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Linear and nonlinear particle-magnetohydrodynamic simulations
of the toroidal Alfve "n eigenmode
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Linear and nonlinear particle-magnetohydrodynaréHD) simulation codes are developed to

study interactions between energetic ions and MHD modes. Energetic alpha particles with the
slowing-down distribution are considered and the behavione® toroidal Alfven eigenmodes

(TAE modes is investigated with the parameters pertinent to the present large tokamaks. The linear
simulation reveals the resonance condition between alpha particles and TAE mode. In the nonlinear
simulation, twon=2 TAE modes are destabilized and alpha particle losses induced thereby are
observed. Counterpassing particles are lost when they cross the passing-trapped boundary. They are
the major part of lost particles, but trapped particles are also lost appreciabl§99® American

Institute of Physicg.S1070-664X98)02405-1

I. INTRODUCTION component, while the background plasma is described by the
i . . full MHD equations which are solved by a finite difference
Successful confinement of energetic alpha particles is " . oo ;
. . . : method. In addition to the nonlinear code, its linear version
required for self-sustained operation of fusion reactors. The : .

. . " ; is also developed. In this paper, we describe the results of
alpha particles born from deuterium—tritiuf@—T) reactions . . . : .

- : Affvei linear and nonlinear particle—MHD simulations and demon-

are supposed to destabilize the toroidal eigenmode strate that the two codes are useful tools to study the alpha
(TAE mode.! Nonlinear behaviors of the TAE mode and y P

) . o . TAE dynamics.
alpha particles are one of the major uncertainties for fusion . . .
Compared with previous works where magnetic mo-

reactor physics. The mechanism of alpha-particle losses Inrﬁents of alpha particles are set to be zero, the present work

duced by a single TAE mode was investigated by a Mont%as an advantage that a more realistic alpha-particle distribu-

Carlo simulation in Ref. 2. They found that crossing the,. . o ) o
. . . tion can be considered. A realistic alpha-particle distribution
passing-trapped boundary is a dominant process of the alpha- oo .
I5 really indispensable to the study of alpha-particle losses.

particle loss induced by a single mode. They also found tha The plasma model and the computational method are

the fraction of lost particles depends on the amplitude of the : . : . )
TAE mode. Thus, nonlinear evolutions of the TAE mode anoldescrlbed in Sec. Il. Section lll is devoted to results of linear

: o : article—MHD simulation. The structure of the most unstable
alpha particles must be known for designing a fusion reacto o . : )
X : . TAE mode and the resonance condition are investigated with
Recently, theoretical and computational studii@shave

. . the linear simulation. The resonance condition is important
shown that wave trapping of resonant particles works as : : . . .
. . . . 0 understanding alpha-particle losses in the nonlinear simu-
saturation mechanism of a single TAE mode. It is, however

not clear that the wave—particle trapping works as the domiI_atlon. The results of nonlinear particle—MHD simulation are

nant safuration mechanism when a large number of TAéiescrlbed in Sec. IV. Two cases where the initial alpha-

modes are destabilized. For larger tokamaks such as the Iﬁ)?rt'de pressure is changed are mvestlgat_ed. For t.he high-
; : alpha-pressure case, another2 TAE mode is destabilized
ternational Thermonuclear Experimental ReacttTER)

highn TAE modes are predicted to be most dangefdus. and alpha-particle losses induced by TAE modes are exam-

With a relevantg profile a large number of TAE modes can ined. A summary is given in Sec. V.

be destabilized simultaneously. In such cases resonance

overlap is predicted to take placand wave—particle trap- ||. SIMULATION MODEL AND COMPUTATIONAL
ping will be prevented by the other TAE modes. Therefore METHOD

we suppose that magnetohydrodynaridHD) nonlineari-

ties such as proposed in Refs. 10 and 11, survive as potential " the model employed here, plasma is divided into two
candidates for saturation mechanism. parts, the background plasma and alpha particles. The back-

This gives us a sufficient motivation to develop a Simu_ground plasma is described by the ideal MHD equations and

lation code with nonlinear MHD equations. We employ athe electromagnetic field is given by the MHD description.
kinetic—MHD hybrid modéiSwhere plasma is divided into This approximation is reasonable under the condition that the

two parts, i.e., alpha particles and background plasma. Th@lPha density is much less than the background plasma den-
particle simulation method is used for the alpha-particleS'y- The ideal MHD equations are
ap

—=—=V-(pv), 1
3E|ectronic mail: todo@nifs.ac.jp ot (pV) @
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J 1 tion (13) can be rewritten into the following form paying
ot Vv Vv=—Vp+ o (VxB)xB, (2)  attention to the fact that Q,E cancels out with the Lorentz
force due toExB current of alpha particles:

P =

B

S J 1

=~ VXE, ) p—v+pv-Vv=<—VxB—j; XB-Vp, (16)
at Mo

p

=V (V)= (y=1)pV-v, 4) j,;zf (Vi +vg) fd% + VXM

E=-vxB, 5)

aH+ (Pa”be P,V In Bxb)
whereug is the vacuum magnetic permeabilityjs the adia-
batic constant, and all other quantities are conventional.
The drift-kinetic description is employed for the alpha -V (
particles. The guiding-center velocityis given by

PaL
B

17

It is interesting to note that if the alpha-particle distribution
U=Vj +Vg+Vg, (6) s isotropic in the velocity spacé.e., P, =P, =P,), Eq.
(16) has an exact simple form, i.e.,

v =3 [B+p BV xb], @) ; )
p —=V+pv.-Vv=— (VXB)XxB-VP_,—Vp. (18
dt Mo
VEZE [Exb], (8)  Alpha-particle distribution, however, is not isotropic in gen-
B eral. Therefore, we should use Ed6) instead of Eq(18).
We use thesf method®!*for the alpha particles. Time
Vo= 5 [~ nVBxb], (9)  evolution of the weight of théth particle is described B/
Qo
d do, d
m U” & (1 W) (VE+U‘|5b) -V+ dt | fo,
PI=— & (10
q.B (19
b= B/B, (11) dl)” M
do,
E-uVB 12
m U” dt V|| [qa ILL ] ( ) 5b:b_bo, (21)

wherev, is the velocity parallel to the magnetic field apd wheref is the initial distribution which is a function of the
is the magnetic moment, which is the adiabatic invariant. magnetic surface and energy. Using this weight, the alpha-
To complete the equation system in a self-containedparticle curreni,, in Eq. (17) is evaluated through
way, we take account of the effects of the alpha particles on
the background plasma in the MHD momentum equation. Pqu:PDzHOJ'_E wjmavij(x—Xj), (22
We can now give a more transparent derivation of the model !
than in Refs. 5 and 12. The background plasma is affected by
the electromagnetic field through its charge and current den- P, =P, ot BE Wi uS(X=X;), (23
sities which can be calculated from those of the total plasma
and the alpha particles. Thus, the momentum equation for th@here S(x— X ;) is the shape factor of each super particle.
background plasma is The |n|t|al condition is a MHD equilibrium where the
total plasma beta is 4% at the magnetic axis and its volume
1 — VxB-j,|xB-Vp, average is 0.88%. The initial alpha-particle distribution is the
Mo slowing-down distribution which is isotropic in the velocity
space with the maximum energy of 3.5 MeV. Particles are
distributed from 0.1 to 3.5 MeV. The background plasma is
ja:J ufd3v +V xM, (14 supposed to be a D—T plasma with the number density of
10°° m~3. The magnetic field strength at the magnetic axis,

J V+pv-Vv=(Q—-Q )E+|—

P ot

(13

the minor radius, and the aspect ratio are 5 T, 0.9 m, and 3,
M= — f ubfd3, (15  respectively. With these parameters, the velocity of an alpha
particle whose energy is 1 MeV is equal to the Alfvee-
where Q and Q, are the total charge density and alpha-locity. The cylindrical coordinate systenR{¢p,z) is used in
particle charge density, arjg is the alpha-particle current simulations. The simulation region isaZR<4a, —a<z
density. The total charge densifyis negligible inthe MHD  =<a wherea is the minor radius. The magnetic axis locates at
approximation where the quasineutrality is satisfied. EquaR=R;=3.2(, z=0.
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2 3107 . . . . . .
S The linear simulation technique has an advantage against
g 21073 the nonlinearsf technique that it is less demanding in CPU
= 3 time and memory, since the phase space which must be filled
5 110 with super particles is reduced from five dimension to four
o LA Wyye T T ol 5 dimension. The number of particles used is>21&° in the
010 ! linear simulation, which is much less than #.00° in the
1103 b oot ] 1 nonl?near s!mulatipn. We carrieq out test runs ofllinear and
010° 210" 4107 6107 810" 110° nonlinear 5|mylat|ons, and co.nflr.med that they give consis-
v/a tent results with each other, in linear growth rate, real fre-

quency, and mode structure. The grid humbers used for the

FIG. 1. Radial profiles of the dominant poloidal harmonics of the electro-poloidal plane R,z) are(65,65. The initial volume-average

static potential for the most unstalre=2 TAE mode. beta of alpha particles($,)) is 0.44% for the linear simu-
lation.

The linear simulation gives the most unstable mode for
meach toroidal mode number. For thee2 mode, we find that
the n=2 TAE mode which consists mainly ah=2 and
m=3 harmonics has the largest growth rate. Figure 1 shows
the radial profiles of the dominant poloidal harmonics for the
n=2 TAE mode. The real frequenay, is 0.36w, whose
absolute value is lower by 0.@4, than the gap center at
=5/4. Since we restrich to be positive,wy can take both
positive and negative signs within the framework of MHD.
Energetic alpha particles break the symmetry of MHD theory
ll. LINEAR SIMULATION and destabilize a TAE mode which rotates in the same po-
loidal direction as the diamagnetic drift of alpha particles.

We also investigate the resonance condition of alpha
particles with the TAE mode. When a resonant particle
passes one round in the poloidal angle, the phase of the TAE
mode at the location of the particle should change by a mul-
tiple of 2. Thus, we expect that the resonance condition is
given by

For analysis of simulation data, a flux coordinate syste
(r,¢,0) is constructed. In this coordinate system, the equi
librium magnetic field By, ,Bo,,Bgp) is parallel to (0,1,
—1/q), whereq is the safety factor. Thg profile is shown
in Fig. 1 with the poloidal harmonics of the most unstable
n=2 TAE mode, which is discussed in Sec. lll.

We have proposed a linear simulation techniguehere
Egs. (1)—(5) and (19) are linearized. Particles are followed
along their equilibrium orbits. An essential difference of this
method from the nonlineaff method is that the superpar-
ticles are employed to sample elements of the four
dimensional phase spac®,g,v,,u) instead of the five-
dimensional phase spacR,,z,v,,u). Dependence of the
distribution function on thep direction is evaluated through woTy—NA@=2l1, (28
a particle weight which is a function af. Equation(19) is

. whereT,, A, andl are the time for each particle to pass
transformed into

one round in the poloidal angle, the toroidal angle which the
particle passes iy, and an arbitrary integer, respectively.

D J . .
°n W;( @)+ Ug, @ w;(¢) We divide Eq.(28) by T, and obtain
wo—Nw,—lw,=0, (29
dUH 0
= 7 (VE+U||5b)'Vf0+ . _fo y (24) or
fo dt 1 (9UH
|=(wo—Nw,) w,, (30
D 4 d d [(du)\ 4 wherew,=27/T,andw,=Ae/T,.
Dt gt TYor 5g Yoz oo T g v (29 We measurev, and w,, of all particles, and calculate

of each particle from Eq30). Alpha particles are put in the
where the subscript “0” of the velocities and the accelera-order of energy transfer to the TAE mode in order to classify

tion denotes that they are evaluated along the equilibriunthem into strongly resonant particles, weakly resonant par-
orbits. We express the weight function and the electromagticles, and nonresonant particles. First we pick up the top

netic field with a toroidal Fourier mode such as 2000 partiCIeS as Strongly resonant partiCleS which cover
67% of the total energy transfer. The valued @ire plotted
Wj((P):WjTeimP_ (26) in Fig. 2(@). It can be seen that strongly resonant particles
have values of actually close to integers. Thus, we can
Equation(24) is rewritten as conclude that the resonance condition is &§) or Eq.(30).
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FIG. 3. Time evolution of then/n=2/2 component ofsB, on r=0.25
8 —m 71—V T magnetic surface fofa) (3,)=0.33%, andb) 0.66%.
(b) 6 ]
6 &0 7
i &B ] lI=—m (V,>0), (33)
— O O -
4T &mﬂ:w ] l=m (V,<0). (34)
- 2L N The dominant poloidal harmonics of the destabilized 2
i ) TAE mode arem=2 andm=3. Aroundg=5/4, V,, of m
ok ] =2 andm=3 harmonics is positive and negative, respec-
r ] tively, sincewq is positive. Thus, far-passing particles with
> [ ooy ] positive parallel velocities resonate with the=2 harmonic
) . with | = —2, while far particles with negative parallel veloci-
L | | | | | ] ties resonate with thex=3 harmonic withl = 3.
g Lo e ey

We should notice that not only passing particles but also
-3 2 A 0 1 2 trapped patrticles are resonating with the TAE mode. This is
w an important point for the particle losses discussed in Sec.
4 IV. The energy transfer from trapped particles accounts for
FIG. 2. Resonance condition of alpha particles to the most unstable ~ 37% of the total energy transfer. We also show lthalues
TAE mode for the(@) top 2000 particles, anb) top 8000 particles. Circles  of the top 8000 particles which cover 90% of the total energy
denote passing particles and squares denote trapped particles. transfer in Fig. Pb). We can see that weakly resonant
trapped particles fill the gaps among strongly resonant
trapped patrticles in Fig.(3).
In Fig. 2(a) we can see that the dominant resonances are
|=3 for w,<0 andl=—2 for v ,>0 for passing particles.
We can explain it as follows for a passing particle whosely, NONLINEAR SIMULATION
magnetic moment is much smaller than the energy divided
by the magnetic field Streng'mnereafter, we refer to such a Nonlinear simulations have been carried out for two ini-
particle as a “far-passing particl¢!’ First, the local parallel tial alpha pressureg,,)=0.33% and 0.66%. For MHD

phase velocity of then harmonic of the TAE mode, denoted equations, we use a finite difference method of fourth-order
asV,,, approximately satisfies accuracy in space and time. The grid numbers used are

(65,16,65 for (R,¢,z) coordinates, respectively, and 4
@0=VmKim, (3D X 10° particles are used. The simulation domain in the tor-
wherek;,=(n—m/q)/Ry. For far-passing particles resonant oidal direction is 6< ¢< since we focus on the=2 TAE
with the m harmonic of the TAE modew, and w, can modes. The TAE mode which is found in the linear simula-
approximateV,,/R, and |V,,/(—qRy)|, respectively. We tion is employed as the initial perturbation. Time evolutions
substitute Eq{(31) and these approximations into E@Q9)  of amplitude of them/n=2/2 harmonic oféB, atr=0.25%
and obtain magnetic surface are shown in Fig. 3. K@) =0.66%, the
amplitude once reaches a plateau roughly betwéen
Vin(N=m/&)/Ro—=nVin/Ro=1|Vin/ (= qRy)|=0. (32 =400w,* andt=600w, *, and rises again accompanied by
Finally, we reach the following resonance condition for far-an oscillation. The instability saturates in 1&({01 for both
passing particles: cases.

w
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FIG. 5. Radial profiles of the dominant poloidal harmonics of the electro-
static potential for the secomt=2 TAE mode.

10_2 T T T ™ 3
(b) ] m=3 and m=4, which peak around thg=7/4 surface.
107 : 3 Thus, we can conclude that the new mode is the second
5 ] =2 TAE mode whose major poloidal harmonics ane= 3
< 10 E and m=4. The oscillation of the amplitude in Fig. 3 is the
> ] beat between these two TAE modes. Hereafter, we refer to
g 10° . the m/n=2,3/2 TAE mode and then/n=23,4/2 TAE mode
p= ; | ‘ as the “first TAE mode” and the “second TAE mode,”
& 105 MM ) respectively.
S E We compare the electrostatic potential of a nonlinear
107 ] phase with that of a linear phase. Figure 6 shows contours of
the electrostatic potential on a poloidal plane of the linear
108 | | | phase (at t=198»,') and of nonlinear phasegat t

=865w, " and att=890w,*). Compared with the linear
phase, it can be seen that the second TAE mode broadens the
w/e A distribution of the electrostatic potential outwards in the mi-
G 4 F rum OB 095 e surface nor radius. Att=865w,* the two TAE modes are in phase,
< Ba>.:b.3:3%2l:le::c)i/(§)pg(.:6r6%;:. e c;)ne;k e e ;“Tigemcgg)e while they are out of phase &t-890w, *. It is interesting to
appears aty=0.22w, in (b). note that such coexistence of multiple TAE modes with the
same toroidal mode number will be more likely for high
toroidal mode numbers, since TAE modes locate spatially
Before turning to the saturation mechanism, we shalklose to each other.
draw our attention to the oscillatory behavior ¢f,) Let us turn our attention to the time evolution. Figure 7
=0.66%. Frequencies aof/n=2/2 harmonic for two cases shows time evolutions of the ratio of energy-transfer rate
are analyzed and the results are shown in Fig. 4. In botk—j,-E) to the doubled energy af=2 MHD modes for the
cases one peak is seen around 0.36w, , Which indicates  two cases. Fofg3,)=0.33%, we can see that decrease in the
that the TAE mode which is investigated with the linear energy transfer leads to saturation. This is consistent with the
simulation grows in both cases. In addition to it, a new modepicture of the saturation due to the wave—particle trapping.
is excited atw=0.22w, for (B,)=0.66%. This frequency On the other hand, faf8,)=0.66% in Fig. Tb), the behav-
suggests that the new mode is anotimer2 TAE mode ior of the ratio is somewhat complicated as well as that of the
whose dominant poloidal harmonics am=3 andm=4, amplitude in Fig. 3. It once approaches zerctfslt400m,§l
since the frequency is close to, and lower by @@@han the and rises again with an oscillation. We can explain this be-
gap center ofm/n=3/2 andm/n=4/2 shear Alfve con-  havior as follows. Twon=2 TAE modes are both linearly
tinuum spectra afj=7/4. Poloidal harmonics of the new unstable, and the first TAE mode saturates=a#00w, . It
mode are obtained by subtracting those of the linear growtls reflected in the plateau in amplitude and the first decrease
phase(at t= 198w,§1) from those of the nonlinear phagat  in the energy transfer. The second TAE mode continues to
t=890w, 1). The residual poloidal harmonics of the electro- grow after the saturation of the first TAE mode. Coexistence
static potential are shown in Fig. 5. It is consistent with theof two TAE modes gives rise to the oscillations in the am-
theory of the TAE mode that the dominant harmonics areplitude and the ratio, and growth of the second TAE mode
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FIG. 7. Time evolution of the ratio of energy-transfer rgtej,-E) to
doubled energy oh=2 MHD modes:(a) for (B,)=0.33% and(b) for

(B.)=0.66%. Decrease in the energy transfer leads to saturation of TAE
instability in both cases.

(B,)=0.33% case that the decrease in the energy transfer
leads to saturation, and it is also consistent with the picture
of saturation due to wave—particle trapping. We cannot say
for certain whether the resonance overlap has not happened
between the twem=2 TAE modes, since we cannot investi-
gate independent behaviors of two TAE modes.

TAE modes induced alpha-particle losses in the nonlin-
ear simulations. The number ratio of lost particles to total
alpha particles foK8,)=0.33% and 0.66% are 1410 °
FIG. 6. Contours of the electrostatic potential on a poloidal plane forand 1.10°2, respe(_:tlvely. They dlffer_ from each othez by
(B.)=0.66% at(a) t=1980,, (b) t=8650, ", and(c) t=890w, L. Solid  three orders of magnitude. The saturation levels at&@"
lines are for positive values and dashed lines are for negative values. Co@nd 2x 102, respectively(see Fig. 2 and they differ by
tour levels are no_rmalized by temporal minimum and maximum values. TWOOnly one order of magnitude. It is consistent with the results
TAE modes are in phase i), while they are out of phase ie). of Ref. 2 that 6B~1072 is the threshold for significant

alpha-particle losses.

The distribution of TAE-induced lost-particles f¢g,,)
increases the total amplitude. The rise in the ratio after =0.66% in the initial minor radius and pitch angle is shown
= 600:»;1 is caused by the increase in the relative amplituden Fig. 8. Lost particles can be classified into three tyggs;
of the second TAE mode. Finally, saturation of the secongassing particles with negative parallel velocitiesunter-
TAE mode leads to the entire saturation. It is similar to thepassing particloswhich cross the passing-trapped boundary

-a
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14— 71T T T ] Alpha particles are lost by TAE modes in the nonlinear
L ] simulation. Distribution of the lost particles in the initial
1.2 7 phase space is analyzed. Counterpassing particles are the ma-
L ] jor part of lost particles. Interaction with the TAE modes
'r I changes them into trapped particles whose orbits connect
0.8 _ _ with the wall. In addition to the counterpassing particles,
g Tt 1 trapped particles are also lost. This is reasonable since we
0.6 b h have found in the linear simulation that trapped particles also
C ] resonate with the TAE mode.
0.4 F ] Resonance overlap is predicted to take place when mul-
i i tiple TAE modes are destabiliz€dn such cases, the wave—
0.2 — . particle trapping will be prevented by the other TAE modes
- from working as a dominant saturation mechanism. This
0t b L strongly indicates to us that the saturation level and satura-
0 0.2 04 0.6 0.8 1 tion mechanism should be studied with nonlinear MHD

r/a equations. The nonlinear particle—MHD simulation code pre-

FIG. 8. Initial distribution of lost alpha particles in the, ./ €) plane, where Sent.ed in this paperis a User| tool for future studies of the
w and e are magnetic moment and energy. Triangles denote counterpassingonlinear evolution of multiplen TAE modes.
particles which finally become trapped particles. Interaction with the TAE
modes changes them into trapped particles whose orbits connect with the
wall. Circles and squares denote trapped particles and the other paSSi'NCKNOWLEDGMENTS
particles, respectively.
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