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A coupled set of the reduced magnetohydrodynamic and the two-fluid equations is applied to the
magnetosphere-ionosphere �M-I� feedback interactions in relation to growth of quite auroral arcs. A
theoretical analysis revisiting the linear feedback instability reveals asymptotic behaviors of the
dispersion relation and a non-Hermite property in the M-I coupling. A nonlinear simulation of the
feedback instability in the M-I coupling system manifests growth of the Kelvin–Helmholtz-like
mode in the magnetosphere as the secondary instability. The distorted vortex and field-aligned
current profiles propagating as the shear Alfvén waves lead to spontaneous deformation of
ionospheric density and current structures associated with auroral arcs. © 2010 American Institute
of Physics. �doi:10.1063/1.3304237�

I. INTRODUCTION

Auroral phenomena in polar regions are manifestations
of complex interactions of the hot but low-density plasma in
the magnetosphere and the cold but high-density plasma in
the ionosphere.1 A theory of quiet auroral arcs2 based on the
feedback interactions of the two media3,4 explains that the
ionospheric density and field-aligned current perturbations
can spontaneously grow through the feedback instability. In
the ionosphere with a large-scale perpendicular electric field,
a density perturbation induces the small-scale polarization
electric field, which propagates in the magnetosphere as the
shear Alfvén waves carrying the field-aligned current. While
the Alfvén waves are reflected back from the antihemisphere
or at the magnetospheric equator, the ionospheric density
perturbation slowly propagates across the field lines due to
the Pedersen mobility. If the upward field-aligned current
carried by the Alfvén wave coincides with the density en-
hancement, it amplifies the density perturbation as well as
the field-aligned current and electric field fluctuations. This
is the physical picture of the feedback instability in the
magnetosphere-ionosphere �M-I� coupling system.

The two-dimensional simulation of the feedback insta-
bility was carried out by Miura and Sato with the assumption
of the linear magnetohydrodynamic �MHD� response of the
magnetosphere.5 Then, three-dimensional MHD dynamics
are taken into account in nonlinear simulations of the feed-
back instability6,7 where global appearance of auroral arcs
and effects of the field-aligned potential are investigated.7

The feedback instability has also been studied with re-
gard to the ionospheric cavity modes in case with an inho-
mogeneous Alfvén speed profile along field lines.8–10 The
magnetospheric model has been extended to include two-
fluid effects for an extremely low-density region,11–13 and is
applied to the subauroral zone as well.14,15 A more elaborate
simulation model of the feedback instability is developed to
incorporate the nonlinearity of extended MHD equations, the
dipole configuration, and the ionization processes.16,17

As briefly summarized above, physical and numerical

models of the feedback instability have largely been ad-
vanced in the last three decades. Nevertheless, most of the
analyses assume the linear magnetospheric response. Other-
wise, the azimuthal symmetry or the elongated mode struc-
ture in the east-west direction is often presumed even in
cases with the nonlinear �extended� MHD equations.6,7,16,17

As will be discussed later, however, some of nonlinear terms
breaking the azimuthal symmetry have the same order of
magnitudes as those of the linear ones under the reduced
MHD formalism,18 and should lead to spontaneous deforma-
tion of auroral arcs in a nonlinear phase of the feedback
instability.

In the present paper, we revisit the feedback instability
analysis with the simplest physical settings, that is, the resis-
tive MHD equations for the magnetosphere with straight
field lines and the height-integrated model for the iono-
sphere. The M-I coupling model with nonlinear terms for the
advection and the Lorentz force is constructed by means of
the flute reduction for investigating the saturation process of
the feedback instability. We believe that the nonlinear MHD
effects should play important roles in auroral arc dynamics,
such as splitting of arcs, curls, and spirals. To our knowl-
edge, so far, nonlinear simulations of auroral arcs are limited
to cases which start from initial conditions with well-
developed arc structures, where the initial setup is unstable
to the Kelvin–Helmholtz �K-H� instability causing deforma-
tion of arc structures �see, for example, Refs. 19 and 20�.
Nonlinear simulations of the feedback instability considered
here would enable us to address growth and deformation of
auroral arcs self-consistently and lead to deeper understand-
ings of auroral arc dynamics.

This paper is organized as follows. We summarize deri-
vation of a set of model equations for the M-I coupling sys-
tem in Sec. II. In Sec. III, the linear feedback instability is
reinvestigated, where we discuss the dispersion relation for
normal modes, the asymmetric boundary conditions, the
eigenfrequencies in the long and short wavelength limits, and
the propagation angle dependence. Results of the nonlinear
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simulation of feedback instability will be shown in Sec. IV
where the numerical methods are also briefly described. A
summary of the results is given in the last section.

II. MODEL EQUATIONS

A. Magnetospheric equations

For describing plasma dynamics in the magnetosphere,
we consider the resistive MHD equations. The equation of
motion and the Ohm’s law are given as

�� �V

�t
+ V · �V − ��1

3
� � · V + �2V�� = − �p + J � B,

�1�

E = − V � B + �J , �2�

where the current density J=��B /�0. The mass density
and the permeability are denoted by � and �0, respectively.
Other notations are standard. The continuity and energy
equations will not be used in the following. In order to de-
couple the compressional Alfvén modes from the shear
Alfvén one, we employ the flute reduction where an ordering
procedure based on separation of the parallel and perpen-
dicular scale lengths of perturbations is used to simplify the
MHD equations.

Derivation of the reduced MHD equations is well
established.21 A smallness parameter �	
k� /k�
 is introduced
in a formal flute reduction of the MHD equations where k�

and k� mean wave numbers in the parallel and perpendicular
directions to the magnetic field, respectively. Accordingly,
the fast �x f� and slow �xs� spatial dependence of physical
quantities are considered, such as f�x f ,xs , t�. Thus, the spa-
tial derivatives are evaluated both for the independent vari-
ables, x f and xs,

� =
1

�
� f + �s. �3�

With the aim of applying the procedure to a general geom-
etry in future works, we retain the expressions of x f and xs in
this subsection after Ref. 21. Fluid and field variables are
assumed to follow the ordering of

� = �0�xs� + ��1�x f,xs,t� ,

p = p0�xs� + �p1�x f,xs,t� ,

V = �V0�xs� + �V1�x f,xs,t� , �4�

E = �E0�xs� + �E1�x f,xs,t� ,

B = B0�xs� + �B1�x f,xs,t� .

The subscripts 0 and 1 mean equilibrium and perturbed
quantities, respectively. Here, we explicitly keep the equilib-
rium flow perpendicular to B0 �as well as the corresponding
electric field; 	O���� while it is often absorbed in V1. The
flow velocity is much slower than the shear Alfvén speed
�VA=B0 /��0�0	O�1��. The scalar and vector potentials are
given as

� = �B0�0�xs� + �2B0��x f,xs,t� ,

�5�
A = A0�xs,t� + �2�− B0	 + A�1�x f,xs,t�� ,

where E=−��−�A /�t and B=��A. The dissipative coef-
ficients, � and �, are considered as O��2� so that the leading
order term such as �� f

2V remains in the order of �. Here, B0

should satisfy �s�B0=0. The parallel component of the cur-
rent density is obtained from the Ampére’s law,

J� = J�0 +
B0

�0
� f

2	 , �6�

where J�0=b0��s�B0 /�0.
The vorticity equation �the shear Alfvén law� is obtained

by taking b ·�� of Eq. �1�, where b=B /B, such that

�


�t
+ V� · � f
 = VA

2��� f
2	 +

2

�0
b0 � �0 · � fp + �� f

2
 .

�7�

Here, b0 is a unit vector parallel to B0, V=V�+V�b0, 

=b0 ·� f �V�, and �0=−b0� ��s�b0�. The magnetic differ-
ential operator, ��, is written as �� =b0 ·�s+ 	,�, by neglect-
ing O��� parts, where  , � denotes the Poisson brackets de-
fined by 	 ,��=b0 ·� f	�� f�. The perpendicular velocity
V� is given by the perpendicular component of the Ohm’s
law. Thus, in the order of �, one finds


 = � f
2� , �8�

V� · � f =
E0 � B0

B0
2 · � f + � ,� , �9�

and � f ·V�=0. The parallel component of Eq. �2� describes
the time evolution of 	,

�	

�t
+

E0 � B0

B0
2 · � f	 =

1

B0
��B0� +

�

�0
� f

2	 , �10�

where we ignore the resistive decay of the equilibrium mag-
netic field given by −�A0 /�t=�J0 because of its slow
evolution.

If the interchange term �the second term on the right
hand side of Eq. �7�� is neglected, the pressure p is decou-
pled. Then, Eqs. �7�–�10� consist a closed set of the two-field
reduced MHD equations. Here, the parallel components of
the flow velocity and the perturbed magnetic field �as well as
A�1� are not included in the set of equations that describe the
shear Alfvén dynamics.

B. Ionospheric equations

Ion and electron motions in the ionospheric E-layer are
characterized by different ranges of frequencies �for ex-
ample, see Ref. 22�, such that

�−1 � i 	 �ei � �in � �en � e. �11�

Here, i and e mean the ion and electron �angular� cyclo-
tron frequencies. In this section, the subscripts e, i, and n
represent electron, ion, and neutral species, respectively. The
electron-ion, ion-neutral, and electron-neutral collision fre-
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quencies are, respectively, denoted by �ei, �in, and �en. Our
concern here is the M-I coupling with slow time variations of
the order of �.

Collective motions of electrons in the ionosphere can be
described by the drift kinetic approximation because of large
e. By taking the zeroth order moment of the drift kinetic
equation, the continuity equation for ionospheric electron
density ne is obtained as

�ne

�t
+ ���neVe�� +

E � B

B2 · �ne = S , �12�

where S means a source and/or a sink term due to recombi-
nation and ionization. Height integration of Eq. �12� is often
employed since the parallel wavelength of the shear Alfvén
wave is considered to be much longer than the vertical thick-
ness �h� of the ionosphere. By assuming that B and E ac-
companied with shear Alfvén waves are constant in the ver-
tical direction in the ionosphere, one finds the height-
integrated equation,

�ne

�t
+

E � B0

B0
2 · ��ne =

J�

eh
+ S̄ , �13�

where ¯̄ indicates the height average in the ionosphere. The
operator �� means the spatial derivative perpendicular to B0.
For the E�B advection term in deriving Eq. �13�, we have
also employed the approximation of �E�B /B2� ·�
��E�B0 /B0

2� ·��, which is consistent with the flute reduc-
tion. The field-aligned current J� is well approximated by
J� =−eneVe� because of the small electron-ion mass ratio,
me /mi�1.

The equation of motion for ions with the Krook collision
term is written as

mini� �Vi

�t
+ Vi · �Vi� = qini�E + Vi � B� − �pi

− mini�inVi, �14�

where the flow velocity of the neutral atmosphere is assumed
to be zero. The effective ion charge is denoted by qi. The
momentum loss of ions due to the ion-electron collision with
recombination and/or ionization is also neglected. By the
time-scale ordering in Eq. �11�, one can omit the time deriva-
tive and Lorentz force terms in Eq. �14�. The nonlinear ad-
vection term with the perpendicular scale length L can also
be ignored in comparison to the neutral drag term, that is,

Vi
 /�inL�1, for typical ionospheric conditions. By assum-
ing the isothermal condition, Ti=const., the ion number flux
is given as

niVi = ni�PE − Di � ni, �15�

where the �ion� Pedersen mobility �P=qi /mi�in and the dif-
fusion coefficient Di=Ti /mi�in. Therefore, the height-
integrated continuity equation for ions is given by

�ni

�t
+ �� · ��PniE − Di � ni� =

e

qi
S̄ , �16�

where we have also assumed the constant �in in the vertical
direction.

In application to the auroral arc dynamics, it is appropri-
ate to require the quasineutrality condition,

ne =
qi

e
ni � n , �17�

because �−1�
p and L��D where 
p and �D are the plasma
frequency and the Debye length, respectively. Thus, Eqs.
�13� and �16� lead to

�n

�t
+

E � B0

B0
2 · ��n =

J�

eh
+ S̄ , �18�

�� · ��PnE� −
E � B0

B0
2 · ��n = Di��

2 n −
J�

eh
. �19�

If one considers the recombination loss, the sink term may be

given as S̄=−�n2. In the present work, we employ a linear-

ized recombination term, S̄=−2�n0ñ, where ñ denotes the
perturbed ionospheric density from the background �n0�, ñ
=n−n0. In Eqs. �18� and �19�, there are three unknowns, �
�where E=E0−���B0���, n, and J�. In order to close the set
of equations, thus, one needs to consider the M-I coupling.
Introduction of the electron Pedersen mobility and/or the ion
Hall mobility is straightforward but would have minor con-
tributions because of the time-scale ordering in Eq. �11�.

C. M-I coupling

According to the original work by Sato,2 we employ the
simplest M-I coupling model which consists of the uniform
background magnetic field �B0� perpendicular to the height-
integrated two-dimensional ionosphere. In this model, the
ionosphere is coupled with the magnetosphere through the
perpendicular electric field and the field-aligned current car-
ried by the shear Alfvén waves. Hereafter, we use the Carte-
sian coordinates, where the z-axis is chosen to be parallel to
the vertical equilibrium magnetic field. The ionosphere
model of Eqs. �18� and �19� is solved in the x-y plane at z=0

by taking ��= x̂� /�x+ ŷ� /�y, where the hat �¯̂� means the
unit vector in the Cartesian coordinates. The equilibrium
electric field, E0, is set in the y-direction by assuming the
scalar potential �0�xs�=�0�y�. The fast and slow coordinates,
x f and xs, are chosen as x f = �xx̂+yŷ� /� and xs=zẑ+yŷ. Thus,
b0 ·�s=� /�z and � f =��. The y-dependence of xs is involved
so that E0=−ŷB0��0 /�y. In the followings, we consider a
case of the uniform equilibrium electric field, E0=E0ŷ with
E0=const.

In the equilibrium field of B0=B0ẑ with constant B0, the
magnetospheric equations are written as

D


Dt
+ �,
� = VA

2��� + ���
2 
 , �20�

D	

Dt
= ��� +

�

�0
� , �21�

where the abbreviations are defined by
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 = ��
2 � , �22�

� = ��
2 	 , �23�

D

Dt
=

�

�t
+

E0 � B0

B0
2 · ��, �24�

�� =
�

�z
+ 	 ,� , �25�

	,�� =
�	

�x

��

�y
−

�	

�y

��

�x
. �26�

Since the interchange term vanishes due to �0=0, the pres-
sure is decoupled from Eq. �20�. In the ideal case of �=�=0,
Eqs. �20� and �21� have the same forms as those in a two-
field limit of generalized reduced MHD equations.23,24 From
continuity of the electric field and the field-aligned current at
z=0, we employ

E = E0 − B0��� , �27�

J� =
B0

�0
� , �28�

for solving Eqs. �18� and �19�. These relations, thus, close
the set of equations for the M-I coupling system.

D. Normalization

The governing equations are normalized by the horizon-
tal �perpendicular� scale length L, the Alfvén speed VA, and
the magnetic field B0, such that

�n

�t
+ E � ẑ · ��n = J� − 2�ñ , �29�

�� · ��PnE� − E � ẑ · ��n = Di��
2 n − J� , �30�

where n=eh�0VAn� /B0, J� =�0LJ�� /B0, E=E� /B0VA, �P

=�P�B0, and �=L��n0� /VA. Prime �¯�� means a dimensional
variable. Normalization of the reduced MHD equations, Eqs.
�20� and �21�, is trivial. Coordinate transformation from
�x� ,z , t� to ��� ,z , t�, where ��=x�−E0� ẑt, eliminates the
advection term for the equilibrium flow in Eqs. �24� and
�29�, while physical quantities such as E are supposed to be
measured in the x�-frame. Here, we also assume homoge-
neous background ionospheric density �n0=const�. It is noted
that the Hall �E�B� drift motion of electrons with the mo-
bility of �H=1 /B0 �normalized to unity� is represented in the
second term on the left hand side �l.h.s.� of Eq. �29�. Since
ions are assumed to be unmagnetized in the ionosphere �see
Eq. �15��, the Hall current is carried by the E�B drift mo-
tion of electrons as shown in the second term on the l.h.s. of
Eq. �30�.

III. LINEAR ANALYSIS

In the ideal MHD limit ��=�=0�, the linearized mag-
netospheric equations are reduced to the wave equations
�normalized� for the shear Alfvén mode,

�t	 = �z� and �t� = �z	 . �31�

The linearized version of Eqs. �29� and �30� is also given by

�tñ = J� − 2�ñ , �32�

− �Pn0��
2 � + ��PE0 − E0 � ẑ� · ��ñ = Di��

2 ñ − J� , �33�

in the ��� ,z� coordinates.
We employ the periodic boundary condition in the

��-space for the perturbed quantities, and then, the linear
solution for normal modes has a sinusoidal form of 	
=	k�

�z�exp�ik� ·��− it�. Let us suppose an antisymmetric
perturbation of 	k�

�z� with respect to the magnetospheric
equator at z= l,

	k�
�z = l� = J�k�

�z = l� = 0, �34�

which implies the conjugate appearance of auroral arcs in the
northern and southern hemispheres. �It is also straightfor-
ward to apply a symmetric boundary condition, �z	k�

=�zJ�k�
=0 at z= l, while it does not alter the basic mecha-

nism of the feedback instability.� Thus, the linear eigenfunc-
tion is obtained as

	k�
�z� = A�eik��z−l� − e−ik��z−l�� , �35�

�k�
�z� = − A

k�


�eik��z−l� + e−ik��z−l�� , �36�

with an arbitrary constant A. Here, the dispersion relation of
Eq. �31�, k�

2=2, demands k� to be complex valued for grow-
ing or decaying solutions. From Eq. �31�, one also finds the
magnetospheric response at the ionosphere,

��k�

J�k�

�
z=0

= −
k�

k�
2 coth�ik�l� = −

1

k�
2 coth�ik�l� . �37�

Substituting Eq. �37� to Eqs. �32� and �33�, one finds the
dispersion relation in the ��-frame,

 =
k� · ��PE0 − E0 � ẑ� − ik�

2 Di

1 − �Pn0 coth�ik�l�
− 2i� , �38�

with k� =. The eigenfrequency in the x�-frame is obtained
by replacing  
��

→ 
x�
−k� ·E0� ẑ. If we rewrite

−coth�ik�l� to i cot k�l, Eq. �38� formally has the same ex-
pression as that obtained in Ref. 2, except for the collisional
diffusion term for ions. However, k� in Eq. �38� is complex
valued, which means the amplitude of the shear-Alfvén wave
varies along the field line, while k� is taken to be real valued
in the transmission line analysis employed in Ref. 2.

An equivalent representation to Eqs. �35� and �36�, in
terms of the upward and downward components of the shear
Alfvén mode, clearly shows what the imaginary part of k�

means, such that U=	−� and D=−	−�. Here, U
=Uk�

�z�exp�ik� ·��− it� and D=Dk�
�z�exp�ik� ·��− it�

with
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Uk�
= 	k�

− �k�
= 2Aeik��z−l�, �39�

Dk�
= − 	k�

− �k�
= 2Ae−ik��z−l�, �40�

for k� =. The upward and downward components satisfy
�tU=−�zU and �tD=�zD, respectively. Amplitude of the
downward shear Alfvén wave is determined from that of the
upward component launched from the ionosphere so as to
satisfy the boundary condition at z= l, that is, Uk�

=Dk�
or

Uk�
=−Dk�

�for the antisymmetric or symmetric conditions
of 	k�

, respectively�. During the propagation of waves in the
magnetosphere, the perturbation amplitude in the ionosphere
varies in time for the decaying or growing solutions. Thus,
the amplitudes of Uk�

and Dk�
change along the field line,

which is described by the imaginary part of k�.
Now let us briefly discuss why the growing and decay-

ing solutions of the shear Alfvén waves are allowed in the
M-I coupling system even with the ideal MHD description
for the magnetosphere. Equation �31� is rewritten into the
ordinary differential equation for the shear Alfvén wave with
the eigenfrequency ,

L	k�
= �k�

	k�
, �41�

where the self-adjoint operator is given by

L	 =
d

dz
�p�z�

d	

dz
+ q�z�	� , �42�

with p�z�=1, q�z�=0, and �k�
=−2. If the two arbitrary

solutions of Eq. �41� defined on a�z�b, that is, u�z� and
v�z�, satisfy the boundary condition,

�v�p�z�
du

dz
�

z=a
= �v�p�z�

du

dz
�

z=b
�43�

�where v� means the complex conjugate of v�, the Hermite
condition

�
a

b

v�Ludz = �
a

b

uLv�dz �44�

holds and the eigenvalues �k�
should be real �thus, the eigen-

frequency  should be real or pure imaginary�. In the M-I
coupling system considered here, however, the boundary
conditions of Eqs. �34� and �37� break the symmetry shown
in Eq. �43� for a=0 and b= l, and the Hermite condition, Eq.
�44�, is not satisfied. Thus, the complex eigenvalues ��k�

�
and eigenfrequencies �� are allowed to exist. The same
discussion can also be applied to cases with an inhomoge-
neous Alfvén velocity profile along field lines and a nonuni-
form background magnetic field.

Numerical solutions of the dispersion relation are shown
in Figs. 1 and 2, where l=103, E0=10−3, n0=10, �P=0.5,
Di=2�10−5, and �=7�10−4. Because of the coth �or cot�
function in the dispersion relation,  is multivalued for a
given k�. The lowest five solutions of  are plotted in Fig. 1
as functions of ky for kx=0, where k�=kxx̂+kyŷ. The feed-
back instability appears in a low ky region, while the diffu-
sion term stabilizes the higher ky modes.

It is meaningful to consider limiting behaviors of  for

k�
→� and k�→0 �see Eqs. �23�, �28�, and �32��. As

k�
→�, 
J��z�
 as well as 
ñ
 is proportional to k�

2 for a
given amplitude �A� of 	 and �. In order to satisfy Eq. �33�
for Di=0, however, J��z=0� should asymptotically approach
zero so that the second term on the l.h.s will not diverge as
k�

3 . It is accomplished by approaching cot l→�, that is,
l→m� �where m=1,2 , . . .�. This is nothing else but the
field line resonance with nodes at the ionosphere and the
magnetic equator. In contrast, Eq. �33� is approximated by
�Pn0k�

2 ��−J� +O�k�
3 � for k�→0. Substituting it into Eq.

�37�, thus, one finds cot l= i /�Pn0, which leads to Re�l�
��2m−1�� /2 and Im�l��−O�1 /�Pn0� for 
Re��

� 
Im��
. The limiting behaviors of  agree well with the
numerical solutions shown in Fig. 1.

Linearly unstable solutions of Eq. �38� in the lowest
branch of Re�� are presented in Fig. 2 by means of a con-
tour plot of Im�l� in the kx-ky space for the same param-
eters employed in the above. The maximum growth rate is
found near at kx=−4� and ky =2�, that is, Im�l��0.09�.
By taking a derivative of the dispersion relation for �
� tan−1�ky /kx�, one finds that the growth rate peaks at �=
−tan−1 �P for a given value of k�. It means that the perpen-
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FIG. 1. Numerical solutions of the dispersion relation, Eq. �38�, for kx=0
modes, where l=103, E0=10−3, n0=10, �P=0.5, Di=2�10−5, and �=7
�10−4.
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dicular wave number k� providing the maximum growth rate
is parallel to the ionospheric current given by a sum of the
Pedersen and the Hall currents. �Here, the Hall mobility for
electrons �H=1 /B0 is normalized to unity.� The numerical
result for �P=0.5 shown in Fig. 2 agrees with the theoretical
analysis. Although the most unstable mode is found for nega-
tive kx, it propagates in the positive x �as well as in the
positive y� direction in the x�-frame.

IV. NUMERICAL SIMULATION

We have carried out a nonlinear simulation of the feed-
back instability in the M-I coupling model described in Sec.
II. The same parameters as those for the linear analysis are
used but with finite dissipation, �=�=4�10−7. A sinusoidal
perturbation of the linear eigenfunction with �kx ,ky�
= �−4� ,2�� in the lowest branch �m=1� is given at t=0 as
an initial seed for the instability growth. We set the pertur-
bation amplitude of 10−5 for 	 and �, which corresponds to
that of 1.97�10−3 for 
 and J�. Electrostatic potential per-
turbations with �kx ,ky�= �2� ,−4�� and �−2� ,4��, having
much smaller amplitude �=10−7�, are also added to the initial
condition so as to trigger the secondary instability in a non-
linear stage of the primary one �the feedback instability�.

The horizontal box size of the simulation domain dis-
cretized by numerical grids is normalized to unity both in the
x and y directions. Employed are 256�256 grids in the x
and y directions and 100 grids in the z direction. Spatial
derivatives are evaluated by means of the fourth-order finite
difference in a main part of the simulation domain, except at
z=0, �z, l−�z, and l where the second-order finite differ-
ence is adopted. The grid size in the z direction is denoted by
�z. Numerical time integration is calculated by the fourth-
order Runge–Kutta–Gill method. The time step size �which
is set �t=4 at t=0� is automatically changed so as to keep
enough resolution.

Time evolutions of root-mean-square amplitudes �de-
noted by �¯ �� of the ionospheric density, vorticity, and
field-aligned current are shown in Fig. 3. The initially given
perturbation with �kx ,ky�= �−4� ,2�� linearly grows through
the feedback instability. The peak amplitude of �ñ� exceeds
36% of the background density �n0=10� at t�7700L /VA.
The linear growth of the feedback instability characterized
by 


�
J�
 continues till t	6000L /VA, and is followed by
the nonlinear saturation.

A nonlinear development of the ionospheric density per-
turbation is presented in Fig. 4 by means of color contour
plots at different time steps. At around t	6000 before satu-
ration of the instability growth, the primary mode is faced
with a nonlinear mode coupling. Then, the perturbations with
higher mode numbers than that of the primary one grow
through the nonlinearly induced secondary instability. At t
	8000L /VA, the striated mode structure of the density en-
hancement is torn into shorter filaments, which reminds us
the splitting of auroral arcs.
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FIG. 2. Linear growth rate plotted in the k�-space for the same parameters
as those used for the analysis shown in Fig. 1.
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the perturbed ionospheric density ñ �top�, the vorticity 
, and field aligned
current J� at z=0 �bottom� obtained by a nonlinear simulation of the feed-
back instability. The same parameters as those given in Fig. 1 are used but
with �=�=4�10−7.
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Before the splitting of the density striation structure, the
vorticity �
� profile in the magnetosphere is largely distorted
as shown in Fig. 5. Rolling-up of thin vortex sheets, which is
typically seen in the K-H instability, is clearly found on the
magnetic equator �z= l� at t=7000L /VA, while the vorticity
distribution on the ionosphere �z=0� exhibits a different pat-
tern due to the strong inhomogeneity of the ionospheric con-
ductivity. The equatorial vortex pattern becomes more turbu-
lent at t=8000L /VA. From the simulation results, therefore, it
is concluded that the K-H-like secondary �nonlinear� insta-
bility is induced in the magnetosphere from the large-
amplitude vortex sheets that have grown through the feed-
back instability. The deformation of the vortex and field-
aligned current profiles caused by the K-H-like instability
propagates as the shear Alfvén waves and leads to saturation
of the ionospheric density increase.

V. SUMMARY

For studying the feedback interactions of the earth’s M-I,
we have formulated the three-dimensional slab M-I coupling
model by means of the reduced MHD equations. The re-
duced MHD model is useful for describing the shear Alfvén
waves with strongly anisotropic mode structure �
k� /k�

�1�, and enables us to investigate fine structures of the iono-
spheric density and the field-aligned current perturbations
associated with quite auroral arcs.

The dispersion relation for the normal modes of the
feedback instability has the same form as that obtained in the
original work by Sato2 but with the complex-valued parallel
wave number. The asymmetric boundary conditions at the
ionosphere and the magnetospheric equator break the Her-
mite condition, and allow the complex eigenfrequencies of
the shear Alfvén waves. Unstable eigenvalues are found in

intermediate frequency ranges of �m+1 /2���Re�l�� �m
+1�� for the currentless condition at the magnetospheric
equator, where �m+1 /2�� and �m+1�� �field-line reso-
nance� are asymptotic values of l for k�→0 and k�→�,

FIG. 4. �Color� Contours of ionospheric density perturbation �ñ� at different
time steps of the nonlinear simulation.

FIG. 5. �Color� Contours of the vorticity distributions on the ionosphere
�lower plane� and the magnetic equator �upper plane� at three different time
steps of the nonlinear simulation, where the vertical scale is shortened just
for clarity of the plots.
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respectively, and l denotes the field-line length from the
ionosphere to the equator. For the same values of k�, the
maximum growth rate is found for k� parallel to the iono-
spheric current.

By means of the reduced MHD equations, we derived
the M-I coupling model with the nonlinear terms in the form
of the Poisson brackets. A numerical simulation of the non-
linear evolution of the feedback instability is carried out,
where saturation of the instability growth is observed. The
K-H-like instability grows in the magnetosphere through the
nonlinear coupling of the linearly stable and unstable modes.
Then, splitting of striation structures of the ionospheric den-
sity is found, when growth of the ionospheric density and
current perturbations is saturated. The present simulation
demonstrates that nonlinear evolution of the feedback insta-
bility leads to structural changes of the density and field-
aligned current patterns in the ionosphere. Although no
brightening mechanism is taken into account in the present
model, the obtained result suggests that the deformation of
auroral arcs, such as splitting, curls, and spirals, could spon-
taneously appear during nonlinear development of the feed-
back instability in the M-I coupling system.

The M-I coupling model developed here has a simple
slab configuration but can be straightforwardly extended to
the dipole geometry. The linear analysis and nonlinear simu-
lations of the feedback instability in the dipole magnetic field
is currently in progress and will be reported elsewhere.
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