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Linear and nonlinear particle-magnetohydrodynamic simulations
of the toroidal Alfve ´n eigenmode
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Gifu 509-5292, Japan

~Received 2 January 1998; accepted 14 January 1998!

Linear and nonlinear particle-magnetohydrodynamic~MHD! simulation codes are developed to
study interactions between energetic ions and MHD modes. Energetic alpha particles with the
slowing-down distribution are considered and the behavior ofn52 toroidal Alfvén eigenmodes
~TAE modes! is investigated with the parameters pertinent to the present large tokamaks. The linear
simulation reveals the resonance condition between alpha particles and TAE mode. In the nonlinear
simulation, twon52 TAE modes are destabilized and alpha particle losses induced thereby are
observed. Counterpassing particles are lost when they cross the passing-trapped boundary. They are
the major part of lost particles, but trapped particles are also lost appreciably. ©1998 American
Institute of Physics.@S1070-664X~98!02405-7#
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I. INTRODUCTION

Successful confinement of energetic alpha particles
required for self-sustained operation of fusion reactors. T
alpha particles born from deuterium–tritium~D–T! reactions
are supposed to destabilize the toroidal Alfve´n eigenmode
~TAE mode!.1 Nonlinear behaviors of the TAE mode an
alpha particles are one of the major uncertainties for fus
reactor physics. The mechanism of alpha-particle losses
duced by a single TAE mode was investigated by a Mo
Carlo simulation in Ref. 2. They found that crossing t
passing-trapped boundary is a dominant process of the al
particle loss induced by a single mode. They also found
the fraction of lost particles depends on the amplitude of
TAE mode. Thus, nonlinear evolutions of the TAE mode a
alpha particles must be known for designing a fusion reac

Recently, theoretical and computational studies3–6 have
shown that wave trapping of resonant particles works a
saturation mechanism of a single TAE mode. It is, howev
not clear that the wave–particle trapping works as the do
nant saturation mechanism when a large number of T
modes are destabilized. For larger tokamaks such as th
ternational Thermonuclear Experimental Reactor~ITER!
high-n TAE modes are predicted to be most dangerous7,8

With a relevantq profile a large number of TAE modes ca
be destabilized simultaneously. In such cases reson
overlap is predicted to take place9 and wave–particle trap
ping will be prevented by the other TAE modes. Therefo
we suppose that magnetohydrodynamic~MHD! nonlineari-
ties such as proposed in Refs. 10 and 11, survive as pote
candidates for saturation mechanism.

This gives us a sufficient motivation to develop a sim
lation code with nonlinear MHD equations. We employ
kinetic–MHD hybrid model12,5 where plasma is divided into
two parts, i.e., alpha particles and background plasma.
particle simulation method is used for the alpha-parti

a!Electronic mail: todo@nifs.ac.jp
1321070-664X/98/5(5)/1321/7/$15.00
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component, while the background plasma is described by
full MHD equations which are solved by a finite differenc
method. In addition to the nonlinear code, its linear vers
is also developed. In this paper, we describe the result
linear and nonlinear particle–MHD simulations and demo
strate that the two codes are useful tools to study the alp
TAE dynamics.

Compared with previous works4,5 where magnetic mo-
ments of alpha particles are set to be zero, the present w
has an advantage that a more realistic alpha-particle distr
tion can be considered. A realistic alpha-particle distribut
is really indispensable to the study of alpha-particle losse

The plasma model and the computational method
described in Sec. II. Section III is devoted to results of line
particle–MHD simulation. The structure of the most unsta
TAE mode and the resonance condition are investigated w
the linear simulation. The resonance condition is import
to understanding alpha-particle losses in the nonlinear si
lation. The results of nonlinear particle–MHD simulation a
described in Sec. IV. Two cases where the initial alph
particle pressure is changed are investigated. For the h
alpha-pressure case, anothern52 TAE mode is destabilized
and alpha-particle losses induced by TAE modes are ex
ined. A summary is given in Sec. V.

II. SIMULATION MODEL AND COMPUTATIONAL
METHOD

In the model employed here, plasma is divided into tw
parts, the background plasma and alpha particles. The b
ground plasma is described by the ideal MHD equations
the electromagnetic field is given by the MHD descriptio
This approximation is reasonable under the condition that
alpha density is much less than the background plasma
sity. The ideal MHD equations are

]r

]t
52“–~rv!, ~1!
1 © 1998 American Institute of Physics
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r
]

]t
v1rv–“v52“p1

1

m0
~“3B!3B, ~2!

]B

]t
52“3E, ~3!

]p

]t
52“–~pv!2~g21!p“–v, ~4!

E52v3B, ~5!

wherem0 is the vacuum magnetic permeability,g is the adia-
batic constant, and all other quantities are conventional.

The drift-kinetic description is employed for the alph
particles. The guiding-center velocityu is given by

u5vi* 1vE1vB , ~6!

vi* 5
v i

B
@B1r iB“3b#, ~7!

vE5
1

B
@E3b#, ~8!

vB5
1

qaB
@2m“B3b#, ~9!

r i5
mav i

qaB
, ~10!

b5B/B, ~11!

mav i

dv i

dt
5vi* –@qaE2m“B#, ~12!

wherev i is the velocity parallel to the magnetic field andm
is the magnetic moment, which is the adiabatic invariant

To complete the equation system in a self-contain
way, we take account of the effects of the alpha particles
the background plasma in the MHD momentum equati
We can now give a more transparent derivation of the mo
than in Refs. 5 and 12. The background plasma is affecte
the electromagnetic field through its charge and current d
sities which can be calculated from those of the total plas
and the alpha particles. Thus, the momentum equation for
background plasma is

r
]

]t
v1rv–“v5~Q2Qa!E1S 1

m0
“3B2 jaD3B2“p,

~13!

ja5E uf d3v1“3M , ~14!

M52E mbf d3v, ~15!

where Q and Qa are the total charge density and alph
particle charge density, andja is the alpha-particle curren
density. The total charge densityQ is negligible in the MHD
approximation where the quasineutrality is satisfied. Eq
Downloaded 12 Jun 2009 to 133.75.139.172. Redistribution subject to AIP
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tion ~13! can be rewritten into the following form payin
attention to the fact that2QaE cancels out with the Lorentz
force due toE3B current of alpha particles:

r
]

]t
v1rv–“v5S 1

m0
“3B2 ja8 D3B2“p, ~16!

ja8[E ~vi* 1vB! f d3v1“3M

5 jai1
1

B
~Pai“3b2Pa'“ ln B3b!

2“3S Pa'

B
bD . ~17!

It is interesting to note that if the alpha-particle distributio
is isotropic in the velocity space~i.e., Pai5Pa'[Pa!, Eq.
~16! has an exact simple form, i.e.,

r
]

]t
v1rv–“v5

1

m0
~“3B!3B2“Pa2“p. ~18!

Alpha-particle distribution, however, is not isotropic in ge
eral. Therefore, we should use Eq.~16! instead of Eq.~18!.

We use thed f method13,14 for the alpha particles. Time
evolution of the weight of thej th particle is described by14

d

dt
wj52~12wj !F ~vE1v idb!–“1S dv i

dt D
1

]

]v i
G ln f 0 ,

~19!

S dv i

dt D
1

5@b1r i“3b#–F q

m
EG1db–F2

m

m
“BG , ~20!

db5b2b0 , ~21!

where f 0 is the initial distribution which is a function of the
magnetic surface and energy. Using this weight, the alp
particle currentja8 in Eq. ~17! is evaluated through

Pai5Pai01(
j

wjmav i j
2 S~x2X j !, ~22!

Pa'5Pa'01B(
j

wjm jS~x2X j !, ~23!

whereS(x2X j ) is the shape factor of each super particle
The initial condition is a MHD equilibrium where the

total plasma beta is 4% at the magnetic axis and its volu
average is 0.88%. The initial alpha-particle distribution is t
slowing-down distribution which is isotropic in the velocit
space with the maximum energy of 3.5 MeV. Particles
distributed from 0.1 to 3.5 MeV. The background plasma
supposed to be a D–T plasma with the number density
1020 m23. The magnetic field strength at the magnetic ax
the minor radius, and the aspect ratio are 5 T, 0.9 m, an
respectively. With these parameters, the velocity of an al
particle whose energy is 1 MeV is equal to the Alfve´n ve-
locity. The cylindrical coordinate system (R,w,z) is used in
simulations. The simulation region is 2a<R<4a, 2a<z
<a wherea is the minor radius. The magnetic axis locates
R5R0[3.20a, z50.
 license or copyright; see http://pop.aip.org/pop/copyright.jsp
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For analysis of simulation data, a flux coordinate syst
(r ,w,u) is constructed. In this coordinate system, the eq
librium magnetic field (B0r ,B0w ,B0u) is parallel to (0,1,
21/q), whereq is the safety factor. Theq profile is shown
in Fig. 1 with the poloidal harmonics of the most unstab
n52 TAE mode, which is discussed in Sec. III.

III. LINEAR SIMULATION

We have proposed a linear simulation technique15 where
Eqs. ~1!–~5! and ~19! are linearized. Particles are followe
along their equilibrium orbits. An essential difference of th
method from the nonlineard f method is that the superpa
ticles are employed to sample elements of the fo
dimensional phase space (R,z,v i ,m) instead of the five-
dimensional phase space (R,w,z,v i ,m). Dependence of the
distribution function on thew direction is evaluated throug
a particle weight which is a function ofw. Equation~19! is
transformed into

D

Dt
wj~w!1u0w

]

R]w
wj~w!

52
1

f 0
F ~vE1v idb!–“ f 01S dv i

dt D
1

]

]v i
f 0G , ~24!

D

Dt
[

]

]t
1u0R

]

]R
1u0z

]

]z
1S dv i

dt D
0

]

]v i
, ~25!

where the subscript ‘‘0’’ of the velocities and the accele
tion denotes that they are evaluated along the equilibr
orbits. We express the weight function and the electrom
netic field with a toroidal Fourier moden such as

wj~w!5wj
†einw. ~26!

Equation~24! is rewritten as

FIG. 1. Radial profiles of the dominant poloidal harmonics of the elec
static potential for the most unstablen52 TAE mode.
Downloaded 12 Jun 2009 to 133.75.139.172. Redistribution subject to AIP
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Dt
wj

†52
inu0w

R
wj

†2
1

f 0
F ~vE

†1v idb†!–“ f 0

1S dv i

dt D
1

† ]

]v i
f 0G . ~27!

The linear simulation technique has an advantage aga
the nonlineard f technique that it is less demanding in CP
time and memory, since the phase space which must be fi
with super particles is reduced from five dimension to fo
dimension. The number of particles used is 2.63105 in the
linear simulation, which is much less than 4.03106 in the
nonlinear simulation. We carried out test runs of linear a
nonlinear simulations, and confirmed that they give cons
tent results with each other, in linear growth rate, real f
quency, and mode structure. The grid numbers used for
poloidal plane (R,z) are~65,65!. The initial volume-average
beta of alpha particles (^ba&) is 0.44% for the linear simu-
lation.

The linear simulation gives the most unstable mode
each toroidal mode number. For then52 mode, we find that
the n52 TAE mode which consists mainly ofm52 and
m53 harmonics has the largest growth rate. Figure 1 sho
the radial profiles of the dominant poloidal harmonics for t
n52 TAE mode. The real frequencyv0 is 0.36vA whose
absolute value is lower by 0.04vA than the gap center atq
55/4. Since we restrictn to be positive,v0 can take both
positive and negative signs within the framework of MHD
Energetic alpha particles break the symmetry of MHD the
and destabilize a TAE mode which rotates in the same
loidal direction as the diamagnetic drift of alpha particles

We also investigate the resonance condition of alp
particles with the TAE mode. When a resonant parti
passes one round in the poloidal angle, the phase of the T
mode at the location of the particle should change by a m
tiple of 2p. Thus, we expect that the resonance condition
given by

v0Tu2nDw52lp, ~28!

whereTu , Dw, and l are the time for each particle to pas
one round in the poloidal angle, the toroidal angle which
particle passes inTu , and an arbitrary integer, respectivel
We divide Eq.~28! by Tu and obtain

v02nvw2 lvu50, ~29!

or

l 5~v02nvw!/vu , ~30!

wherevu52p/Tu andvw5Dw/Tu .
We measurevu andvw of all particles, and calculatel

of each particle from Eq.~30!. Alpha particles are put in the
order of energy transfer to the TAE mode in order to class
them into strongly resonant particles, weakly resonant p
ticles, and nonresonant particles. First we pick up the
2000 particles as strongly resonant particles which co
67% of the total energy transfer. The values ofl are plotted
in Fig. 2~a!. It can be seen that strongly resonant partic
have values ofl actually close to integers. Thus, we ca
conclude that the resonance condition is Eq.~29! or Eq.~30!.

-
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In Fig. 2~a! we can see that the dominant resonances
l 53 for vw,0 andl 522 for vw.0 for passing particles
We can explain it as follows for a passing particle who
magnetic moment is much smaller than the energy divi
by the magnetic field strength~hereafter, we refer to such
particle as a ‘‘far-passing particle’’!. First, the local parallel
phase velocity of them harmonic of the TAE mode, denote
asVm , approximately satisfies

v0.Vmkim , ~31!

wherekim5(n2m/q)/R0 . For far-passing particles resona
with the m harmonic of the TAE mode,vw and vu can
approximateVm /R0 and uVm /(2qR0)u, respectively. We
substitute Eq.~31! and these approximations into Eq.~29!
and obtain

Vm~n2m/q!/R02nVm /R02 l uVm /~2qR0!u50. ~32!

Finally, we reach the following resonance condition for fa
passing particles:

FIG. 2. Resonance condition of alpha particles to the most unstablen52
TAE mode for the~a! top 2000 particles, and~b! top 8000 particles. Circles
denote passing particles and squares denote trapped particles.
Downloaded 12 Jun 2009 to 133.75.139.172. Redistribution subject to AIP
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l 52m ~Vm.0!, ~33!

l 5m ~Vm,0!. ~34!

The dominant poloidal harmonics of the destabilizedn52
TAE mode arem52 andm53. Around q55/4, Vm of m
52 and m53 harmonics is positive and negative, respe
tively, sincev0 is positive. Thus, far-passing particles wi
positive parallel velocities resonate with them52 harmonic
with l 522, while far particles with negative parallel veloc
ties resonate with them53 harmonic withl 53.

We should notice that not only passing particles but a
trapped particles are resonating with the TAE mode. This
an important point for the particle losses discussed in S
IV. The energy transfer from trapped particles accounts
37% of the total energy transfer. We also show thel values
of the top 8000 particles which cover 90% of the total ene
transfer in Fig. 2~b!. We can see that weakly resona
trapped particles fill the gaps among strongly reson
trapped particles in Fig. 2~a!.

IV. NONLINEAR SIMULATION

Nonlinear simulations have been carried out for two i
tial alpha pressures,̂ba&50.33% and 0.66%. For MHD
equations, we use a finite difference method of fourth-or
accuracy in space and time. The grid numbers used
~65,16,65! for (R,w,z) coordinates, respectively, and
3106 particles are used. The simulation domain in the t
oidal direction is 0<w<p since we focus on then52 TAE
modes. The TAE mode which is found in the linear simu
tion is employed as the initial perturbation. Time evolutio
of amplitude of them/n52/2 harmonic ofdBr at r 50.25a
magnetic surface are shown in Fig. 3. For^ba&50.66%, the
amplitude once reaches a plateau roughly betweet
5400vA

21 and t5600vA
21, and rises again accompanied b

an oscillation. The instability saturates in 1000vA
21 for both

cases.

FIG. 3. Time evolution of them/n52/2 component ofdBr on r 50.25a
magnetic surface for~a! ^ba&50.33%, and~b! 0.66%.
 license or copyright; see http://pop.aip.org/pop/copyright.jsp
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Before turning to the saturation mechanism, we sh
draw our attention to the oscillatory behavior of^ba&
50.66%. Frequencies ofm/n52/2 harmonic for two case
are analyzed and the results are shown in Fig. 4. In b
cases one peak is seen aroundv50.36vA , which indicates
that the TAE mode which is investigated with the line
simulation grows in both cases. In addition to it, a new mo
is excited atv50.22vA for ^ba&50.66%. This frequency
suggests that the new mode is anothern52 TAE mode
whose dominant poloidal harmonics arem53 and m54,
since the frequency is close to, and lower by 0.06vA than the
gap center ofm/n53/2 and m/n54/2 shear Alfve´n con-
tinuum spectra atq57/4. Poloidal harmonics of the new
mode are obtained by subtracting those of the linear gro
phase~at t5198vA

21! from those of the nonlinear phase~at
t5890vA

21!. The residual poloidal harmonics of the electr
static potential are shown in Fig. 5. It is consistent with t
theory of the TAE mode that the dominant harmonics

FIG. 4. Frequency spectrum ofdBr on r 50.25a magnetic surface for~a!
^ba&50.33%, and~b! 0.66%. The peak of the secondn52 TAE mode
appears atv50.22vA in ~b!.
Downloaded 12 Jun 2009 to 133.75.139.172. Redistribution subject to AIP
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m53 and m54, which peak around theq57/4 surface.
Thus, we can conclude that the new mode is the seconn
52 TAE mode whose major poloidal harmonics arem53
and m54. The oscillation of the amplitude in Fig. 3 is th
beat between these two TAE modes. Hereafter, we refe
the m/n52,3/2 TAE mode and them/n53,4/2 TAE mode
as the ‘‘first TAE mode’’ and the ‘‘second TAE mode,’
respectively.

We compare the electrostatic potential of a nonline
phase with that of a linear phase. Figure 6 shows contour
the electrostatic potential on a poloidal plane of the line
phase ~at t5198vA

21! and of nonlinear phases~at t
5865vA

21 and at t5890vA
21!. Compared with the linear

phase, it can be seen that the second TAE mode broaden
distribution of the electrostatic potential outwards in the m
nor radius. Att5865vA

21 the two TAE modes are in phase
while they are out of phase att5890vA

21. It is interesting to
note that such coexistence of multiple TAE modes with
same toroidal mode number will be more likely for hig
toroidal mode numbers, since TAE modes locate spati
close to each other.

Let us turn our attention to the time evolution. Figure
shows time evolutions of the ratio of energy-transfer ra
^2 ja–E& to the doubled energy ofn52 MHD modes for the
two cases. For̂ba&50.33%, we can see that decrease in
energy transfer leads to saturation. This is consistent with
picture of the saturation due to the wave–particle trappi
On the other hand, for̂ba&50.66% in Fig. 7~b!, the behav-
ior of the ratio is somewhat complicated as well as that of
amplitude in Fig. 3. It once approaches zero att5400vA

21

and rises again with an oscillation. We can explain this
havior as follows. Twon52 TAE modes are both linearly
unstable, and the first TAE mode saturates att5400vA

21. It
is reflected in the plateau in amplitude and the first decre
in the energy transfer. The second TAE mode continues
grow after the saturation of the first TAE mode. Coexisten
of two TAE modes gives rise to the oscillations in the a
plitude and the ratio, and growth of the second TAE mo

FIG. 5. Radial profiles of the dominant poloidal harmonics of the elect
static potential for the secondn52 TAE mode.
 license or copyright; see http://pop.aip.org/pop/copyright.jsp
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1326 Phys. Plasmas, Vol. 5, No. 5, May 1998 Y. Todo and T. Sato
increases the total amplitude. The rise in the ratio aftet
5600vA

21 is caused by the increase in the relative amplitu
of the second TAE mode. Finally, saturation of the seco
TAE mode leads to the entire saturation. It is similar to t

FIG. 6. Contours of the electrostatic potential on a poloidal plane
^ba&50.66% at~a! t5198vA

21, ~b! t5865vA
21, and~c! t5890vA

21. Solid
lines are for positive values and dashed lines are for negative values.
tour levels are normalized by temporal minimum and maximum values. T
TAE modes are in phase in~b!, while they are out of phase in~c!.
Downloaded 12 Jun 2009 to 133.75.139.172. Redistribution subject to AIP
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^ba&50.33% case that the decrease in the energy tran
leads to saturation, and it is also consistent with the pict
of saturation due to wave–particle trapping. We cannot
for certain whether the resonance overlap has not happe
between the twon52 TAE modes, since we cannot invest
gate independent behaviors of two TAE modes.

TAE modes induced alpha-particle losses in the non
ear simulations. The number ratio of lost particles to to
alpha particles for̂ ba&50.33% and 0.66% are 1.431025

and 1.231022, respectively. They differ from each other b
three orders of magnitude. The saturation levels are 231024

and 231023, respectively~see Fig. 2!, and they differ by
only one order of magnitude. It is consistent with the resu
of Ref. 2 that dB;1023 is the threshold for significan
alpha-particle losses.

The distribution of TAE-induced lost-particles for^ba&
50.66% in the initial minor radius and pitch angle is show
in Fig. 8. Lost particles can be classified into three types;~1!
passing particles with negative parallel velocities~counter-
passing particles! which cross the passing-trapped bounda

r

n-
o

FIG. 7. Time evolution of the ratio of energy-transfer rate^2 ja•E& to
doubled energy ofn52 MHD modes:~a! for ^ba&50.33% and~b! for
^ba&50.66%. Decrease in the energy transfer leads to saturation of T
instability in both cases.
 license or copyright; see http://pop.aip.org/pop/copyright.jsp
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just before encountering the wall,~2! trapped particles,~3!
passing particles other than the first type. Percentages to
total number of lost particles are 63%, 26%, and 11%,
spectively. It is clear that counterpassing particles are
major part of lost particles and the main loss mechanism
crossing the passing-trapped boundary in the phase spa
is consistent with the results of test particle simulation
Ref. 2. It must be noted, however, that the trapped parti
near this boundary are also lost in addition to the coun
passing particles. This is a reasonable result since we h
found in the linear simulation that trapped particles also re
nate with the TAE mode.

V. SUMMARY

We have developed new linear and nonlinear partic
MHD simulation codes and demonstrated that they are us
tools for studying linear and nonlinear TAE dynamics su
as the mode structure, resonance condition, and al
particle losses. The resonance condition of alpha parti
with the TAE mode is studied with a linear simulation. Th
resonance conditionv02nvw2 lvu50 ~l : integer! is satis-
fied for strongly resonant particles. Weakly resonant p
ticles fill gaps between strongly resonant particles in
vw – l plane. Not only passing particles but also trapped p
ticles resonate with the TAE mode.

Two nonlinear simulations are carried out for^ba& of
0.33% and 0.66%. Ann52 TAE mode whose dominan
poloidal harmonics arem52 andm53 ~the first TAE mode!
is destabilized in both cases. For^ba&50.66%, anothern
52 TAE mode whose dominant poloidal harmonics arem
53 and m54 is destabilized in addition to the first TAE
mode. Such coexistence of multiple TAE modes with t
same toroidal mode number will be more likely for high
toroidal mode numbers, since each TAE mode is loca
spatially closer to one another.

FIG. 8. Initial distribution of lost alpha particles in the (r ,m/e) plane, where
m ande are magnetic moment and energy. Triangles denote counterpa
particles which finally become trapped particles. Interaction with the T
modes changes them into trapped particles whose orbits connect wit
wall. Circles and squares denote trapped particles and the other pa
particles, respectively.
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Alpha particles are lost by TAE modes in the nonline
simulation. Distribution of the lost particles in the initia
phase space is analyzed. Counterpassing particles are th
jor part of lost particles. Interaction with the TAE mode
changes them into trapped particles whose orbits con
with the wall. In addition to the counterpassing particle
trapped particles are also lost. This is reasonable since
have found in the linear simulation that trapped particles a
resonate with the TAE mode.

Resonance overlap is predicted to take place when m
tiple TAE modes are destabilized.9 In such cases, the wave
particle trapping will be prevented by the other TAE mod
from working as a dominant saturation mechanism. T
strongly indicates to us that the saturation level and sat
tion mechanism should be studied with nonlinear MH
equations. The nonlinear particle–MHD simulation code p
sented in this paper is a useful tool for future studies of
nonlinear evolution of multiplen TAE modes.
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