

F(Y)=1+0.765Y —0.631Y2+0.280Y 3. (81)

This enhancement factor is in good agreement with that
given by Cattoet al.® F(Y)=1+0.75Y —0.60Y2+0.26Y 3

[see Eq(99) in Ref. 9 and note thaY is written asX in their
notatior], in spite of the difference between the solution
methods: our calculation is based on the moment expansion
method with the 13M approximation while they use the
variational technique. We find from Eq&7), (71), and(81)

that the banana particle diffusivity and the banana electron
and ion thermal diffusivities are monotonically increasing
functions ofY. This is because the potential well due to the
toroidal rotation increases the number of the trapped par-
ticles as mentioned after E¢68).

The transport coefficients in Eqé71)—(80) satisfy the
restricted version of the Onsager symmetry given in(2§)
since we have used the large aspect ratio approximation
where the magnetic surfaces={ const) have circular cross
sections. A well-known pair of Onsager symmetric neoclas-
sical transport coefficients is that 6fg andLg,(=—L%g)

[see Eq(74)]. The off-diagonal coefficierit {z<0 indicates
that the parallel electric fielKg gives the inward particle
flux I'e=L$eXg<0 due to trapped particles, which is known
as the Ware pinch effett. The counterpart &,(=—L$g)
represents that the thermodynamic foiXg produces the
parallel current(the bootstrap currepntle=Lg, X%, . Since
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the toroidal momentum transpdrt; and the flow sheaK, its restricted form for the system with up—down symmetry is
enter the transport equations for the toroidally rotatingalso shown. The complete neoclassical electron and ion
plasma as a new conjugate flux-force pair, there appearsteansport equations are derived for the Pfirsch—S8ehland

new physically important pair of Onsager symmetric neo-banana regimes in the case of single-species ions and the
classical transport coefficients,g andLgy(=—Lyg). The  Onsager symmetry is directly confirmed by them.
coefficientLyg= (M;RyVo/Z;) LI [see Eq(79)] shows that We have found that the toroidal rotation causes the cen-
the parallel electric fieldg gives the inward toroidal mo- trifugal force and the poloidal variation of the electrostatic
mentum fluxIl,=LygXg (which has the opposite sign to potential, which result in the increase of the trapped particles
V) due to the pinched trapped ions with the mean toroidabnd therefore the enhancement of the parallel viscosities, the
velocity V. From its partnet.gy(=—Lyg), we find that the  particle and thermal diffusivities, and the transport coeffi-
flow shearX,, drives the parallel currertz=Lg\Xy . cients concerned with the pressure gradient driyieoot-

It is shown from Eqgs(4), (6), (30), and(79) that the sum  strap current and the Ware pinch. It is also shown that the
of the currents driven byX%, and X, is rewritten parallel inductive electric field drives the inward banana flux
as Lg, [ X%+ (mRVy/Z)Xy]=(LE/ N VI|)[ = (aP/ar) of the toroidal momentum in addition to the Ware pinch of
+n;m, (VZ/R)(&R/ﬁr) (n; mV2/2T)(aTi/ar)] with the the particles. These inward particle and momentum fluxes
flow shear term canceled. Here the total pressure gradiewlriven by the parallel electric field are related through two
term dP/ar=9d(n.T+n;T;)/dr and the centrifugal force pairs of the Onsager symmetric off-diagonal coefficients to
term  nm;(V3/R)(dR/dr)=—nm\V,y-VVy-VR appear the parallel currents driven by the radial thermodynamic
since they give the perpendicular curreht through the forces conjugate to the inward fluxes, respectively. For large
equilibrium equationJxB/c=VP—nm\V,y-VV, and ac- toroidal flows such as observed in JT-66 toroidal flow
cordingly drive the electron poloidal flow, from which the effects on the parallel current coefficiefitee Eqs(82) and
electron parallel viscositysee Eq.(65)] and therefore the (83)] are roughly estimated to reach the order~af0% of
neoclassical parallel current are produced. those without taking account of the flow effects, and thus

Using the current coefficients in Eqé/4), (77), (79), should not be neglected for accurate calculation of the cur-
and(80) with the viscosity coefficient§67), the full expres- rent profile and the magnetic configuration.
sion of the parallel current for the toroidally rotating plasma  Nagashimaet al'® obtained from the JT-60U experi-

is written as ment the toroidal momentum diffusivity,, and the inward
P12 o dp velocity vinwarg fOr the toroidal mo_m_entum_tran;port. These
Je=— _) [2 A1FE (YY) — are related to the transport coefficients given in the present
Ro/ Be d paper by Lyy=nmR3xyVV¥|> and L{eXe

dT, d, =— NimiRyVoVinward V|, and are written from the results
—1.800F¢ (Y)ned —2.82¢ | Z(Y)nim} in Sec. V as x4 =(IN2)(Ea%+Yp? 7 and vinwar
= 24117 'F¢ 1(Y)(r/Ro)l’zcEH/Bp for the banana regime.

r\2 Their expenmental results give typically,~1 mé/s and
togl- 1332{ R_) Fee(Y) [Xe, (82 y,warr~1 m/s, which are much larger than the predictions by
_ 0 the above neoclassical modely,~ 1074 m?s and
with the enhancement factors Vinwarg<0.1 m/s. Thus, the radial transport of the toroidal
FE,(Y)=1+0.868 —0.539/2+0.229y 3, momentum is considered to be dominated by the anomalous
processes. In our previous pap@the anomalous transport
Fe,(Y)=1+2.248' —1.661Y 2+ 0.727V 3, 83 fluxes for the rotating plasma are formulated based on the

gyrokinetic equations, and the simple expression for the
anomalous toroidal momentum diffusivity is given for the
Fee(Y)=1+0.431Y —0.1842+0.072 3, mixing length level of the ion temperature gradidffG)
driven turbulencdsee Eq.66) in Ref. 10 whereu!* corre-
sponds toy ,]. This mixing length type estimation can give a
larger momentum diffusivity on the order of the experimen-
tally observed one. However, in order to describe the anoma-
VI. CONCLUSIONS AND DISCUSSION lous pinch of the toroidal momentum and explain the signifi-
rcant reduction of the transport at the ITB, a more elaborate
investigation on the anomalous transport fluxes in the rotat-
ing plasma is required as a future task.

FL,(Y)=1+1.494Y — 1.022/ %+ 0.434,

whereZ;=1 and 6<Y =<1 are assumed, and the centrifugal
force term of 7[ Y (r/Ry)(dP/dr)] is neglected.

In this work, we have studied neoclassical transport fo
the axisymmetric system with the large toroidal flow velocity .
(~vTi)- In the toroidally rotating plasma, the transport equa-
tions involve a new pair of the transport flux and the ther-
modynamic force: the radial flux of the toroidal momentum
and the toroidal flow shear which is proportional to the radialack NOWLEDGMENTS
electric field shear. For general rotating plasmas consisting
of multi-species particles in arbitrary collisional regimes, the  The authorH. S) thanks Professor M. Okamoto for his
Onsager symmetry of the neoclassical transport matrix igncouragement of this work.
proved by using the formal solution of the linearized drift This work is supported in part by the Grant-in-Aid from
kinetic equation with the self-adjoint collision operator, andthe Japanese Ministry of Education, Science, and Culture,

Phys. Plasmas, Vol. 4, No. 6, June 1997 H. Sugama and W. Horton 2225

Downloaded-19-Jun-2009-t0-133.75.139.172.-Redistribution-subject-to—AlP-license-or-copyright;~see-http://pop.aip.org/pop/copyright.jsp
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APPENDIX A: CLASSICAL TRANSPORT FOR
TOROIDALLY ROTATING PLASMAS CONSISTING OF
ELECTRONS AND SINGLE-SPECIES IONS

The classical transport equations for the rotating plasmg
consisting of electrons and multi-species ions are derived i
Appendix A of Ref. 10. In the case of single-species ions,

they are written as

re
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where the classical transport coefficients are given by
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and the collision timesr,, (a=e,i) are defined in Ref. 6.
The dimensionless friction coefficients are given by
19:=2, 15732, 15=\2+%2;, 15,=12, andT=22.
The classical ion particle flux is given from the electron par-
ticle flux through the intrinsic ambipolarity condition
I'¢=T¢/z; . With respect to the small mass ratig/m; , we
ave retained the terms up o[ (m./m,)*?] in Egs. (A1)
nd(A2) although the terms of/(m./m;) such adI¢ have
been neglected. We see from Edé2) that the classical
transport coefficients satisfy the Onsager symmetry

(LD mA(VE) = (L= VO = (LO)pa(VE)
(a,b=¢e,i;mn=1,2),

— (LU= VO =(Lyr(V)
(a=e,i;m=1,2), (A3)

(L mVE) =

(LY (VO = (Lyu(—V9),

which has the same form as E@5) and is valid even with-
out up—down symmetry since the classical transport is a spa-
tially local process.

APPENDIX B: THE FIRST-ORDER PARALLEL FLOWS
AND PARALLEL MOMENTUM BALANCE
EQUATIONS

From Egs.(8) and(11), the linearized drift kinetic equa-
tion is rewritten as

— 1
vib-Vhy— Ca(ga)= aOWaEXEv (B1)
where
h—Eg_ fa0(Uag X1+ U goXant UayXy). (B2)

Multiplying Eg. (B1) by the unity and §/T,—5/2), and in-
tegrating them in the velocity space give the continuity equa-
tion and the energy balance equation@fs) as

vfd%h_v—)zsv
aB

ijdah—s 5) vl
' Yl 772/ B

Integrating Eq.(B3) along the magnetic field line, we have
the 7(6) parallel flows:

Hal

B +V. (nauial) 0,

(B3)

+V-(01a1)=0.

_B. V(qlal

— 3¢
nau”m:f d Ufa]_UH

=BI' ao(\I’)+ (Xal+A aXazt+ MR2VEX,),
(B4)
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nacl 5 2 Qag(Ma(v')? 5
+ea—B AaXa1+(§+A§ Xa2+AamaR2V§XV s X Fao g_l_—a Z—Ta_z ,
where the surface quantitids,,(¥) and g,,(¥) are ob- (C3

tained as integration constants.

Multiplying Eq. (B1) by mau | and which is solved to give

mav”’[ma(v’)2/2T3—5/2], and integrating them in the veloc- —, T Y mav’ By
ity space gives the parallel momentum balance equations of kg R, 1+ N R e

, 0 a a
(6):

2 my(v')? 5| —_
_ (BEﬁA)> X Fa0+_%<ﬂ__” a—1/3
| Pomy(u])?D- Thy=nee,8 g 5T 2T, 2
, L Xf dr Sin(ﬁ—v_;llsnr)eﬂale, (CH
If d*vmav C5(9a)=Fja1, 0

2 B9 where v,=(w1aTaa) ‘TaaVs>(X)/X (X=v'lv1y). Then, by
som.oi? M3 o ing Eq.(C4), we obtain the parallel viscositi
f dPomy(vf)?| —57— 5|b-Vh, using Eq.(C4), we obtain the parallel viscosities as

U d3vma(v|’)zB-Vh_a>

! m (v/)Z 5 N
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m (UI)Z )
3 7\ 2 a _ - .
Using the charge neutralit¥ ,n,e,=0 and the momentum <f d*oma(vy) ( 2T, Z)B Vha>
conservation in collision& ,F,;=0 with Eq. (B5), we ob-

tain 2
\/; 2( r ) UTa

- Ta
Ma1 Ma2

_ = mB—| 2 (C5)
> Jd3vma(v”’)2b-Vha=0. (B6) 2 "%\ Ro| R
a

;Laz [LaS ga‘g/Ta.

Equation(B6) expresses the balance of the total stresses ihlere the dimensionless coefficienﬁsaj(j =1,2,3) are de-
the rest frame of the plasma. fined by

- oc 5\1-1 Y\?
Maj:f dx x5exz<x2— 5) 1+ F)
APPENDIX C: PARALLEL VISCOSITY COEFFICIENTS 0
FOR THE PLATEAU REGIME (a=e,i; j=1,2,3, (C6)
Here, we derive the parallel viscosity coefficients for theyhich gives
plateau regime for the large aspect ratio toroidal sydtese
Egs. (65 and (66) for the banana reginje where - 1.,
(Ro/1)%%> wr,ma,>1 is satisfied. For that purpose, it is pa1=1+Y+SY7
convenient to rewrite the?( 5) distribution functionh, as
- _ R 11 3
ha=h{™"+ka, (cD par=5—5Y = 7Y? (o)
whereh_g':l) is thel =1 component in the expansion by the 13 9 13
Legendre polynomiaP, () of nEvH’/v’, which is written in llasz— +IY+—v2
the 13M approximation as 4 4 8
—io1) maU”’ B 2 Qe[ My(v')? 5 Noting that Eqs(54)—(57) are still valid for the plateau re-
hy "=fao="—|Tast e+ |—S+—"35 gime and using them with Eq$C5—(C7), we can express
T, n, 5T, 2T, 2

(C2 the parallel viscosities (S d3umg(v[)?B-Vh,),

L—. (JdPumy(v[)H{[Ma(v')?2T,] — 53B-Vh,) (a=e,i) and the

T_(h+e)n, let us_(zli\/)ldaé into the even ¢) and odd () part§ parallel CUffentJE=e<ne(UHi—Uue))/(BZ)l/z in the linear

ka’ and ky ' with respect to the transformation forms of the thermodynamic forcet;,Xez, Xiz, Xy . Xg).
(v),0)—(—v,—0):_k,=k{+k{). It should be noted Accordingly, we can obtain all the transport coefficients

that only the odd palkgicontributes to the parallel viscosi- in Eq. (29) for the plateau regime except far,,, which

ties (fd3vmy(v])?B-Vh,) and (Jd¥umy(v[)*[ma(v')?/  are immediately given from Eqs(71)—(77), (79), and
2T,] — 3B-Vh,). From Eq.(C1), (C2), and(B1), we have (80) by replacing the banana parallel viscosities

the drift kinetic equation fokg’) in the plateau regime as  1.469M,B3(1/R, 1’27;;,uaj (a = e,i;j = 1,2,3) [see Egs.
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