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Reduced single-fluid and two-fluid equations for axisymmetric toroidal equilibria of high-beta plasmas with
flow are derived by using asymptotic expansions in terms of the inverse aspect ratio. Two different orderings
for the flow velocity, comparable to the poloidal Alfvén velocity and comparable to the poloidal sound velocity,
are considered. For a poloidal-Alfvénic flow, the two-fluid equilibrium equations with hot ion effects are shown
to have a singularity that is shifted by the gyroviscous cancellation from the Alfvén singularity found in single-
fluid magnetohydrodynamics (MHD) when the poloidal flow velocity equals the poloidal Alfvén velocity. For
a poloidal-sonic flow, a reduced single-fluid model is used to derive a set of equilibrium equations that includes
higher-order terms. The singularity at a poloidal flow velocity equal to the poloidal sound velocity is recovered
in the higher order equations.
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1. Introduction
In improved confinement modes of magnetically con-

fined plasmas where high-β is achieved, equilibrium flows
play important roles like the suppression of instability and
turbulent transport. At the sharp boundary of a well-
confined region, the scale lengths characteristic of micro-
scopic effects not included in single-fluid magnetohydro-
dynamics (MHD) cannot be neglected. Small scale effects
on flowing equilibria due to the Hall current have been
studied with two-fluid or Hall MHD models [1–4]. How-
ever, these models are consistent with kinetic theory only
for cold ions. In order to include the hot ion effects that
are relevant to fusion plasmas, an extension of the model is
necessary. A consistent treatment of hot ions in a two-fluid
framework must include the ion gyroviscosity and other fi-
nite Larmor radius (FLR) effects. In the fluid formalism
of collisionless magnetized plasmas, these effects are in-
corporated by means of asymptotic expansions in terms of
the small parameter δ ∼ ρi/a, where ρi is the ion Larmor
radius and a is the macroscopic scale length. With a slow
dynamics ordering, v ∼ δvth where v and vth are the flow and
thermal velocities respectively, the ion FLR terms [5,6] are
much simplified in the reduced models for large-aspect-
ratio, high-β tokamaks [7, 8] after relating δ to the inverse
aspect ratio expansion parameter ε ≡ a/R0 $ 1, where a
and R0 are the characteristic scale lengths of the minor and
major radii respectively.[9, 10].

In this paper, we derive reduced sets of equations for
axisymmetric equilibria with flow. We shall study flow
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velocities in the orders of the poloidal Alfvén and the
poloidal sound velocities. These are the characteristic ve-
locities that bring singularities in the equilibrium equa-
tions. The poloidal-Alfvénic flow is of interest because
the equations for axisymmetric equilibria in single-fluid
MHD have a singularity when the poloidal flow velocity is
equal to the poloidal Alfvén velocity, the so-called Alfvén
singularity [3, 11]. This can be described by the reduced
model with the relation δ2 ∼ ε [9, 10]. The poloidal-sonic
flow is of interest because the equilibria show a disconti-
nuity at the point where the poloidal flow velocity crosses
the poloidal sound velocity [12, 13]. This can be described
by the reduced model with the relation δ ∼ ε. While the
poloidal-Alfvénic flow analysis follows the standard order-
ings of reduced MHD for high-β tokamaks, the poloidal-
sonic flow analysis does not and higher-order terms must
be taken into account. Since the formulation of higher-
order equations is involved, here we restrict our analysis of
the poloidal-sonic flow to the single-fluid case, planning to
extend our present results with the inclusion of two-fluid,
hot ion effects in future work. The orderings in this paper
provide the simplest models that include ion FLR effects
on toroidal equilibria with flow. As such, they should be
just considered as convenient working hypotheses that al-
low our analytic study of such effects.

This paper is organized as follows. In Sec. 2, we in-
troduce the basic steady state equations for two-fluid MHD
with hot ion effects, and the orderings for the reduced mod-
els. In Sec. 3, we derive the equations for equilibria with
flow velocity comparable to the poloidal Alfvén velocity
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in a model with two-fluid and hot ion effects, and discuss
the modification of the Alfvén singularity by these effects.
In Sec. 4, we derive the asymptotic equations for equilibria
with flow velocity comparable to the poloidal sound veloc-
ity in a single fluid model, to be extended to a two-fluid
model with ion FLR in future work. A summary is given
in Sec. 5.

2. Basic Equations
The equations for two-fluid collisionless equilibria to

be considered in this work are

∇ · (nu) = 0, (1)

∇ × E = 0, (2)

minu · ∇u = j × B − ∇ (pi + pe) − λi∇ · Πgv
i , (3)

E + u × B =
λe

ne
( j × B − ∇pe) , (4)

µ0 j = ∇ × B, (5)

u · ∇pi + γpi∇ · u + λi

(
2
5
γ∇ · qi

)
= 0, (6)

(u − λe j/ne) · ∇pe + γpe∇ · (u − λe j/ne)

+ λe

(
2
5
γ∇ · qe

)
= 0, (7)

where mi is the ion mass, n is the density, u is the ion flow
velocity, E and B are the electric and magnetic fields, j is
the current density, pi and pe are the ion and electron pres-
sures, Πgv

i is the ion gyroviscous tensor, qi and qe are the
ion and electron heat fluxes respectively, and γ = 5/3. The
diagonal components of the pressure tensors are assumed
to be isotropic. The electron mass me is neglected because
me $ mi. The electron gyroviscosity is also neglected
since ρe $ ρi. We have introduced the artificial indices λi

and λe that label the two-fluid, non-ideal terms in the ion
and electron equations respectively: (λi, λe) = (0, 0) for
single-fluid (ideal) MHD, (0, 1) for two-fluid MHD with
electron diamagnetic effects but zero ion Larmor radius
(Hall MHD) and (1, 1) for two-fluids with finite ion Larmor
radius. The divergence of the ion flow velocity is obtained
from the projection of Faraday’s law (2) along B and the
substitution of the generalized Ohm’s law (4),

B2(∇ · u) + u · ∇B2 − u · [B × (∇ × B)]

− B · ∇(u · B) − B ·
[
∇

(λe

ne

)
× ∇pe

]

− B2
[
j · ∇

(λe

ne

)]
+ B · j

[
B · ∇

(λe

ne

)]

+
λe

ne
∇ · [( j × B) × B] = 0. (8)

Here we shall consider the corresponding toroidal ax-
isymmetric equilibria, where, in cylindrical coordinates

(R, ϕ, Z), the magnetic field B and the current density j
can be written as

B = ∇ψ(R, Z) × ∇ϕ + I(R, Z)∇ϕ, (9)

µ0 j = ∇I × ∇ϕ − ∆∗ψ∇ϕ, (10)

where ψ is the poloidal magnetic flux and ∆∗ ≡ R2∇ ·
[R−2∇]. The projection of the momentum balance equa-
tion (3) along ∇ψ, B and Bp yields

µ0R2∇ψ · (minu · ∇u + λi∇ · Πgv
i ) + |∇ψ|2∆∗ψ

+ I∇ψ · ∇I + µ0R2∇ψ · ∇(pi + pe) = 0, (11)

B · (minu · ∇u + λi∇ · Πgv
i ) + {pi + pe, ψ} = 0, (12)

(∇ψ × ∇ϕ) · (minu · ∇u + λi∇ · Πgv
i )

+ {pi + pe, ψ} + (I/µ0R2){I, ψ} = 0, (13)

where {a, b} ≡ (∇a × ∇b) · ∇ϕ.
The asymptotic expansion is defined in terms of the

inverse aspect ratio ε ≡ a/R0 $ 1 where a and R0 are the
characteristic scale lengths of the minor and major radii
respectively. The following high-β tokamak orderings for
compressible reduced MHD are applied,

Bp ∼ εB0, (14)

pi ∼ pe ∼ ε
(
B2

0/µ0

)
, (15)

|∇| ∼ 1/a. (16)

The variables are expanded as

ψ = ψ1 + ψ2 + ψ3 + . . . ,

I = I0 + I1 + I2 + I3 + . . . ,

pi = pi1 + pi2 + pi3 + . . . ,

pe = pe1 + pe2 + pe3 + . . . ,

n = n0 + n1 + . . . ,

R = R0 + x,

where I0 ≡ B0R0. We assume the slow dynamics ordering,

v ∼ δvthi, (17)

minv2 ∼ ‖Πgv
i ‖ ∼ δ2 pi,e, (18)

qi ∼ vpi,e ∼ δvthi pi,e. (19)

The leading order of Eq. (11) yields

pi1 + pe1 +
B0

µ0R0
I1 = const. (20)
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3. Reduced Two-Fluid Equilibria with
Poloidal-Alfvénic Flow
Here, we consider the case of poloidal-Alfvénic flow

v ∼ VAp ≡ Bp/(µ0min)1/2,

minv2 ∼
∥∥∥Πgv

i

∥∥∥ ∼ εp ∼ ε2B2
0/µ0, (21)

and we assume

v ∼ j/ne ∼ ∇p/neB0. (22)

This requires second-order accuracy in the total energy.
However, while second-order accuracy is needed in the
sum of the pressures plus the magnetic energy, it follows
from Eqs. (11)-(13) that the pressures and the magnetic en-
ergy by themselves are required only in the first-order. The
ion gyroviscous force and heat fluxes are needed only their
leading orders [5,6] (see Appendix for the derivation of the
ion gyroviscous force),

∇ · Πgv
i * −

mi

eB0
(R0∇ϕ × ∇pi) · ∇u − ∇

(
χv + χq

)
,

(23)

qi * qi⊥ *
5
2

1
eB2 B ×

[
pi∇

( pi

n

)]
, (24)

qe * qe⊥ * −
5
2

1
eB2 B ×

[
pe∇

( pe

n

)]
, (25)

where qi⊥ and qe⊥ are the ion and electron diamag-
netic perpendicular heat fluxes respectively and their di-
vergences are

∇ · qi *
5
2

pi1R0

eB0
{n−1

0 , pi1}, (26)

∇ · qe * −
5
2

pe1R0

eB0
{n−1

0 , pe1}. (27)

From Faraday’s law (2), we obtain

E ≡ −∇Φ, (28)

and expand Φ as

Φ = Φ1 + . . .

The generalized Ohm’s law (4) is rewritten as

E+ u× B =
λe

ne

(
∇pi + minu · ∇u + λi∇ · Πgv

i

)
. (29)

The ion flow velocity u is defined from the leading order of
Eq. (29) as

u ≡ uE + λeudi + v‖R0∇ϕ, (30)

uE * −B−1
0 ∇Φ1 × (R0∇ϕ) , (31)

udi * −
1

eB0n0
∇pi1 × (R0∇ϕ) , (32)

and its divergence is

∇ · u * λe∇ · udi * −
λeR0

eB0
{n−1

0 , pi1}. (33)

The leading order of the equation for continuity (1) is

−(R0/B0){n0, Φ1} = 0, (34)

which yields

n0 = n0(Φ1). (35)

Substituting Eqs. (26), (33) and (35) to Eq. (6), we obtain
the leading order ion pressure equation

R0

B0


1 + (λe − λi)

n′0(Φ1)γpi1

en2
0


 {pi1, Φ1} = 0, (36)

which yields

pi1 = pi1(Φ1). (37)

From Eqs. (10) and (20), we get

µ0 j * −∇
[
µ0R0

B0
(pi1 + pe1)

]
× ∇ϕ − ∆∗ψ∇ϕ. (38)

Then, substituting Eqs. (27) and (38), the electron pressure
equation (7) gives

pe1 = pe1(Φ1), (39)

The leading order of the B-component of generalized
Ohm’s law (4) is

−{Φ1, ψ1} +
λe

n0e
{pe1, ψ1} = 0. (40)

Substituting Eq. (39) into Eq. (40), we obtain

−
[
1 − λe p′e(Φ1)

en0

]
{Φ1, ψ1} = 0, (41)

which yields

Φ1 = Φ1(ψ1). (42)

Thus, we get

n0 = n0(ψ1), (43)

pi1 = pi1(ψ1), (44)

pe1 = pe1(ψ1), (45)

I1 = I1(ψ1). (46)

The convective derivative is written as

u · ∇u

* 1
B2

0

(
Φ′1 +

λe p′i1
en0

)2 [
∇

( |∇ψ1|2
2

)
− ∆2ψ1∇ψ1

]

−
R2

0

B0

(
Φ′1 +

λe p′i1
en0

)
{v‖, ψ1}∇ϕ, (47)

where

∆2 ≡
(
∂2

∂R2 +
∂2

∂Z2

)
.
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The projections of the gyroviscous force (23) along ∇ψ, B
and ∇ψ × ∇ϕ are

∇ψ · (∇ · Πgv
i )

* −
mi p′i1
eB2

0

(
Φ′1 +

λe p′i1
en0

)

×
[
∇ψ1 · ∇

( |∇ψ1|2
2

)
− ∆2ψ1|∇ψ1|2

]

− ∇ψ1 · ∇(χv + χq), (48)

B · (∇ · Πgv
i ) * min0R0(p′i1/en0){v‖, ψ1}, (49)

(∇ψ × ∇ϕ) · (∇ · Πgv
i )

*

−

mi p′i1
eB2

0

(
Φ′1 +

λe p′i1
en0

) |∇ψ1|2
2
, ψ1




+ {χv + χq, ψ1}. (50)

The components of the sum of the convective derivative
and the gyroviscous force are

∇ψ · (minu · ∇u + λi∇ · Πgv
i )

* − min0

B2
0

[
Φ′1 + (λe − λi)

p′i1
en0

] (
Φ′1 +

λe p′i1
en0

)

×
[
|∇ψ1|2∆2ψ1 − ∇ψ1 · ∇

( |∇ψ1|2
2

)]

− λi∇ψ1 · ∇(χv + χq), (51)

B · (minu · ∇u + λi∇ · Πgv
i )

* − min0R0

[
Φ′1 + (λe − λi)

p′i1
en0

]
{v‖, ψ1}, (52)

(∇ψ × ∇ϕ) · (minu · ∇u + λi∇ · Πgv
i )

*



min0

B2
0

[
Φ′1 + (λe − λi)

p′i1
en0

] (
Φ′1 +

λe p′i1
en0

)

×|∇ψ1|2
2
− λi(χv + χq), ψ1

}
. (53)

In the first square brackets of Eqs. (51) - (53), the contri-
bution of ion diamagnetic drift disappears when (λi, λe) =
(1, 1). This is due to the finite Larmor effect on the con-
vective terms, known as the gyroviscous cancellation [14].
Substituting Eqs. (51) - (53) into Eqs. (11) - (13), we obtain
the first-order equations for momentum balance as

|∇ψ1|2 ∆2ψ1 + 2µ0R0x∇ψ1 · ∇(pi1 + pe1)

+ I1∇ψ1 · ∇I1 + µ0R2
0∇ψ1 · ∇

(
pi2 + pe2 +

B0

µ0R0
I2

)

−
µ0R2

0min0

B2
0

[
Φ′1 + (λe − λi)

p′i1
en0

] (
Φ′1 +

λe p′i1
en0

)

×
[
|∇ψ1|2∆2ψ1 − ∇ψ1 · ∇

( |∇ψ1|2
2

)]

− λiµ0R2
0∇ψ1 · ∇(χv + χq) = 0, (54)

−min0

[
Φ′1 + (λe − λi)

p′i1
en0

]
{v‖, ψ1} = 0, (55)

pi2 + pe2 +
B0

µ0R0
I2

+
min0

B2
0

[
Φ′1 +

(λe − λi)p′i1
en0

] (
Φ′1 +

λe p′i1
en0

) |∇ψ1|2
2

− λi(χv + χq) ≡ g∗(ψ1). (56)

Equation (55) yields

v‖ = v‖(ψ1). (57)

Substituting Eq. (56) to Eq. (54), we get the reduced Grad-
Shafranov (GS) equation in the presence of flow, two-fluid
and ion FLR effects,

[
1 − MAp

(
MAp − λi

Vdi

VAp

)]
∆2ψ1

− |∇ψ1|2
2

[
MAp

(
MAp − λi

Vdi

VAp

)]′

= −µ0R2
0

[
2x
R0

(pi1 + pe1)′ + g′∗

]
−




I2
1

2



′

, (58)

where

MAp ≡
VE + λeVdi

VAp
, (59)

is the poloidal Alfvén Mach number and

VE

VAp
≡ −√µ0min0

R0Φ
′
1

B0
, (60)

Vdi

VAp
≡ −√µ0min0

R0 p′i1
en0B0

. (61)

Equation (58) has a singularity where the first term of the
left-hand side vanishes,

1 − MAp

(
MAp − λi

Vdi

VAp

)
= 0, (62)

or

V2
Ap − (VE + λeVdi)[VE + (λe − λi)Vdi] = 0. (63)

For single fluid MHD, (λi, λe) = (0, 0), it is the Alfvén
singularity that occurs when the poloidal flow velocity is
equal to the poloidal Alfvén velocity,

M2
AP = 1. (64)

For two-fluid MHD without ion FLR, (λi, λe) = (0, 1), the
condition is the same as Eq. (64) even though the two-fluid
effects bring the ion diamagnetic drift into the definition of
the poloidal flow. For the two-fluid model with ion FLR,
(λi, λe) = (1, 1), the singularity is shifted from the poloidal
Alfvén velocity,

MAp =
1
2


Vdi

/
VAp ±

√
4 +

(
Vdi

/
VAp

)2

 . (65)
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From Eq. (63), this shift is understood as the effect of the
gyroviscous cancellation on flowing equilibria.

It is noted that the present model does not repro-
duce the resolution of the Alfvén singularity, Eq. (64), by
the Hall current as in non-reduced two-fluid models with
(λi, λe) = (0, 1) [3]. This difference arises because the con-
vective term in the ion momentum balance equation (29)
is neglected in the leading order. This convective term in-
volves the second order derivative of the ion stream func-
tion and leads to an equilibrium system of two coupled
generalized GS equations for the ion flow stream func-
tion and ψ, which does not have the Alfvén singularity
[1, 3, 4, 15]. In order to describe the singular perturbation
due to the Hall current in reduced models, the local region
in the vicinity of the Alfvén singularity should be sepa-
rately analysed by relaxing the ordering Bp ∼ εB0 and con-
nected to the bulk region described by Eq. (58). Equation
(65) specifies the region where the singular perturbation
analysis is necessary in the FLR two-fluid model.

4. Reduced Single-Fluid Equilibria
with Poloidal-Sonic Flow
This section will deal with single-fluid equilibria,

(λi, λe) = (0,0), with the flow velocity in the order of the
poloidal sound speed v ∼ Csp ≡ (Bp/B0)(γp/nmi)1/2,

minv2 ∼ ε2 p ∼ ε3
(
B2

0/µ0

)
.

This requires a third-order accuracy for the total energy
like the reduced MHD equations for finite aspect ratio
tokamaks [8]. However, like in the previous section, the
pressures and the magnetic energy by themselves are re-
quired only up to the second order. From Eqs. (6) and (7),
the total pressure p = pi + pe is given by the adiabatic
pressure equation,

u · ∇p + γp∇ · u = 0. (66)

The fast magnetosonic wave is eliminated from the re-
duced equations for equilibria, while the shear Alfvén and
the slow magnetosonic waves are retained, by assuming

∇ · u ∼ εv/a. (67)

From the requirements Eq. (67) and u ·∇p∼ ε2(B2
0/µ0)(v/a)

that is determined from Eq. (66) and satisfied by Eq. (8),
the flow velocity u can be written as [8]

u ≡ (1 + x/R0)∇U × (B/B) + v‖ (B/B)

≡ up + vϕR∇ϕ, (68)

up ≡
[
v‖
B
∇ψ +

(
1 +

x
R0

)
I
B
∇U

]
× ∇ϕ, (69)

vϕR ≡
Iv‖
B
−

(
1 +

x
R0

) ∇ψ · ∇U
B

. (70)

The convective derivative terms are written as

∇
(
v2

2

)

=
1
2
∇




(
1 +

x
R0

)2 
|∇U |2 −

(
B
B
· ∇U

)2 + v
2
‖


 , (71)

u × (∇ × u)

=

{
∇

[
I
B
v‖ −

(
1 +

x
R0

) ∇ψ · ∇U
B

]
× ∇ϕ

}

·
[
v‖
B
∇ψ +

(
1 +

x
R0

)
I
B
∇U

]
∇ϕ

+
1

R2

{
v‖
B
∆∗ψ +

(
1 +

x
R0

)
I
B
∆∗U

+∇
( v‖

B

)
· ∇ψ + ∇

[(
1 +

x
R0

)
I
B

]
· ∇U

}

×
[
v‖
B
∇ψ +

(
1 +

x
R0

)
I
B
∇U

]

+
1

2R2∇
[

I
B
v‖ −

(
1 +

x
R0

) ∇ψ · ∇U
B

]2

. (72)

The function U is expanded as

U = U1 + U2 + . . .

In the leading order, the flow velocity u is written in the
standard representation for incompressible flow

u = R0(∇U1 × ∇ϕ + v‖∇ϕ). (73)

The leading order of the ϕ-component of Ohm’s law (4)
yields

U1 = U1 (ψ1) , (74)

and its next order is

R0({U2, ψ1} + {U1, ψ2}) = 0, (75)

which yields

U2 − U ′1ψ2 ≡ U2∗ (ψ1) , (76)

where the prime denotes the derivative with respect to ψ1.
The lowest order of ∇ · u is obtained from the projection of
Faraday’s law (2) along B as

∇ · u *
{
v‖
B0
+ 2xU′1, ψ1

}
. (77)

The second term in the bracket of Eq. (77) represents the
compressibility of the perpendicular (E × B) flow u⊥ due
to toroidicity, that may give rise to the geodesic acoustic
mode (GAM) [16],

∇ · u⊥ = B−4(E × B) · ∇B2. (78)

The leading order of the pressure equation (66) is

R0U ′1{p1, ψ1} = 0, (79)
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which yields

p1 = p1(ψ1), (80)

and the next order is

R0({p2,U1} + {p1,U2}) = −γp1(∇ · u). (81)

Substituting Eq. (77) into Eq. (81), one obtains the equa-
tion for the second order pressure,

p2 − p′1ψ2 + γp1

(
v‖

B0R0U ′1
+

2x
R0

)
≡ p2∗ (ψ1) . (82)

Analogously, the continuity equation (1) gives the equa-
tions for the zeroth- and first-order density,

n0 = n0(ψ1), (83)

n1 − n′0ψ2 +
n0v‖

B0R0U ′1
+

2x
R0

n0 ≡ n1∗ (ψ1) . (84)

The first order of Eq. (12) is

{min0B0R0v‖, U1} + {p2, ψ1} + {p1, ψ2} = 0, (85)

which yields the equation for v‖,

B0R0min0U ′1v‖ + p2 − p′1ψ2 ≡ p3∗ (ψ1) , (86)

which is the Bernoulli law in the present system. Equations
(82), (84) and (86) indicate the coupling of v‖, p2 and n1

due to the slow magnetosonic wave which is lost in the
cold (p1 → 0) or incompressible (γ→ ∞) limits, and yield

v‖ = −
(2x/R0)γp1 − (p2∗ − p3∗)

(β1 − M2
Ap)(B2

0/µ0)
MApvA, (87)

p2 =p′1ψ2 +

(
2x
R0

) M2
Apγp1

β1 − M2
Ap

−
M2

Ap p2∗ − β1 p3∗

β1 − M2
Ap

,

(88)

n1 =n′0ψ2 + n1∗ +

(
2x
R0

) M2
Apn0

β1 − M2
Ap

− (p2∗ − p3∗)n0

(β1 − M2
Ap)(B2

0/µ0)
, (89)

where β1 ≡ γp1/(B2
0/µ0), vA ≡ B0/

√
µ0n0mi is the Alfvén

velocity and MAp (ψ1) ≡ vp/VAp ≡ (µ0min0)1/2R0U ′1 is the
poloidal Alfvén Mach number. The singularity appears
when β1 = M2

Ap, i.e. when the poloidal flow velocity
equals to the poloidal sound velocity. The first and second
orders of Eq. (11) are

|∇ψ1|2 ∆2ψ1 + 2µ0R0x∇ψ1 · ∇p1 + I1∇ψ1 · ∇I1

+ µ0R2
0∇ψ1 · ∇p2 + B0R0∇ψ1 · ∇I2 = 0, (90)

and

|∇ψ1|2
(
∆2ψ2 −

1
R
∂ψ1

∂R

)
+ 2 (∇ψ1 · ∇ψ2)∆2ψ1

+ µ0 x2∇ψ1 · ∇p1 + ∇ψ2 · ∇
(
I2
1/2

)

+ ∇ψ2 · ∇
(
µ0R2

0 p2 + B0R0I2

)

+ 2µ0R0x (∇ψ2 · ∇p1 + ∇ψ1 · ∇p2)

+ ∇ψ1 · ∇
(
µ0R2

0 p3 + R0B0I3 + I1I2

)

− µ0min0R2
0 (∇ψ1 · ∇U1)∆2U1

+ µ0min0R2
0∇ψ1 · ∇

(
|∇U1|2/2

)
= 0. (91)

The first order of Eq. (13) yields

p2 +
B0

µ0R0
I2 ≡ g∗ (ψ1) , (92)

and the second order is
{

p3 +
B0

µ0R0
I3, ψ1

}
+

2x
R0
{p2 − p′1ψ2, ψ1}

+
I1

µ0R2
0

{I2 − I′1ψ2, ψ1} − {g′∗ψ2, ψ1}

+ min0U ′21

{ |∇ψ1|2
2
, ψ1

}
= 0. (93)

Substituting Eq. (88) into Eq. (93), we get

p3 +
B0I3

µ0R0
+

I1

µ0R2
0

(
I2 − I′1ψ2

)
+ min0U ′21

|∇ψ1|2
2

+

(
x

R0

)2 2M2
Apγp1

β1 − M2
Ap

− g′∗ψ2 ≡ E∗ (ψ1) . (94)

Substituting Eqs. (92) and (94) into Eqs. (90) and (91),
we obtain the expanded GS equation in the presence of
poloidal-sonic flow,

∆2ψ1 = −µ0R2
0

(
2x
R0

p′1 + g
′
∗

)
−




I2
1

2



′

, (95)

∆2ψ2 +


µ0R2

0

(
2x
R0

p′′1 + g
′′
∗

)
+




I2
1

2



′′ψ2

=
1
R
∂ψ1

∂R
+ M2

Ap∆2ψ1 +
|∇ψ1|2

2

(
M2

Ap

)′

− µ0R2
0


E
′
∗ +

(
x

R0

)2

p′1 +
(

x
R0

)2 


2M2
Apγp1

β1 − M2
Ap




′

−2x
R0




M2
Ap p2∗ − β1 p3∗

β1 − M2
Ap




′ . (96)

The equation for ψ1 (95) is same as for the static case while
the equation for ψ2 (96) is modified by the flow and has
the singularity. Comparing with the analysis of the tran-
sonic flow for low-β tokamaks [13, 17], the singularity at
the poloidal flow velocity equal to poloidal sound velocity

034-6



Plasma and Fusion Research: Regular Articles Volume 3, 034 (2008)

in the density and pressure and its dependence on toroidic-
ity have been reproduced as higher-order effects and the
singularity in the higher order magnetic structure has been
found in the present study. However, in order to repro-
duce the radial discontinuity of the density and the pres-
sure found in the low-β analysis [13], a local analysis in
the vicinity of the singularity where β1−M2

Ap ∼ εM2
Ap may

be necessary. Finally, we note that the hyperbolic region
between the cusp velocity and the poloidal velocity of the
slow magnetosonic wave pointed out in Ref. [18] degener-
ates to the singularity in our present ordering, because the
difference between its upper and lower bounds becomes of
higher order.

5. Summary
We have derived the equations for high-β axisym-

metric equilibria with flow comparable to the poloidal
Alfvén velocity in the reduced two-fluid model with FLR
and flow comparable to the poloidal sound velocity in
the single-fluid model, by using asymptotic expansions in
terms of the inverse aspect ratio. We have shown that the
Alfvén singularity is shifted by the gyroviscous cancella-
tion. The singularity at the poloidal flow velocity equal to
the poloidal sound velocity in the density and pressure and
its dependence on toroidicity have been reproduced by our
higher-order terms and the singularity in the higher-order
magnetic structure has been found. The reduced single-
fluid equations for equilibria with poloidal-sonic flow in-
clude higher-order quantities and hence can describe finite-
aspect-ratio tokamak equilibria. The resulting equations
can be easily solved numerically to yield flowing equilib-
ria without singularity and their solutions can be used as
initial states or for comparison with saturated states of re-
duced model nonlinear simulations.
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Appendix: Ion Gyroviscous Force
The gyroviscous force is given by [6]

∇ · Πgv
i = ∇ ·




5∑

N=1

ΠgvN
i


 (A.1)

In the ordering of Sec. 2, the leading order terms of
Eq. (A.1) are

∇ · Πgv1
i

* − minu∗i · ∇u − ∇χv − ∇ ×
[ mi pi

2eB2 (∇ · u)B
]

* − minu∗i · ∇u − ∇χv

+
miR2

0

4e2B2
0

∇ϕ × ∇
{
∇ϕ ·

[
∇p2

i × ∇
(

1
n

)]}
, (A.2)

∇ · Πgv2
i

* − ∇χq +
miR0

4eB0
∇ϕ × ∇

(
4
5
∇ · qi⊥

)

* − ∇χq

−
miR2

0

4e2B2
0

∇ϕ × ∇
{
∇ϕ ·

[
∇p2

i × ∇
(

1
n

)]}
, (A.3)

∇ · Πgv3
i * ∇ · Πgv4

i * ∇ · Πgv5
i * 0, (A.4)

where

u∗i ≡ −
1
en
∇ ×

( pi

B2 B
)

* R0

enB0
∇ϕ × ∇pi, (A.5)

χv ≡
mi pi

2eB2 B · (∇ × u), (A.6)

χq ≡
mi

5eB2 B · (∇ × qi⊥). (A.7)

Then we obtain the representation of the ion gyroviscous
force, Eq. (23).
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