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A detailed comparison is made between moment-equation methods presented by H. Sugama and S.
Nishimura �Phys. Plasmas 9, 4637 �2002�� and by M. Taguchi �Phys. Fluids B 4, 3638 �1992�� for
calculating neoclassical transport coefficients in general toroidal plasmas including nonsymmetric
systems. It is shown that these methods can be derived from the drift kinetic equation with the same
collision model used for correctly taking account of collisional momentum conservation. In both
methods, the Laguerre polynomials of the energy variable are employed to expand the
guiding-center distribution function and to obtain the moment equations, by which the radial
neoclassical transport fluxes and the parallel flows are related to the thermodynamic forces. The
methods are given here in the forms applicable for an arbitrary truncation number of the
Laguerre-polynomial expansion so that their accuracies can be improved by increasing the
truncation number. Differences between results from the two methods appear when the
Laguerre-polynomial expansion is truncated up to a finite order because different weight functions
are used in them to derive the moment equations. At each order of the truncation, the neoclassical
transport coefficients obtained from the Sugama–Nishimura method show the Onsager symmetry
and satisfy the ambipolar-diffusion condition intrinsically for symmetric systems. Also, numerical
examples are given to show how the transport coefficients converge with the truncation number
increased for the two methods. © 2008 American Institute of Physics. �DOI: 10.1063/1.2902012�

I. INTRODUCTION

Neoclassical transport is an important factor to deter-
mine plasma confinement, especially in nonaxisymmetric to-
roidal systems such as heliotrons and stellarators.1 For ex-
ample, neoclassical transport fluxes due to particles trapped
in helical ripples are expected to be significantly large for
high temperature and play a key role in determining the ra-
dial electric field under the ambipolar-diffusion condition.2

Also, quasisymmetric toroidal systems are attracting much
attention as an advanced concept, in which configurations are
optimized to nearly suppress the neoclassical ripple transport
and the neoclassical viscosity against flows in the direction
of quasisymmetry.3–7 Furthermore, positive correlations be-
tween neoclassical and anomalous transport through genera-
tion of zonal flows in helical plasmas have been argued.8–12

In addition, even in tokamak experiments, the effects of the
neoclassical toroidal viscosity due to the broken axisym-
metry on the toroidal plasma rotation have recently been
studied in relation to the stability of the resistive wall
mode.13 Thus, it is required to do accurate and fast calcula-
tions of neoclassical transport coefficients, by which radial
fluxes and tangential flows to flux surfaces are related to
thermodynamic forces.

There are two methods known as moment-equation ap-
proaches to calculate the neoclassical transport coefficients
in general toroidal systems with no symmetry. One is pre-
sented by Sugama and Nishimura14 and the other by
Taguchi.15 Both methods show how to accurately take ac-
count of collisional momentum conservation in multispecies
plasmas for obtaining the transport coefficients from an out-

put of commonly used numerical codes such as the Drift
Kinetic Equation Solver �DKES�,16,17 in which the pitch-
angle-scattering collision model is used. These methods are
useful for determining profiles of the neoclassical radial
fluxes, tangential flows, and radial electric fields in various
types of nonaxisymmetric toroidal systems as demonstrated
in Refs. 18 and 19 while it is still important to address the
theoretical relation between the methods as well as their ac-
curacies from the viewpoint of practical application.20,21 For
this purpose, a detailed comparison between the two methods
is made in the present paper. Also, the methods are written
here for an arbitrary truncation number of the Laguerre-
polynomial expansion of the guiding-center distribution
function in order that one can increase the truncation number
to improve the accuracies. This is contrast to the original
papers by Sugama and Nishimura and by Taguchi, where the
methods are explicitly shown only for the case of retaining
the first two terms in the expansion.

We find in Sec. II how the Sugama–Nishimura and Tagu-
chi methods are derived from the drift kinetic equation in-
cluding the same collision model and where a cause of dif-
ferences between them occurs. There, the two methods are
compared with each other from the viewpoints of the intrin-
sic ambipolar diffusion in the symmetric limit and of the
Onsager symmetry22–24 of the transport coefficients. Further-
more, their different results are illustrated by numerical ex-
amples in Sec. III, where the ion banana neoclassical trans-
port for the axisymmetric case is considered in order to judge
their applicabilities to quasisymmetric systems by checking
the accuracy of the results in the symmetric limit. Finally,
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conclusions are given in Sec. IV and dimensionless coeffi-
cients used for calculating the ion banana transport are
shown in the Appendix.

II. DERIVATION OF TWO METHODS
FOR CALCULATING NEOCLASSICAL
TRANSPORT COEFFICIENTS

In this section, two methods for calculating neoclassical
transport coefficients are derived from the drift kinetic equa-
tions and differences between their results are described in
detail.

A. Basic equations

We consider toroidal configurations with the magnetic
field written in terms of the flux coordinates �s ,� ,�� as

B = �� � s � �� + �� � � � �s

= Bs � s + B� � � + B� � � , �1�

where � and � represent the poloidal and toroidal angles,
respectively, and s is an arbitrary label of a flux surface. The
poloidal and toroidal fluxes are given by 2���s�
= �2��−1�V�s�d

3xB ·�� and 2���s�= �2��−1�V�s�d
3xB ·��, re-

spectively, where V�s� is the volume enclosed by the flux
surface with the label s. The derivative with respect to s is
denoted by �=d /ds so that ��=d� /ds and ��=d� /ds. The
covariant radial, poloidal, and toroidal components of the
magnetic field B are written as Bs�B ·�x /�s��gB · ���
����, B��B ·�x /����gB · �����s�, and B��B ·�x /��

��gB · ��s����, respectively, where �g���s · ���
�����−1 represents the Jacobian for the coordinates �s ,� ,��.
Here, we may regard �s ,� ,�� as either Boozer25 coordinates,
Hamada26 coordinates, or arbitrary other flux coordinates.

The equilibrium distribution function for the particle
species a with the mass ma and the charge ea is given in the
local Maxwellian form faM ��−3/2navTa

−3 exp�−xa
2�, where

vTa��2Ta /ma�1/2 denotes the thermal velocity, and xa

�v /vTa represents the normalized velocity. The equilibrium
density na and the temperature Ta are flux surface functions
independent of � and �. The deviation fa1 from the local
Maxwellian is determined by the linearized drift kinetic
equation,

Vfa1 − Ca�fa1� =
1

Ta
faM�− �1

+	Xa1 + Xa2�xa
2 −

5

2

�

+ ea
B

�B21/2v�XE
 . �2�

Here, fa1 is independent of the gyrophase and regarded as a
function of the phase-space variables �x ,v ,��, where x is the
position of the particle’s guiding-center and � is defined by
��v� /v with v� �v ·b and b�B /B. Then, the operator V on
the left-hand side of Eq. �2� is defined by

V � V� + VE,

V� � v�b · �−
1

2
v�1 − �2��b · � ln B�

�

��
, �3�

VE �
cEs

�B2
� s � B · � .

The above E�B drift operator VE associated with the radial
electric field Es=−�	 /�s �	: the electrostatic potential� has
the same form as employed in the DKES

16,17 and by
Taguchi,15 in which the compressional part of the E�B drift
velocity is removed. The thermodynamic forces Xa1, Xa2, and
XE on the right-hand side of Eq. �2� are defined by

Xa1 � −
1

na

�pa

�s
− ea

�	

�s
,

Xa2 � −
�Ta

�s
, �4�

XE � �BE�/�B21/2,

respectively, where pa�naTa is the pressure, E� �E ·b the
parallel electric field, and �¯� �d��d��g¯ /V� with V�
� �d��d��g represents the flux surface average.

Now, it is convenient to consider the expansion of an
arbitrary function F�x ,v ,�� by the Legendre polynomials
Pl��� �P0���=1, P1���=�, P2���= 3

2�2− 1
2 ,¯� as

F�x,v,�� = �
l=0




F�l��x,v,�� ,

�5�

F�l��x,v,�� = Pl���
2l + 1

2
�

−1

1

d�Pl���F�x,v,�� .

Then, for the collision term Ca�fa1� on the left-hand side of
Eq. �2�, we use the collision operator defined by

Ca�fa1� = �
b

�Cab�fa1
�l=1�, fbM� + Cab�faM, fb1

�l=1���

+ �D
a L�fa1 − fa1

�l=1�� , �6�

where Cab is the Landau operator27 for Coulomb collisions
between species a and b and the pitch-angle-scattering colli-
sion operator is defined by

�D
a L �

�D
a

2

�

��
�1 − �2�

�

��
. �7�

The energy-dependent collision frequency �D
a in Eq. �7� is

given by28

�D
a � �

b

3��

4
ab

−1xa
−3H�xb� , �8�

where �3�� /4�ab
−1�4�nbea

2eb
2 ln � / �ma

2vTa
3 � �ln �: the Cou-

lomb logarithm� and H�x����2x2−1�	�x�+x	��x�� / �2x2�
�	�x��2�−1/2�0

x exp�−t2�dt: the error function�. The colli-
sion model shown in Eq. �6� is equivalent to those in Refs.
14 and 15. When using the collision operator shown in Eq.
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�6�, the l=0 component fa1
�l=0� never contributes to the colli-

sion term, Ca�fa1
�l=0��=0. However, for the rigorous linearized

collision operator defined by Ca�fa1�=�b�Cab�fa1 , fbM�
+Cab�faM , fb1�� with the Landau operator Cab, Ca�fa1

�l=0�� does
not vanish generally but it vanishes only for the distribution
function in the form of fa1

�l=0�=FaM�na1 /na+ �xa
2−3 /2�Ta1�,

where na1 and Ta1 represent the perturbations of the density
and temperature, respectively.27 Since relative effects of the
rigorous l=0 collision term Ca�fa1

�l=0�� are weakened with de-
creasing collisionality, the collision model in Eq. �6� gives a
better approximation in lower-collisional regimes. In order to
correctly reproduce the viscosity coefficients for the Pfirsch–
Schlüter regime, we should replace �D

a with �T
a /3 in Eq. �7�

for that collisional region,28 where �T
a is given by �T

a �3�D
a

+�E
a ��3�� /4��bab

−1��	�xb�−3G�xb�� /xa
3+4�Ta /Tb��1

+mb /ma�G�xb� /xa� with G�x���	�x�−x	��x�� / �2x2�.
The source functions �1

+ in Eq. �2� and �3
+ used later in

Eq. �15� are defined by

�1
+ � − vda · �s

= −
2v2

3�a
	1 +

1

2
P2����b � � ln B · �s ,

�9�

�3
+ � V� B

�D
a v�
 ,

where vda��c /eaB�b� �mav�
2b ·�b+��B+ea�	� is the

guiding-center drift velocity and �a�eaB / �mac� is the gy-
rofrequency. We note that the definition of �3

+ in Eq. �9�
follows from Rij and Hirshman17 and differs from that in
Ref. 16.

We now define the inner product �� ,�� for arbitrary
functions ��� ,� ,�� and ��� ,� ,�� by using the � integral and
the flux surface average as

��,�� �
1

2
�

−1

1

d���� . �10�

Then, we find that, with respect to this inner product, the
operators V and L are found to be antisymmetric and sym-
metric, respectively,

�V�,�� = − ��,V��, �L�,�� = ��,L�� . �11�

We should note that the energy integral �or integral in v� is
not included in the inner product defined by Eq. �10� in con-
trast to that in Refs. 16 and 17 and that the energy integral is
not necessary for the symmetry properties in Eq. �11� to
hold. Also, it is useful to define the operators P�E and P��

which act on an arbitrary function f�� ,� ,� ,Es� by

�P�Ef���,�,�,Es� � f��,�,− �,− Es� ,

�12�
�P��f���,�,�,Es� � f�− �,− �,�,Es� ,

where P�E represents the time-reversal operation.17 Then, we
obtain the following relations:

P�EV = − VP�E, P�EL = LP�E,

�13�
P�E�1

+ = �1
+, P�E�3

+ = �3
+.

Similarly, for toroidal systems in which the stellarator
symmetry17 is satisfied, we can derive the following rela-
tions:

P��V = − VP��, P��L = LP��,

P���1
+ = − �1

+, P���3
+ = − �3

+, �14�

�P��F,G� = �F,P��G� .

For simplicity, we hereafter assume the stellarator symmetry
to hold, although the results in the present work can be
straightforwardly generalized to systems without the stellar-
ator symmetry. Then, we see from Eqs. �13� and �14� that the
two operations P�E and −P�� have the same properties with
respect to V, L, and � j

+ �j=1,3�. Multiplying −1 by P��V
=−VP�� and P��L=LP�� in Eq. �14�, �−P���V=−V�−P���
and �−P���L=L�−P��� are immediately obtained, respec-
tively, which shows that −P�� has the same properties as P�E

in Eq. �13� with respect to V and L.
In Ref. 17, the response functions Fj

+ and Fj
− �j=1,3�

associated with the source terms � j
+ �j=1,3� are defined by

VFj
− − �D

a LFj
+ = � j

+,

�15�
VFj

+ − �D
a LFj

− = 0 �j = 1,3�

and the monoenergetic transport coefficients Djk�K� �j ,k
=1,3� are defined by

Djk�K� � �� j
+,Fk

+� + �� j
+,Fk

−� �j,k = 1,3� , �16�

where K�xa
2�mav2 /2Ta represents the normalized kinetic

energy. We find from Eqs. �13�–�16� that

P�EFj
+ = − P��Fj

+ = Fj
+,

P�EFj
− = − P��Fj

− = − Fj
−, �17�

�� j
+,Fk

−� = 0,

and that Djk �j ,k=1,3� are even functions of Es.
In Ref. 15, other response functions ga

�j� �j=1,2� are de-
fined by Taguchi as

�V + �D
a L�ga

�1� = faMBv� ,

�18�
�V + �D

a L�ga
�2� = − faM�1

+ �j = 1,3� .

Comparing Eq. �15� with Eq. �18� and using Eqs. �9�, �13�,
and �14�, we find that ga

�j� �j=1,2� can be expressed in terms
of Fj

+ and Fj
− �j=1,3� as
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ga
�1� = faM�− P�E�F3

+ + F3
−� − Bv�/�D

a �

= faM�P���F3
+ + F3

−� − Bv�/�D
a � ,

�19�
ga

�2� = faMP�E�F1
+ + F1

−�

= − faMP���F1
+ + F1

−� ,

which can be combined with Eq. �16� to derive

�Bv�,ga
�1�� = faM	D33�K� −

v2�B2
3�D

a � ,

��1
+,ga

�1�� = �Bv�,ga
�2�� = − faMD13�K� , �20�

��1
+,ga

�2�� = faMD11�K� .

Now, let us expand the l=1 Legendre component fa1
�l=1�

of the distribution function fa1 in terms of the Laguerre poly-
nomials Lj

�3/2��xa
2� �L0

�3/2��xa
2�=1,L1

�3/2��xa
2�= 5

2 −xa
2 , ¯� as

fa1
�l=1� =

2

vTa
�xafaM	u�a +

2

5

q�a

pa
�xa

2 −
5

2

 + ¯ �

=
2

vTa
�xafaM�

j=0




u�ajLj
�3/2��xa

2� , �21�

where

u�aj �
cj

na
� d3vfa1v�Lj

�3/2��xa
2� ,

�22�

cj �
3 · 2 j · j!

�2j + 3�!!
.

The coefficients of the first and second Laguerre polynomial
components in Eq. �21� are given by u�a0=u�a and u�a1

=−�2 /5��q�a / pa�, where u�a�na
−1�d3vfa1v� and q�a

�Ta�d3vfa1v��xa
2− 5

2
� represent the parallel fluid velocity and

the parallel heat flow, respectively. Also, the l=1 Legendre
component of the collision term in Eq. �6� is written as

Cab�fa1
�l=1�, fbM� + Cab�faM, fb1

�l=1��

=
1

pa
�vfaM	F�a1 +

2

5
F�a2�xa

2 −
5

2

 + ¯ �

=
2

vTa
�xafaM�

j=0




C�ajLj
�3/2��xa

2� , �23�

where

C�aj �
cj

na
� d3vv�Lj

�3/2��xa
2��Cab�fa1

�l=1�, fbM�

+ Cab�faM, fb1
�l=1���

=
cj

nama
�

b
�
k=0




lj+1,k+1
ab u�bk. �24�

Here, the first two-order parallel friction forces are written as
F�a1=namaC�a0=�d3vCa�fa1�mav� and F�a2=− 5

2namaC�a1

=�d3vCa�fa1�mav��xa
2− 5

2
�. The friction coefficients lj+1,k+1

ab are
defined by28

lj+1,k+1
ab �� d3vmav�Lj

�3/2��xa
2�

�	�ab�
b�

Cab��mav�

Ta
Lk

�3/2��xa
2�faM, fb�M


+ Cab� faM,
mbv�

Tb
Lk

�3/2��xb
2�fbM
� , �25�

where �ab denotes the Kronecker delta ��ab=1 for a=b and
�ab=0 for a�b�. The self-adjointness of the collision opera-
tor Cab and the momentum-conservation property �aF�a1=0
are written in terms of the friction coefficients as

lj+1,k+1
ab = lk+1,j+1

ba , �
a

l1,k+1
ab = 0. �26�

Averaging Eq. �18� with respect to � yields

B · �� v
B
�

−1

1 d�

2
ga

�1��
 + VE��
−1

1 d�

2
ga

�1�
 = 0,

�27�

B · �� v
B
�

−1

1 d�

2
ga

�2��
 + VE��
−1

1 d�

2
ga

�2�

= faM

2v2

3�a
�b � � ln B� · �s .

Following Refs. 14 and 15 to neglect terms operated with VE

in Eq. �27� �see remarks between Eqs. �E2� and �E3� in Ap-
pendix E of Ref. 14 and after Eq. �8� in Ref. 15�, we obtain

v�
−1

1 d�

2
ga

�1�� =
B

�B2
�ga

�1�,Bv�� ,

�28�

v�
−1

1 d�

2
ga

�2�� =
B

�B2
�ga

�2�,Bv�� + faM
v2

3

BŨ

�a
,

where Ũ is defined as a solution of

B · �� Ũ

B

 = B � �s · �� 1

B2
, �BŨ = 0. �29�

From Eqs. �27� and �28�, we can roughly estimate the rela-
tive effects of the neglected VE terms on Eq. �28� as small as
of the order of c��	� / �vTaB���Ta /L�1, where �	�	 /L,
ea	�Ta, and �Ta�vTa / ��a��L are used. Similarly, averag-
ing Eq. �2� with respect to � and taking its Laguerre compo-
nent of the order j�=0,1 ,2 , ¯ � lead to

u�a0 � u�a =
B

�B2
�Bu�a +

cXa1

ea
Ũ ,

− u�a1 �
2

5pa
q�a =

2

5pa

B

�B2
�Bq�a +

cXa2

ea
Ũ , �30�

u�aj =
B

�B2
�Bu�aj �j � 2� .
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Now, we take inner products between ga
�j� �j=1,2� and

Eq. �2� and use Eqs. �11� and �18� to derive

�ga
�1�,�D

a Lfa1 − Ca�fa1�� − faM�Bv�, fa1�

=
1

Ta
faM	− �ga

�1�,�1
+��Xa1 − Xa2L1

�3/2��K��

+ �ga
�1�,Bv��

eaXE

�B21/2� �31�

and

�ga
�2�,�D

a Lfa1 − Ca�fa1�� + faM��1
+, fa1�

=
1

Ta
faM	− �ga

�2�,�1
+��Xa1 − Xa2L1

�3/2��K��

+ �ga
�2�,Bv��

eaXE

�B21/2� . �32�

Using Eqs. �20� and �24�, we can rewrite Eq. �31� as

− ma�D
a �K�D33�K��

j=0




Lj
�3/2��K��Bu�aj/�B2

− ma	D33�K� −
2TaK�B2
3ma�D

a �K���j=0




cjLj
�3/2��K�

� �
b

�
k=0



lj+1,k+1
ab

nama
�Bu�bk/�B2

= D13�K��Xa1 − Xa2L1
�3/2��K��

+ 	D33�K� −
2TaK�B2
3ma�D

a �K�� eaXE

�B21/2 . �33�

When we truncate the Laguerre-polynomial expansion up to
the finite order of j= jmax, we can derive the expressions that
relate the averaged parallel flows, �Bu�a0, �Bu�a1 ,¯
�Bu�ajmax

 �a=e , i , ¯ � to the thermodynamic forces Xa1, Xa2

�a=e , i , ¯ �, and XE from the moment equations given by
multiplying Eq. �33� with appropriate weight functions of K
and taking the integral in K. As shown in the next subsec-
tions, the difference between the Sugama–Nishimura method
and Taguchi’s method results from using different weight
functions to derive these moment equations.

Using Eqs. �20� and �24�, we can rewrite Eq. �32� as a
useful expression to derive the radial transport fluxes,

�vda · �s, fa1� = faM�Fa
PS�K� + Fa

bn�K�� , �34�

where Fa
PS�K� represents the monoenergetic contribution to

the Pfirsch–Schlüter particle flux defined by

Fa
PS�K� = −

2

3

K

na
�Ũ2�

j=0




cjLj
�3/2��K�

��
b

c2

eaeb
�lj+1,1

ab Xb1 − lj+1,2
ab Xb2� , �35�

and the other part Fa
bn�K� of the monoenergetic particle flux

is defined by

Fa
bn�K� =

ma

Ta
D13�K��

j=0




Lj
�3/2��K�	�D

a �K�
�Bu�aj

�B2

+
cj

nama
�

b
�
k=0




lj+1,k+1
ab �Bu�bk

�B2 �
+

1

Ta
	D11�K� −

2c2maTaK�D
a �K�

3ea
2 �Ũ2�

��Xa1 − Xa2L1
�3/2��K�� +

D13�K�
Ta

eaXE

�B21/2 . �36�

The radial particle, heat, and other higher-order-moment
fluxes can be obtained by multiplying Eq. �34� with
Lj

�3/2��K� �j=0,1 ,2 , ¯ � and taking the K integrals. Defining
the average operator �¯� for an arbitrary function A�K� by

�A�K�� �
4

3��
�

0




dKK3/2e−KA�K� , �37�

we obtain the orthogonality relation

�Lj
�3/2��K�Lk

�3/2��K�� =
1

cj
� jk �j,k = 0,1,2, ¯ � . �38�

Then, the Pfirsch–Schlüter �PS� particle and heat fluxes are
immediately calculated from Eq. �35� as

�aj
PS = na

2
��
�

0




dK�Ke−KFa
PS�K�Lj

�3/2��K�

= na�3

2
K−1Fa

PS�K�Lj
�3/2��K��

= − �
b

c2

eaeb
�Ũ2�lj1

abXb1 − lj2
abXb2� �j = 0,1,2, ¯ � .

�39�

The Pfirsch–Schlüter particle and heat fluxes are given from
Eq. �39� by �a

PS=�a0
PS and qa

PS /Ta=−�a1
PS, respectively. Simi-

larly, using Eq. �36�, we obtain the radial neoclassical fluxes,

�aj
bn � na

2
��
�

0




dK�Ke−KFa
bn�K�Lj

�3/2��K�

= na�3

2
K−1Fa

bn�K�Lj
�3/2��K�� �j = 0,1,2, ¯ � , �40�

where the j=0 and 1 cases give the radial particle and heat
fluxes, respectively, as �a

bn=�a0
bn and qa

bn /Ta=−�a1
bn. Here, �aj

bn

can be written as the sum of the banana-plateau and the
nonsymmetric parts.23,31 The banana-plateau part of the ra-
dial particle fluxes are intrinsically ambipolar and propor-
tional to the neoclassical viscosity in the direction of the
magnetic field while the neoclassical ripple diffusion is given
by the nonsymmetric part that arises because the viscosity
never vanishes in any direction tangential to the flux surface
for nonsymmetric systems.

We find from Eqs. �36� and �40� that the radial neoclas-
sical fluxes �aj

bn �a=e , i ,¯; j=0,1 ,2 ,¯� are written as lin-
ear combinations of the averaged flows �Bu�aj and the ther-
modynamic forces �Xa1 ,Xa2 ,XE� �a=e , i , ¯ �. As mentioned
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after Eq. �33�, when the Laguerre-polynomial expansion is
truncated up to the order of j= jmax, we can solve some ap-
propriate energy-moment equations to express �Bu�aj in
terms of �Xa1 ,Xa2 ,XE�. Then, substituting these expressions
for �Bu�aj into �aj

bn, we can finally obtain the neoclassical
transport equations which represent �aj

bn by �Xa1 ,Xa2 ,XE�.
Here, it should be emphasized again that the expressions,
which relate �Bu�aj to �Xa1 ,Xa2 ,XE�, and accordingly the
transport equations depend on what weight functions of K
are used in the energy integrals to derive the moment equa-
tions. This point will be further discussed in the following
subsections.

B. Sugama–Nishimura method

In Sugama and Nishimura,14 the coefficients
�Ma�K� ,Na�K� ,La�K�� are defined by

Ma�K� =
ma

2

Ta
��D

a �K��2D33�K�	1 −
3ma�D

a �K�D33�K�
2TaK�B2 �−1

,

Na�K� =
ma

Ta
�D

a �K�D13�K�	1 −
3ma�D

a �K�D33�K�
2TaK�B2 �−1

, �41�

La�K� =
1

Ta
�D11�K� −

B2v2�D
a

3�a
2 �Ũ2 +

3ma�D
a �K��D13�K��2

2TaK�B2

�	1 −
3ma�D

a �K�D33�K�
2TaK�B2 �−1
 .

Then, by multiplication with �ma /Ta��D
a �K��1

−3ma�D
a �K�D33�K� / �2TaK�B2��−1, Eq. �33� is rewritten as

Ma�K��
j=0




Lj
�3/2��K��Bu�aj/�B2 + Na�K��Xa1 − Xa2Lj

�3/2��K��

=
2

3

K

na
	�

j=0




cjLj
�3/2��K��

b
�
k=0




lj+1,k+1
ab �Bu�bk

+ naea�B21/2XE� . �42�

Next, using Eq. �42� to remove XE from Eq. �36�, another
expression for Fa

bn�K� is obtained with the aid of Eq. �41� as

Fa
bn�K� = Na�K��

j=0




Lj
�3/2��K��Bu�aj/�B2

+ La�K��Xa1 − Xa2L1
�3/2��K�� . �43�

Now, let us truncate the Laguerre-polynomial expansion
up to the order of j= jmax. Then, in the Sugama–Nishimura
method, Eqs. �42� and �43� are multiplied with
na�2 /����Ke−KLj

�3/2��K� �j=0,1 , ¯ , jmax� and they are inte-
grated in K to yield

�
k=0

jmax

Mj+1,k+1
a �Bu�ak/�B2 + Nj+1,1

a Xa1 − Nj+1,2
a Xa2

= �
b

�
k=0

jmax

lj+1,k+1
ab �Bu�bk + � j0naea�B21/2XE

�j = 0,1, ¯ , jmax� �44�

and

�aj
bn = �

k=0

jmax

Nj+1,k+1
a �Bu�ak/�B2 + Lj+1,1

a Xa1 − Lj+1,2
a Xa2

�j = 0,1, ¯ , jmax� , �45�

where

�Mj+1,k+1
a ,Nj+1,k+1

a ,Lj+1,k+1
a �

= na
2

��
�

0




dK�Ke−KLj
�3/2��K�Lk

�3/2��K�

��Ma�K�,Na�K�,La�K�� . �46�

As seen from Ref. 14, the left-hand side of Eq. �44� equals
the neoclassical parallel viscosities so that we can write

��aj ��� d3vfa1�UaLj
�3/2��K��

= �
k=0

jmax

Mj+1,k+1
a �Bu�ak/�B2 + Nj+1,1

a Xa1 − Nj+1,2
a Xa2

�47�

with �Ua�−V�mav�B�.
We find that ��aj, �a

bn=�a0
bn, and qa

bn /Ta=−�a1
bn are re-

garded as fluxes conjugate to driving forces represented by
�Bu�aj / �B2, Xa1, and Xa2, respectively,14 and that these
fluxes and forces are connected by the Onsager-symmetric
coefficients as shown below from Eqs. �45� and �47�. In or-
der to show the Onsager symmetry clearly, Eqs. �45� and
�47� are combined and rewritten in the matrix form as

	 P�

Gbn� = 	M N

Ntr L
�	U�

X
� ,

where M, N, and L are �jmax+1�� �jmax+1�, �jmax+1��2,
and 2�2 matrices which have components given by
Mj+1,k+1

a , Nj+1,k+1
a , and Lj+1,k+1

a , respectively, and Ntr

represents the transpose matrix of N. The column vectors
P�, Gbn, U�, and X are defined by P� = ���a0 , ¯ ,��ajmax

�tr,
Gbn= ��a0

bn ,�a1
bn�tr= ��a

bn,−qa
bn /Ta�tr, U� = ��Bu�a0 / �B2 , ¯ ,

�Bu�ajmax
 / �B2�tr, and X= �Xa1 ,−Xa2�tr, respectively. As seen

above, ���a0 , ¯ ,��ajmax
,�a

bn,−qa
bn /Ta� and ��Bu�a0

/ �B2 , ¯ , �Bu�ajmax
 / �B2, Xa1 ,−Xa2� are combined by a sym-

metric matrix and this symmetric relation is kept even if
replacing −qa

bn /Ta and −Xa2 with qa
bn /Ta and Xa2, respec-

tively. For the case of jmax=1, the above matrix-form equa-
tion is equivalent to Eq. �35� in Ref. 14, which is written
such that the signs of the even-numbered components of the
column vectors are changed.
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Equations �44� and �45� are the basic equations in the
Sugama–Nishimura method to determine the neoclassical
transport coefficients. We note that Eqs. �44� and �45� are
equivalent to a combination of Eqs. �35�, �C1�, and �C2� in
Ref. 14 for the case of jmax=1. Solving Eq. �44�, the aver-
aged flows �Bu�aj�j=0,1 , ¯ , jmax� are expressed by linear
combinations of the thermodynamic forces Xa1, Xa2, and XE.
Then, substituting these expressions into Eq. �45� and

JE � �
a

naea�Bu�a/�B21/2, �48�

we finally obtain the neoclassical transport equations which
relate the radial transport fluxes �aj

bn and the parallel electric
current JE to the thermodynamic forces Xa1, Xa2, and XE.
Especially, the transport equations derived from the Sugama–
Nishimura method show that �a

bn��a0
bn, qa

bn /Ta�−�a1
bn, and

JE are connected by their conjugate forces Xa1, Xa2, and XE

by the Onsager-symmetric transport coefficients.
It should be noted that the right-hand side of Eq. �44�

represents the sum of the averaged parallel electric force �ap-
pearing only for the j=0 case� and the averaged parallel
friction forces written by

�B� d3vCa�fa1�mav�Lj
�3/2��K�� . �49�

Thus, for the j=0 case, Eq. �44� represents the momentum
balance equation,

��a0 � �B · �� · �a� = �BF�a1 + naea�BE� , �50�

where �a��d3vma�v�
2− 1

2v�
2 �fa1�bb− 1

3I� and F�a1

��d3vCa�fa1�mav� =�b�k=0
jmaxl1,k+1

ab u�bk denote the viscosity
tensor and the parallel friction force, respectively. Then, us-
ing the momentum-conservation property given by Eq. �26�,
the charge neutrality condition �anaea=0, and taking the
species summation of Eq. �50� yields

�
a

�B · �� · �a� = 0. �51�

As shown in Appendix D of Ref. 14, for symmetric cases,
where c1�B /��+c2�B /��=0 holds �c1=0, c2=0, and c1 ·c2

�0 represent the axisymmetric, poloidally symmetric, and
helically symmetric cases, respectively�, we have
Nj+1,k+1

a / Mj+1,k+1
a = Lj+1,k+1

a / Nj+1,k+1
a = Na�K� / Ma �K� = La �K�

/Na�K� and therefore obtain �aj
bn���aj from Eqs. �45� and

�47�. Finally, combining this fact for the j=0 case, �a
bn

� �B · �� ·�a�, with Eq. �51�, we see that, when applied to
the symmetric cases, the Sugama–Nishimura method guaran-
tees the intrinsic ambipolarity condition,

�
a

�a
bn = 0 �for symmetric systems� . �52�

C. Taguchi’s method

In Taguchi’s method,15 we multiply Eq. �33� with
na�2 /����Ke−KLj

�3/2��K��j=0,1 , ¯ , jmax� and take the K in-
tegrals to obtain

�
k=0

jmax

Aj+1,k+1
a �Bu�ak/�B2 + Bj+1,1

a Xa1 − Bj+1,2
a Xa2

=
1

na
�
m=0

jmax

Zj+1,m+1
a cm�

b
�
k=0

jmax

lm+1,k+1
ab �Bu�bk/�B2

+ Zj+1,1
a eaXE/�B21/2 �j = 0,1, ¯ , jmax� , �53�

where the Laguerre-polynomial expansion is truncated up to
the order of j= jmax. Here, the coefficients Aj+1,k+1

a , Bj+1,k+1
a ,

and Zj+1,k+1
a are defined by

�Aj+1,k+1
a

Bj+1,k+1
a

Zj+1,k+1
a � = na

2
��
�

0




dK�Ke−KLj
�3/2��K�Lk

�3/2��K�

� � ma�D
a �K�D33�K�
D13�K�

− D33�K� + 2TaK�B2/3ma�D
a �K�

� . �54�

It should be noted that, in the Sugama–Nishimura method,
the additional factor �ma /Ta��D

a �K��1−3ma�D
a �K�D33�K�

/ �2TaK�B2��−1 is multiplied for taking the energy integral to
derive Eq. �44� so that it coincides with the same parallel
momentum equations as used in the conventional moment
approach for calculation of the neoclassical transport
coefficients.28–31 Next, we multiply Eq. �36� with
na�2 /����Ke−KLj

�3/2��K��j=0,1 , ¯ , jmax� and take the en-
ergy integrals to get the radial neoclassical fluxes �see Eq.
�40��,

�aj
bn = �

k=0

jmax

N j+1,k+1
a �Bu�ak/�B2 +

1

naTa
�
m=0

jmax

Bj+1,m+1
a

� cm�
b

�
k=0

jmax

lm+1,k+1
ab �Bu�bk/�B2 + L j+1,1

a Xa1

− L j+1,2
a Xa2 �j = 0,1, ¯ , jmax� , �55�

where the coefficients N j+1,k+1
a and L j+1,k+1

a are defined by

	N j+1,k+1
a

L j+1,k+1
a � = na

2
��
�

0




dK�Ke−KLj
�3/2��K�Lk

�3/2��K�

� 	 �ma/Ta��D
a �K�D13�K�

�1/Ta��D11�K� − �B2v2�D
a /3�a

2��Ũ2�
� .

�56�

Recall that Eq. �45� is used in the Sugama–Nishimura
method instead of Eq. �55� in order to retain the Onsager-
symmetric relations of ���aj ,�a

bn��a0
bn ,qa

bn /Ta=−�a1
bn� to

��Bu�aj / �B2 ,Xa1 ,Xa2� as shown in Eqs. �45� and �47�.
Equations �53� and �55� form the basic equations in

Taguchi’s method, from which the neoclassical transport co-
efficients are determined. Note that Eqs. �53� and �55� are
equivalent to Eqs. �22� and �23� and Eqs. �40�–�46� in Ref.
15, respectively, although our notations used here are differ-
ent from those by Taguchi.15 Solving Eq. �53� gives expres-
sions of the averaged flows �Bu�aj�j=0,1 , ¯ , jmax� in terms
of linear combinations of the thermodynamic forces Xa1, Xa2,
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and XE. Substituting them into Eqs. �55� and �48� yields the
neoclassical transport coefficients, which relate the radial
transport fluxes �aj

bn and the parallel electric current JE to the
thermodynamic forces Xa1, Xa2, and XE.

In principle, the Sugama–Nishimura method and Tagu-
chi’s should lead to the same results in the limit of jmax

→
. However, different results are given from these meth-
ods for the finite value of jmax. We see that Taguchi’s method
does not assure the Onsager symmetry of the neoclassical
transport coefficients. Furthermore, Taguchi’s method de-
scribed in Secs. III and IV of Ref. 15 for nonaxisymmetric
systems, which are equivalent to Eqs. �53� and �55� here,
does not exactly reproduce the intrinsic ambipolar condition,
Eq. �52�, in the axisymmetric limit. It is noted that, in Sec. V
of Ref. 15, Taguchi gives separately the method for the axi-
symmetric limit, which satisfies the ambipolar condition. In
the next section, numerical examples are presented to illus-
trate these differences between results from the Sugama–
Nishimura and Taguchi methods.

III. NUMERICAL EXAMPLES

In this section, in order to elucidate the differences be-
tween results from the Sugama-Nishimura and Taguchi
methods, we consider the axisymmetric case, in which the
magnetic field is given by

B = I�s� � � + ���s� � � � �s . �57�

Also, for simplicity, numerical examples only for the neo-
classical transport of a single species of ions with charge e in
the banana regime are shown and small �me /mi�1/2-order ef-
fects associated with the electron transport are neglected.
Then, we neglect effects of the parallel electric field and of
ion-electron collisions on the drift kinetic equation for ions.

In the present case, the basic equations of the Sugama–
Nishimura method in Eqs. �44� and �45� reduce to

�
k=0

jmax

�Mj+1,k+1/�B2 − lj+1,k+1
ii ��Bu�k

= − Nj+1,1X1 + Nj+1,2X2 �j = 0,1, ¯ , jmax� , �58�

and

� j
b = �

k=0

jmax

Nj+1,k+1�Bu�k/�B2 + Lj+1,1X1 − Lj+1,2X2

�j = 0,1, ¯ , jmax� , �59�

respectively, where the parallel flows u� j, the neoclassical
banana fluxes � j

b, the thermodynamic forces �X1 ,X2�, and the
matrix coefficients �Mj+1,k+1 ,Nj+1,k+1 ,Lj+1,k+1� are all for
ions, although the ion-species subscript i is omitted. Values
of the ion-ion collisional friction coefficients lj+1,k+1

ii are
shown in the Appendix. The momentum conservation in ion-
ion collisions is represented by l1,k+1

ii = lk+1,1
ii =0�k

=0,1 ,2 , ¯ �.

On the other hand, the basic equations of Taguchi’s
method in Eqs. �53� and �55� are written here as

�
k=0

jmax 	Aj+1,k+1 −
1

ni
�
m=0

jmax

Zj+1,m+1cmlm+1,k+1
ii � �Bu�k

�B2

= − Bj+1,1X1 + Bj+1,2X2 �j = 0,1, ¯ , jmax� �60�

and

� j
b = �

k=0

jmax 	N j+1,k+1 +
1

niTi
�
m=0

jmax

Bj+1,m+1cmlm+1,k+1
ii �

�
�Bu�k
�B2

+ L j+1,1Xa1 − L j+1,2Xa2

�j = 0,1, ¯ , jmax� . �61�

When all ions are assumed to lie in the banana regime for the
axisymmetric case, we can analytically express the coeffi-
cients Djk�K��j ,k=1,3� in Eq. �16� as14

D11�K� =
2c2miTi

3e2 K�D
i �K�	 f t

I2

����2�B2
+ �Ũ2� ,

D13�K� = − f t
2cTiI

3e��
K , �62�

D33�K� = f t�B2
2Ti

3mi

K

�D
i �K�

.

Here, the fraction f t of trapped particles is defined by

f t � 1 − fc,

�63�

fc �
3

4
�B2�

0

1/Bmax �d�

���1 − �B�1/2�
,

where Bmax is the maximum value of the field strength over

the flux surface. Also, Ũ and �Ũ2 are explicitly written for
the axisymmetric case as

Ũ =
I

��
� 1

B
−

B

�B2

 ,

�64�

�Ũ2 =
I2

����2�� 1

B2� −
1

�B2

 .

Now, substituting Eq. �62� into Eq. �41� yields

M�K� =
2

3

f t

fc
mi�B2K�D

i �K� ,

�65�
N�K�
M�K�

=
L�K�
N�K�

= −
cI

e���B2
.

Using Eqs. �46� and �65�, we obtain
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Mj+1,k+1 =
f t

fc

nimi

ii
�B2�̂ j+1,k+1,

�66�
Nj+1,k+1

Mj+1,k+1
=

Lj+1,k+1

Nj+1,k+1
= −

cI

e���B2
,

where the dimensionless viscosity coefficients �̂ j+1,k+1 are
defined by

�̂ j+1,k+1 � �ii�D
i �K�Lj

�3/2��K�Lk
�3/2��K�� . �67�

Substituting Eq. �62� into Eqs. �54� and �56� gives

Aj+1,k+1 = f tniTi�B2
� jk

cj
,

N j+1,k+1 = − f t
cI

e��

nimi

ii
�̂ jk,

�68�

Zj+1,k+1 = fc
niTiii

mi
�B2

�̂ jk

cjck
,

Bj+1,k+1

Aj+1,k+1
=

L j+1,k+1

N j+1,k+1
= −

cI

e���B2
,

where the dimensionless coefficients �̂ j+1,k+1 are defined by

�̂ j+1,k+1 � cjck�Lj
�3/2��K�Lk

�3/2��K�
ii�D

i �K� � . �69�

Here, we also define the dimensionless ion-ion friction coef-

ficients l̂ j+1,k+1 by

l̂ j+1,k+1 � −
ii

nimi
lj+1,k+1
ii . �70�

Numerical values of the dimensionless coefficients �̂ j+1,k+1,

�̂ j+1,k+1, and l̂ j+1,k+1 are presented in the Appendix.
For axisymmetric systems, we can write the parallel

flows �Bu� j�j=0,1 ,2 , ¯ � in the forms of

�Bu� = �Bu�0 = �B2u� +
cI

e��
X1,

�Bq� = −
5

2
pi�Bu�1 = �B2q� +

5

2
pi

cI

e��
X2, �71�

�Bu� j = �B2uj� �j � 2� ,

where u� is expressed in terms of the poloidal component of
the flow vector u as u�= �V� /4�2����u ·�� and similar ex-
pressions are given for q� and uj��j�2�.

Now, based on the Sugama–Nishimura method, we use
Eqs. �58� and �59�, into which Eqs. �66� and �71� are substi-
tuted, to express the poloidal flows �instead of the parallel
flows� and the radial transport fluxes in terms of the thermo-
dynamic forces. First, it should be noted that, for any value
of jmax, the radial ion particle flux vanishes,

�b � �0
b = 0, �72�

which corresponds to the intrinsic ambipolar condition in Eq.
�52� for the case of the small-�me /mi�1/2 limit. Also, the ra-
dial heat flux qb�−Ti�1

b determined from Eqs. �58� and �59�
is independent of X1, which implies the Onsager symmetry.
Recall that the radial fluxes �0

b and �1
b are conjugate to the

forces X1 and X2, respectively, so that, from the Onsager
symmetry, the coefficient connecting �1

b with X1 should van-
ish when the coefficient connecting �0

b with X2 vanishes. The
results are written as

� u�

2

5pi
q� � = −

cIX2

e���B2	C0�

C1�
� ,

�73�

qb � − Ti�1
b = Cq

ft

fc

nimiTic
2I2

e2����2�B2ii
X2,

where numerical values of the dimensionless coefficients
C0�, C1�, and Cq obtained from the Sugama–Nishimura
method are shown by solid curves in Fig. 1 for the cases of
jmax=1, 2, and 3 �referred to as the 13M, 21M, and 29M
approximations, respectively, in Ref. 29�. Especially, for the
case of jmax=1, we obtain

�C0�

C1�

Cq
� =

l̂22

l̂22�̂11 + �f t/fc���̂11�̂22 − ��̂12�2�

� � �̂12

�̂11

�̂11�̂22 − ��̂12�2 �
�

1

1 + 0.461474�f t/fc��
1.17295

1

0.652622
� . �74�

Here, we should repeat that the Sugama–Nishimura method
and the results shown in Eqs. �73� and �74� for the ion ba-
nana transport in the axisymmetric system are equivalent to
those of the conventional moment approach.28–30

On the other hand, Taguchi’s method leads us to substi-
tute Eq. �68� into Eqs. �60� and �61�, from which the ion
poloidal flows and radial fluxes are derived as

� u�

2

5pi
q� � = −

cIX2

e���B2	C0��

C1��
� ,

�75�

	�b

qb � � 	 �0
b

− Ti�1
b� =

f t

fc

nimiTic
2I2

e2����2�B2ii
X2	C��

Cq�
� ,

where numerical values of the dimensionless coefficients
C0�� , C1�� , C�� , and Cq� are shown by dotted curves in Figs. 1
and 2 for the cases of jmax=1, 2, and 3. For the case of
jmax=1, we have
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�
C0��

C1��

C��

Cq�
� =

l̂22

l̂22�̂22 + �f t/fc�
� �

− �̂12

�̂22

− fc��̂11�̂12 + �̂12�̂22�
fc��̂12�̂12 + �̂22�̂22� + f t

�
�

1

1 + 2.62916�f t/fc��
0.580094

1

− 0.315896fc

1.02315 − 0.754204f t

� .

�76�

Here, the nonzero value of the coefficient C�� for the fictitious
radial particle flux �b indicates that the ambipolar condition
is violated and that the Onsager symmetry is broken because
the reciprocal coefficient for C�� , which connects qb with X1,
still vanishes as seen in Eq. �75�. It should be recalled here
that the above results are derived from the axisymmetric
limit of Taguchi’s formulas for general toroidal systems �but
not from his formulas given separately for the axisymmetric
case�.15

It is claimed in Sec. II that results from the Sugama–
Nishimura and Taguchi methods should be equivalent to
each other in the limit of jmax→
. This fact is directly
proven for the present case by noting that

�
m=0




�̂ jm�̂mk = � jk �j,k = 0,1,2, ¯ � . �77�

However, as seen from Fig. 1, the coefficients C0�, C1�, and
Cq obtained from the Sugama–Nishimura method �or the
conventional moment approach� give better convergence
with increasing jmax than the corresponding coefficients C0�� ,
C1�� , and Cq� from Taguchi’s. Especially, the moment ap-

FIG. 1. Dimensionless neoclassical coefficients calculated as functions of
f t / fc for jmax=1 �13M�, 2 �21M�, and 3 �29M�. The coefficients C0�, C1�,
and Cq in Eq. �73� obtained from the Sugama–Nishimura method are plotted
by solid curves in �a�, �b�, and �c�, respectively. For comparison, also plotted
by dotted curves are C0�� , C1�� , and Cq� in Eq. �75� obtained from Taguchi’s
method.

FIG. 2. The dimensionless coefficient C�� for the fictitious radial particle
flux in Eq. �75� as a function of f t / fc obtained from Taguchi’s method for
jmax=1 �13M�, 2 �21M�, and 3 �29M�.
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proach shows the convergent results even for jmax=1 in the
limit of small f t �or the large aspect ratio�, in which Eq. �73�
gives the radial neoclassical ion heat flux as

�qi · �r � 0.477
ni�Ti

2 q2

�3/2ii

�Ti

�r
. �78�

Here, �Ti�c�2miTi / �eB0� represents the ion thermal gyrora-
dius, q is the safety factor, and ��r /R0��1� is the inverse
aspect ratio for the toroid with the concentric circular cross
section of the minor radius r, where the fraction f t of trapped
particles is given by Eq. �A4� in the Appendix. We also note
that the ion-ion collision time ii used here is related to the
ion collision time i of Braginskii32 by i=�2ii. The result in
Eq. �78� agrees with the one derived by Rosenbluth et al.33

using the variational principle, in which the numerical coef-
ficient is given as 0.48. On the other hand, Eq. �75� shows
that the value of the coefficient is given as 0.748 from Tagu-
chi’s method for jmax=1.

IV. CONCLUSIONS

In this work, a detailed comparison is made between two
moment-equation methods for calculating neoclassical trans-
port coefficients, which are proposed by Sugama and Nish-
imura and by Taguchi. Both methods are derived from the
drift kinetic equation with the same collision model in order
to correctly include the effects of collisional momentum
transfer and they both use the Laguerre-polynomial expan-
sion to represent the guiding-center distribution function as-
sociated with the parallel flows of particles, heat, and other
higher-order energy moments. Also, these methods are given
here in the forms applicable for an arbitrary truncation num-
ber of the Laguerre-polynomial expansion, which are useful
for improving the accuracies. The two methods are equiva-
lent with each other in the limit that the truncation number
goes to infinity. However, a difference appears between their
results when the expansion is truncated up to a finite order
because different weight functions are used in them to derive
the moment equations that relate the finite number of the
parallel flows to the thermodynamic forces.

In the Sugama–Nishimura method, the relations between
the parallel flows and the thermodynamic forces are deter-
mined by the same momentum balance equations as used in
the conventional moment approach so that the intrinsic am-
bipolarity of particle fluxes is exactly derived in the symmet-
ric systems at each order of the truncation. Furthermore, the
resultant neoclassical transport coefficients from their
method satisfy the Onsager symmetry. On the other hand, the
above properties are not retained exactly in the results from
Taguchi’s method. The differences between results from the
two methods are demonstrated by numerical examples for
the ion banana neoclassical transport in the axisymmetric
case, where a better convergence of the transport coefficients
is also confirmed for a smaller truncation number of the
Laguerre-polynomial expansion in the Sugama–Nishimura
method. Thus, their method is considered to be appropriate

especially for investigating the neoclassical transport in qua-
sisymmetric systems and in tokamaks with the axisymmetry
partially broken, where it is important to accurately evaluate
how the transport differs from the exactly-symmetric limit.
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APPENDIX: DIMENSIONLESS COEFFICIENTS
IN SEC. III

Numerical values of the dimensionless coefficients

�̂ j+1,k+1, �̂ j+1,k+1, and l̂ j+1,k+1�−lj+1,k+1
ii ii / �nimi� used in Sec.

III for calculation of the ion neoclassical transport are given
for j ,k=0,1 ,2 ,3 by

�̂11 = �2 − ln�1 + �2� � 0.53284,

�̂12 = 1
2 �4�2 − 5 ln�1 + �2�� � 0.624993,

�̂13 = 1
16�51�2 − 70 ln�1 + �2�� � 0.651796,

�̂14 = 35
192�25�2 − 36 ln�1 + �2�� � 0.66097,

�̂22 = 1
8 �39�2 − 50 ln�1 + �2�� � 1.38571,

�A1�
�̂23 = 1

64�507�2 − 700 ln�1 + �2�� � 1.5632,

�̂24 = 5
768�1747�2 − 2520 ln�1 + �2�� � 1.6248,

�̂33 = 49
512�143�2 − 200 ln�1 + �2�� � 2.48424,

�̂34 = 1
6144�121837�2 − 176400 ln�1 + �2�� � 2.73913,

�̂44 = 1
24576�725467�2 − 1058400 ln�1 + �2�� � 3.78904,

�̂11 � 4.04886, �̂12 � − 2.15691,

�̂13 � 0.266521, �̂14 � 0.0217107,

�̂22 � 3.7182, �̂23 � − 2.11288, �A2�

�̂24 � 0.275357, �̂33 � 3.60993,

�̂34 � − 2.09256, �̂44 � 3.55606,

and
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l̂22 = �2, l̂23 =
3

4
�2, l̂24 =

15

32
�2,

l̂33 =
45

16
�2, l̂34 =

421

128
�2, �A3�

l̂44 =
45131

3072
�2,

respectively. Here, we should recall that l̂1,k+1=0 is derived
from collisional momentum conservation and that �̂ j+1,k+1,

�̂ j+1,k+1, and l̂ j+1,k+1 are all symmetric with respect to ex-
change of j and k.

Also, when deriving Eq. �78� in Sec. III, we use the
formula for the trapped particles’ fraction f t in axisymmetric
toroids33 with the small inverse aspect ratio ��1,

f t =
3
�2

��	1 − �
0

1 d�

�2 � �

2E���
− 1
� � 1.46242�� ,

�A4�

where E��� denotes the complete elliptic integral of the sec-
ond kind.
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