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Extension of geodesic acoustic mode theory to helical systems
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The present paper extends the theory of geodesic acoustic(@adw) oscillation, which so far has

been applied to tokamaks, to helical systems. By using drift kinetic equations for three-dimensional
equilibriums, a generalized dispersion relation is obtained including Landau damping. The
oscillation frequency is obtained in terms of the squared sum of Fourier components of the magnetic
field intensity expressed by means of magnetic flux coordinates. An analytic form of the
collisionless damping rate of GAM is obtained by solving the dispersion relation perturbatively. It
is found that the GAM frequency is higher in helical systems than in tokamaks and that damping
rate is enhanced in multi-helicity magnetic configurations. However, damping rates are predicted to
be small if the temperature of electrons is higher than that of ion20@ American Institute of
Physics [DOI: 10.1063/1.1922807

I. INTRODUCTION part of zonal flow, play a role in regulating turbulences and
) ) o therefore the identification of GAM and investigation of their

_ Geodesic acoustic mod&AM) oscillations, whose ex-  properties are important. In order to facilitate more exact
istence was reported as early as 1882 now gathering comparison of theory and experimental results, an elabora-
attention. Electrostatic fluctuations are divided into thosegjon of the GAM theories has to be made. Various sets of
with high and low mode number. Those with high modeequations have been examined in recent theoretical studies
numbers are susceptible to diamagnetic drift and are easilynq various expressions of GAM frequencies have appeared
destabilized into drift instabilities composing the plasma turi the literature depending on the model adopted. Table |
bulence. Those with low mode numbers are less susceptiblgyows a few typical results: Refs 1 and 13-16. The three
to diamagnetic drift and are known to be stable; particularlyexperimental papers on the other hand quoted frequencies as
m=0 andn=0 modes are known to be long-lived having shown in Table Il approximating the theoriéefs. 19, 22,
small damping rates. Among them, modes with large radiabng 25. In the experiments, they found more or less the

mode numbers are referred to as zonal flows, which includgy|iowing dependencies of the frequency on electron and ion
GAM oscillations as well as other residual flows with lower emperatures:

frequencies.

The interaction of the fluctuations between these two , ~ \’/Te/mi/RN \"/(Te+ T)/m/R. (1)
different modal ranges is broadly accepted as the key mecha-
nisms for determining the turbulence governing theThough rigorous examinations in the multiplication factor
transportsz.‘ 8 There are a number of dedicated papers in thigemain to be made, these results are regarded as identifica-
field, which have been recently reviewed, e.g., in Refs. 1%ions of GAM. Since it often occurs in experiments tHat
and 12. «T; andT>T;, the two different expressions in E@.) may

The existence of zonal flows including GAM has be practically equivalent.
been recently demonstrated in tokamak experiments The frequencies of drift wave and GAM are given, in the
in DIII-D (Doublet-111-D)*° by use of beam emission spec- order estimation, byu*~VTpiky/Ln and w~ V+/R, respec-
troscopy (BES), and in TEXTTexas Experimental tively. HereVy is the thermal velocity of iongy; is the Lar-
Tokamak,?>?' JIPP-TII UJapanese Institute of Plasma mor radius of ionsL, is the characteristic length of the
Physics Tokamal¢??® and JFT-2MJapan Atomic Energy plasma density, an& is the major radius. The ratio of the
Research Institute Fusion Toflidy use of heavy ion beam two frequenciesw/ " ~ (pik) ™(L,/R) ~ (L,/R) is not al-
probe (HIBP), respectively. Similar oscillations of potential ways low in the core region of the plasma. In theoretical
were found also in the helical device Ct®mpact Helical ~work it is postulated that the stabilizing effect of zonal flow
Systen),25 in which the mode structure has been clearly elu-is weaker if its frequency is higher than the decorrelation
cidated by use of a dual HIBP. In the HHeliac device-1°  frequency of the Drift wave turbulen&Therefore, it is im-
and HT-7 (Hefei Tokamak devices?’ where the electron portant to know the exact frequency of zonal flow and the
temperature is low in the edge region, electrostatic probemechanism of the GAM. Specifically, since GAM has been
were utilized in the experiment. Reflectometries were used inliscussed based on simple tokamak configurations, it is im-
ASDEX(Axisymmetric  Diverter Experimem?t8 and portant to examine if the same physics applies to helical
T-10(Tokamak-10.2° Most significantly, these papers indi- systems. Since the GAM oscillation is driven by the nonlin-
cate that the associated flows are suggestive of rather narrosar interaction of drift waves and is known to have resonant
radial structure with the shearing rates reaching the decorrestructure, its damping rate is important as well. If the damp-
lation times. Theories suggest that GAM oscillations, as ang is large, then the GAM oscillation will not have a large
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TABLE I. The frequency of GAM oscillations suggested by theories: three typical frequencies are listed with
the comments to suggest the approximation used. The damping rate is also shown where it is available.

Reference Frequency Damping rate Comments
Winsor et al. (Ref. 1) 0=\29[(Te+T)/m]1/R Not available Ideal MHD equation
Hallatscheket al. (Ref. 14 0=4(2T,+10/3T;)/m1/R  Not available Reduced from two
fluid equation
Novakovskiiet al. (Ref. 13 »=1/(7/4)(T;/m)1/R Yeam =41 7q Drift kinetic equation

collisional damping

enough amplitude to regulate the turbulence. NotwithstandH. DISPERSION RELATION OF GEODESIC ACOUSTIC
ing its importance, damping rate has not been fully investiMODE IN THREE-D CONFIGURATION

gated yet. Novakovskii gave a collisional damping rdte, A The equations and approximations

which however may not be relevant in the hot core region.

For collisionless damping, some papers suggest the follow- Winsor et al. predicteq possib!e oscillation of a plasma
ing form: flow by use of MHD equatiori.In this early paper the restor-

ing force in the GAM oscillation was shown to be radial
plasma current, which is caused by the geodesic curvature of
v~ exp- ¢d). 2) the magnetic field. This current is mostly balanced by a po-
larization current to satisfy quasi-neutrality. This process has
a deep relationship with neoclassical theory and therefore has
This expression predicts that the GAM is heavily damped irbeen studied as a transient process for reaching a neoclassi-
the core region of tokamaKsj,~ 1), which may be mislead- cal steady stat¥ Recent progress in computer simulation
ing with regard to interpretation of experimental results.  has been remarkable and has made it possible to simulate
The present paper attempts to reformulate the GAM osturbulences, including drift waves and zonal flows, globally.
cillation by use of the drift kinetic equation and simulta- The presence of zonal flows is reported in most of these
neously to extend the GAM theory to helical systems. It isworks. These zonal flows are naturally time-dependent, some
also shown in the process that using an appropriate GAMf them showing high coherency.
frequency is important in the calculation of the damping rate.  The theory of GAM is generalized optimally by using
In Sec. II'A, a set of equations including the drift kinetic the linearized drift kinetic equation:
equation is presented together with approximations to be

used. In Sec. Il B, a general dispersion relation of the GAM 9 + (v +vp) - Vi + M@ +q(vy+uvp) -E 9fo =0.
oscillation is obtained including collisionless damping. In ot ' ot ! aw
Sec. lll A1, this dispersion relation is applied to single he- (3)

licity tokamak in order to show its relation to those obtained

in other works. In Sec. Il A 2, the general formula is applied Here,v, is the velocity parallel to the magnetic field angd

to a straight helical system; the mechanism of GAM oscilla-is the drift velocity of charged particles. The subscripts 0 and
tions is made clearer through a comparison of these twd denote the ordering according to the electric field intensity.
simple cases. In Sec. Il B, the general formula is applied tdndependent variables are kinetic enesgymv?/2 and the
the specific CH§Compact Helical Systenptonfiguration as perpendicular magnetic invariapt= mvzl/ZB. In this work,

an example of mixed helicity problems, where an enhancethe zonal flows including GAM are assumed to be electro-
ment of the damping rate is predicted. static so that

TABLE II. The frequency of GAM oscillations quoted in the experimental papers: three typical papers are listed
with the differences of the experimental conditions.

Quoted Degree of
Reference frequency agreement  Comments
JIPP T-1l U (Ref. 22 w:\s“Te/mpllR Fairly good A tokamak with circular plasma cross section:
(GAM exists wide range in plasma cross section
DII-D (Ref. 19 0=1(Te+T,)/m1/R Fairly good A tokamak with single null divertor:
(GAM exsists wherep>0.85
CHS (Ref. 25 w=(Te+T;)/m1/R Fairly good A stellarator:

(GAM measured ap~ 0.6)
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JB
por =0, E=-V4. (4)

Expressing the potentiagb as the sum of its flux surface

average{¢), and spatial variation from i{,¢)—(¢)), one ob-
tains

f
% + (U” +vD) -V fl+[_ q(UH +UD) ' V[(¢_<¢>)

o _
)l 1=0. (5)
Noting that
V=", ©®)

and assuming thatp - Vf; term is smaller thaw,- Vf, and
that the(¢p—(¢)) term is smaller than thé@p) term, the equa-
tion reduces to the following form:

f1 fi,
(9(9—1"'(0”) V- {q@(vo) Vlﬂ]a %=0, (7)

where
v 1( + 1 )(V X B) - V B?
lp e 12 mUH val lp

eBZ(mU' lmvi>|(V'ﬁ>< B)|xg. (8)

The third term in Eq.(7) has the geodesic curvature,

manifesting itself as the cause driving radial current and  f =

serving the GAM oscillations restoring force.
The electron version of E¢3) has the following simpler
form if the inertial term is ignored:

-1
(vy+tvp)- Viet ?[— Qe(vy+vp) - V(d—(#h))]fe0=0
9

The solution to Eq(9) is easily found to be

fre= = E[( = ()feo, (10

In the following analysis we assume charge neutradify
+q;n,=0 to obtain the electron distribution function

—%[(¢—<¢>)]fe,o:—%< | fidv)ue,o/ne,o). CEY

Therefore, in this procedure of calculation, the variation of
the potential within the flux surface does not play a role but;y is solved in first order irs

is associated with the ion distribution.

[(@={(d)]= Teqz(f fl,idv/ne,0>- (12)
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B. lon and electron distribution functions

By using a magnetic flux coordinate and adopting co-
and contra-variant expressions, the magnetic field intensity is
Fourier decomposed in the following form:

B?= 2, B3(1 + &, coO{mO—nY)). (13

Here, # and ¢ are the poloidal and toroidal like angles. Cor-
respondingly,f,; is expanded in a Fourier series as

= (f{m,n)sin(mé - ng) + f(m,n)cogme - ny)).

(14)

Equation(7) then assumes the form:

ofs 1
___( Bg_nt)UHf
at
¢ (mvf+5mvi) 1
”’%( o) Vger " "B dnn(#fo,
of

1
—+ ( Be_nt)UHf =

at (15

In deriving Eq.(15), (v;,v,) were chosen as independent
variables in place ofw, ), and the following term of the
order 8, , has been ignored:

) aU” '

- (v +tvy) - (%(%B) w* B_U”)

The solution to Eq(14) has the form
(-iw)
= (0= kp)) (@ +kpy)

Z (mvﬁ+%mvi)) 1

X ec—
aw( 2T \gB?

(16)

(mB;

+NBy) Omn(¥)fo, 17

1 1
fC: __(mBe_nt)_U”fs (18)
lw B

with

Kimn = é(mB“’— nBe). (19

In the following calculation, we need onlfg, while f.
gives the plasma flow within the flux surface. In this paper,
W, ®, and g are poloidal qux,_toroidaI flux, and Jacobian,
respectively. Sinc®’«B¢x1/\g, in coordinates of straight
magnet|c field lines, the other freedom could be used so that
\rgtxl/B in order to makex, independent of4, (). However,
within the scope of this paper, where the distribution func-
mns the choice of the coordi-
nate system is not important. kf is dependent o4, ), it
may be replaced by its mean value. A Boozer coordinate can
be used as well, a merit of which is th@B,+nB,) is inde-
pendent of(#,{) and does not create a further family of
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harmonics on the right-hand side of Ed5). From the same Adding the contributions both from ions and electrons
point of view, a straight magnetic-field-line coordinate is notwe obtain

a requirement either. 1 7
Equation(14) suggests that GAM is characterized only Fron=Fimn+ Femn= 2—'—(1'e + _Ti) {1

by the parameters;,, and that therefore the prediction of o T 4

GAM may be dependent on the choice of the coordinate Igz b2 o\

system. This apparent paradox may be possibly reconciled +¢ ( D T") g’m,n<§ﬁm+ &
w w

by the interpretation that that the sum of the contributions

from all the Fourier components gives approximately the 1 >
same result. *5 exp(= {mn) (26)
with
C. The dispersion relation of GAM oscillation
_ o = (To+(23/8)T)) (27
The current due to the geodesic curvatiyyris expressed (To+ (714)T,) :

by use of the distribution function
Substituting the expression of polarization current

o= f)dv. 20
P %QJ(vm)v (20 -:“’_zmid_‘ﬁv .
Ip w?. A diy v (28)
The dispersion relation is obtained by balancing the current o
j« with the polarization currenf into Eq. (18), the divergence of the polarization current is
obtained in the following form:
. —,. .
j -dS=f VO, +jp) - Vydod{=0. (21 2
Ji p [1-a5= 22 [ 22519 yrrana
For the ion contribution of the current due to the geodesic mdpJ o
curvature, we obtain 2. dégB;+B 1
~ “’zp"ﬁd—‘;q . "f§|vzp|2dadg.
- w4 T
f vg(qi( f (wp,)+ V w)u,idv)dedz 29
e’c? apl 1 \? 1~ Definin
~ = g T == | (B +nB,2& ()| =V 9
2 J¢\\gB 2 ec? ( 1 )2 252 <1~ )
— N Ti| == | (mB,+nB -V
% Fi,m,n- (22) » 2 0,i ti \r’EBZ ( 4 0) m,n(¢) 2
w =
Here, emn w_ZMLLB *+By i V ¢?déd
0’ AT 2w Bz| ded
1 1 c,i
F =F = +
imn= Fi({mn) f <i(w—K,m,nv) i(w+k’m'nv”)> (30)
(mp? + %miv?i) 2f the dispersion relation is cast in a simple form
2T, odv (23 4_ 22 2 £ _q
i "~ 02, wgmFmn=0. (32
with mn
w That is,
e (24) 2N q
T wt- 2<Te+ ZTi)E ?Z’G,m,n[(‘l’2 + gkﬂz,m,nv'zr,i)]
V' is defined as follows and approximated: mn "
— 1
1~ — 1 =N _io .2 2 4 2, =
(EV'> - f SirP(mo - ng)\gdedZ ~ (EV')' (25 2 ~i2Vmg §m~“<5m'" *lma” ¥ 2)
In obtaining Eq.(22) and in the following calculation, the XeXP(= ) (32)

integration over(v;,v, ) is made before the integration over o oqtion t9(32) is easily obtained if the imaginary part is
(6,0). Quantities weakly dependent 66, {) are then put out <<, med small compared to the real part:
of the integration and replaced with their mean values with-

out individual mention. 9_ 7_\1_,
The electron contribution is similarly calculated substi- Rew”= %2(T6+ 4T‘>Ti “Gmn
tuting Eq.(11) into Eq.(18). This process may be equivalent '

to adopting an adiabatic electron response and therefore the + § (2 % (K2 Uz_)) (33)
electron contribution to the dissipative part of the response is SR, G.mntlmneT
small. mn
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1 7_\1
“Imo=- (2&)) 1\" 772 wé,m,ngm,n<§m,n4 + gm,n2 Re w2 = 2<Te+ ZTi) m R + g(kl\ m=1n= Ole) (40)
mn I
1 > with
+ E eXF(_ gm,n ) (34) 1 1
o o Kimein0= = (B) ~ —. (41)
The following identities and approximations are used Bo ar

further to simplify Eq.(33): The GAM frequency Eq(40) is different from those

_dv_dddv (Zw)qR referred to in Table | in some details: The numerical fagtor

, in Ref. 1 is explicitly given in Eq(40) giving different val-
ues for electrons and ions. It agrees with Ref. 14 and dis-
agrees with others in the factor multiplied Q. This is at-

!

T dy dpdd B,

VgB?= (qB; + By)/2, (35 tributed to the fact that adiabatic approximation was used for
electrons in this paper and in Ref. 14. It agrees with Ref. 13
gB;+By~qRB, mB,+nB,~ mRB. in the multiplication factor tdl; and disagrees with the oth-

) . - ers, for the drift kinetic equation was used in the two papers.
Here,q is the safety factor and’ is the specific volume. We  The second term in E@40) was not given regard in Refs. 13

define and 14, which however may be important for an accurate
¢ 1 determination of the damping rate.
If,,z 2m)? J ?| V A|dede (36) The damping rate is easily obtained from E85) as
o

-1/2
as an index to the radial wave number. Occasionally, for easy Y=~ Imw=- (2)_1(2<T_1 + Z))
calculation, it is regarded as the circumferential length of the
poloidal cross section of a flux surface.
Using the above approximations, the following simplifi-
cation is made with fairly good accuracy:

— 1
/ 4 2
X \WCUG,m:l,n:Ofm:l,n:O(fmzl,nzo + {100 "'5

Xexq_ gm:l,n:OZ) (42)
W= [E]i _(mBﬁ ”Bﬂ>2 & ma(¥) with
7l m|R? RB 4(1 J27R)?
T=Ti/Te. (43
~ R Ly —— a0 2 20 I2mR)2" (37 In this expression, we find the multiplication factor to the
mn 4(1,/27R) exponent is not as simple as that referred to in the literature.
However, we still consider it less important than the match-
ing parameter on the shoulder of the exponent,
2
I1l. APPLICATIONS OF THE FORMULA TO SPECIFIC _ 2y — w
PROBLEMS % X o) eXp< K met.n= ov$|>
A. Single helicity plasma 7
- . =-exp |- {71+ |gP-¢
1. Application to a tokamak of circular plasma cross 4
section
. . - 14 3\ 2o S 44
For instance, the JIPP T-IU tokamak has circular flux =-exp Tt & Jexp(=a). (44)

surfaces in low beta operations and belongs to the class of _ _ _
single helicity tokamaké* Thus the magnetic field has a The last transformation enables a comparison with @j.

single dominant Fourier component, i.e., toroidal ripple ~ Equation(44) gives a much smaller damping rate than is
estimated using Ed2) due to the larger value in the expo-

Sre1n=o() ~ (28) = 2(r/R). (38  nent in front. Particularly, it is noted that the damping is

The factor of 2 comes from the fact thBE is Eourier ana- weak if the electron temperature is higher than that of ions.

lyzed instead ofB as defined in Eq(11). The coordinate

system used here is the “natural” coordinate defmeaﬂlBy L _ )

—(27TRBp) 2d¢2+r2d02+R2d§2 The Jacobian is theng 2. Application to a straight helical system

=27 (1/B,) =« 1/B, though the magnetic field is not straight. For a straight helical system with single helicity,n)

By using EQ-(37) and assuming,/27=r, Eq. (37) reduces =(M,N), the following results are obtained through similar

to the popular form characterizing GAM, calculations:
T |1 11 &5
~2 i 2 _ 2 M,N
— =, 39 Rew”=2(Te+— T) —MF——
ver {m} R? (39 ¢ ( 4" R 4(,j27R)?

and Eq.(29) reduces to + & (KT, (45)
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MB-NC=2/2 onc=0 Amagnetic line of force tions with H modes, an interesting phenomenon of the di-
verted edge plasma.

B. Mixed helicity systems (application to the
Compact Helical System CHS )

Since a general formula was given by E(®3) and(34),
it is simply applied to specific configurations. The magnetic
MO-Ng=-r  MO-N=-3n/2 field in CHS is approximated as

MO-Nc=xr  MO-NC=3n/2
= B =~ By(1-0.1% cosf+ 0.257 cog260-87) + --+)

FIG. 1. lllustration of a single helicity helical system, which is most easily (49
realized as a straight helical system. A flux surface is shown for a supposed
M=2,N=10 helical system for one toroidal pit¢d<{<2=/N). The pres-  with two dominant Fourier components: helical ripple
sure increment and decrement occur along the IMes-N{=2l7+ /2, ~ 2 ; ; ~
where the geodesic curvature is large. It is also seen that the connectio5rf’?=2’”=8 05p and t.orOId.al rlp.p|65m:1,n=0 OSP Here, the
length is short in a helical system. minor radius index is defined in terms of torqldal flusb as

p=\VD/® s The frequency of the GAM is then easily

obtained from(34),

7 -1/2 — )

mo=- (o)) omndunlant rewr=o{re I 2 4 1 2{ 2]
4 m R 5m:1,n:0
1 2
+{u N2 + —)exp(— 4y NZ) (46) ><< é\mzl,n:o/z)
Sl | |,/27R
with
1 + 52 ~2 {wﬁqzz,nzg(kﬁmzz,nzsv%i)
KimN= B_(MBH— NBY). (47) = Omn
0
~2 2 2

The parameter on the shoulder of the exporigni? has + 01 n=0(K et p=oV T ) - (50)

an important role in determining the intensity of the damp-around p~ 0.6 where measurements were matghe two
ing; if it is reduced to close to unity the damping becomesyjpples have similar sizes and the helical ripple gives a larger

substantial. Since this parameter is the wave phase velocigontribution due to the factor?2By using CHS parameters
relative to the thermal speed of ions, it may be called ther=92 cm and ,~75 cm we have

matching parameter. The matching parameter is transformed

Sz =g | > Sre1n=0/2 |2
as <1 + 22(—’”'”‘8) ) ~5, (—m‘l'”‘ol ) ~0.47. (51
, o2 7 B2 Om=1n=0 (I/27R)
N =17 7 :<T +_> i nehzee T ¢ Thus the GAM oscillation in CHS is estimated to be 1.5
Kim AU 4/ (MB”-NB)R . _ . ) _

T 5 times as high as it would be in a tokamak of circular plasma
- ( -1 Z)i q y: (48) cross section. Though the mechanism is quite different, the

4/N?(MIN)-qg)? GAM frequency is not much different numerically from that

expected for a tokamak of similar size.
For the damping rate, only the helical contribution, i.e.,
rgem,n):(z,s) may be kept:

It is found that, the damping of GAM is stronger in helical
systems than in tokamaks due to the fadtbiN)?. This is
due to the fact that positive and negative geodesic curvatu
appears in toroidal pitch as illustrated in Fig. 1. The accu- _ _ . 7 -2
mulations of ions and electrons occur in a helical system 7~ "~ Ima=-(272\ 7"+, 1
along the line ofM—N¢=2l7+ /2, while it occurs in to- 2 —1/2 12
kamaks along the line of=+ /2. Since the magnetic field Z(M) ) (M)

g g +2
is mostly in the toroidal direction, the connection length, i.e., Om=1n=0 (I/27R)
the inverse of the wave number, scales abl.1At first ob- _
servation, this factor is large making damping stronger. One X \’WZ)é'n,:zynzggmzz,n:8<gmzz,n:84+ Cm=2.n=8
interesting feature is however that the matching parameter
becomes large around the resonance surface, whkre 1 2
-(MI/N)g(¥))~0. Such a resonance surface appears at +§ eXP(= Lme2n=8), (52)
around the last closed flux surface where separatrix and di-
verter exist. It is noted however that this method may not be 1
very accurate near the separatrix due to the adopted formal Kjz2,8= B—(ZBG— 8B°). (53
expansion with respect t,,,. Also, ion orbit losses have to 0
be taken into consideration in order to associate the predicFhe matching parameter is written as

2
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) A o circular tokamaks also belong to this class with B having
Ceopeg ~\ 7 +Z ?ﬁ +& (54) (m=2,n=0) and (m=3,n=0) components corresponding to
q-(2/8)) o . )
ellipticity and triangularity. Thus, the present formula sug-
In this example, substituting~ 2, 71~ 10, £~ 1, we obtain gests an enhancement of damping for them.
1. We recall a tendency in tokamak experiments for the
energy confinement time to be degraded into L-mode scaling
Thus it is supposed that GAM oscillation may be small inas soon as additional heating is applied to Ohmic plasma. A
amplitude, for the damping is substantial. The equilibriumpossible conjecture is that GAM is playing some roles in
used in this section was obtained by use/@vEC code and  regulating turbulence in the Ohmic plasma, but not in the
(6,¢) are those of th&iEMEC coordinate. It gives a narrow additional heating phase wheTé tends to approacfie. In
spectrum dominated by two components: helical and toroidahis paper, GAM oscillation was investigated under the for-
ripples. mal ordering where GAM oscillation is obtained to the order
5r2n’n. While this formalism allows us direct comparison to the
results of work done in the past, it fails to incorporate the
role of trapped ions, newly recognized through this work.

It is interesting to review the obtained formula and its They may play an important role in the low frequency range.
applications to specific problems. Equati(® suggests that The present paper limits its scope to high-frequency zonal
GAM oscillations may be heavily damped in the core of flows by using asymptotic expansions and stays consistent to
tokamaks where thg value is small. Indeed, Ref. 19 reports the adopted approximation. The low frequency range will be
that the GAM oscillation was found only near the edgeinvestigated in a more general way and results will be pub-
whereq is large. In JIPPT-IIU data however, the GAM os- lished as a separate paper.
cillation was found instead in the core region with a larger
amplitude and high cgherency.. The newly obtained formule\/l CONCLUSIONS
shows that the damping rate is much smaller by the extra
factors included in Eqg44). Particularly, our new expression In this paper the theory of GAM was extended to helical
suggests that the damping rate could be effectively smaller ifystems. The GAM oscillation relies for its restoring force on
the electron temperature is large compared to ion temperdhe geodesic curvature, which is given as a scalar function
ture. In the JIPP-T-II U device, a low density Ohmic plasmaover (6,{). Since the GAM oscillation is characterized by
was used wherd@e>3Ti and thus the damping rate is esti- m=0 andn=0, the overall restoring force is just the square
mated to be very smaff. This feature resembles to that of integral of the geodesic curvature oveéiand {. The exten-
the ion acoustic mode, where frequency is determined bgion to helical system may be rather easy after this insight is
electron temperature and therefore the phase velocity of theeached. The obtained GAM frequency is written in terms of
wave can be higher than the thermal speed of ions. Theéhe squared Fourier component of the magnetic field inten-
GAM was found only in the regiom>0.85 in the DIII-D  sity. This form suggests that Parseval’s theorems apply. The
experimeml.9 This result may also be explained by the GAM frequency in a helical system may be higher than that
present model, if NBI was used in the DIlI-D experiment soin a tokamak of similar major radius, for the former relies for
that Te~ Ti. its rotational transform necessarily on the higher harmonic

As to helical systems, it has to be kept in mind that q isnumbers, which are accompanied by larger curvature of the
larger toward the center of the plasma. Applied to the experimagnetic lines of force. It is also found that the damping is
ment in CHS, the formula derived here suggests an evestronger in helical systems than in tokamaks due to the
stronger enhancement of the damping rate due to the fact@horter connection length associated with the larger toroidal
(1/N)2. The new expression suggests also that the connectiamode number. The connection length, however, becomes
length becomes numerically large toward the edge of thdarge in the radial domain satisfying—ng=0 and damping
plasma and that the damping is reduced. Such mechanismis suggested to be weak. In CHS, this layer is outside the
not substantial in CHS but may be operative in Lilarge  plasma and therefore mitigation of damping by this mecha-
Helical Device in National Institute for Fusion Sciender it nism may be small. On the other haria/ Ti is high in CHS
has a separatrix. The electron temperature in CHS may bend supposed to mitigate the damping to a certain level.
ten times larger than ion temperatﬁFeThese effects may However, the damping is still substantial accounting for the
combine to mitigate the strong damping rate of GAM oscil-fact that the GAM oscillation is smaller in amplitude than the
lation. [It is noted however in the core regidray, p<<0.4) residual zonal flows in the lower frequency and smaller than
ripple is dominated by toroidal ripple and the nature of thethe GAM observed in JIPP T-llU. The same formula is ap-
GAM may approach that of tokamaks. Since the safety factoplied to tokamaks of noncircular cross section, regarding
increases toward the center of the plasma conversely to tdhem as presenting a type of multi-helicity problem. Here, it
kamaks, there is another chance of mitigation of damping. also suggests an enhancement of the damping rate due to the

The formula obtained here is in principle applicable topresence of the harmonics with their shorter connection
other classes of devices including multi-helicity: quasi-length.
toroidal, quasi-helical, and iso-dynamical configurations. In  In all the cases considered, the damping rate is small for
some of these cases, full integration may have to be madarge values offe/ Ti. Comparison of the experimental trans-
instead of using approximatior(85) and (36) below. Non-  port coefficients with the damping rate of the GAM in their

2
§m=2,n=8 ~

IV. DISCUSSION



062304-8 Watari et al. Phys. Plasmas 12, 062304 (2005)

radial structure and dependence ©&/Ti may give some  Plasmas4, 4272(1997.

14 .
P ;- K. Hallatschek and D. Biskamp, Phys. Rev. Le®6, 1223(2001).
clues to an assessment of the role of GAM with its shearmgsB' N. Rogers and J. F. Drake, Phys. Rev. Léi®, 229 (1997,

rate in regulating turbulences. 188, N. Rogers, J. F. Drake, and A. Zeiler, Phys. Rev. L8tt, 4396(1998.
YA, B. Hassam and J. F. Drake, Phys. FluidssB4022(1993.
ACKNOWLEDGMENTS 18K Itoh, K. Hallatschek, and S-I. Itoh, Plasma Phys. Controlled Fugign
451 (2005.

The authors acknowledge useful discussions with Dr. M°G. R. Mackee, R. J. Fonck, M. Jakubowski, K. H. Burrell, K. Hal-
Isobe at NIES. Dr. Y. Zhao at ASIPP, Dr. J Dong at SWIP lastschek, R. A. Moyer, W. Nevins, D. L. Rudakov, and X. Xu, Plasma
. LT D e ". Phys. Controlled Fusiom5, A477 (2003.
Thls work |s_partly _supported by JSPS-CAS que lJn"ZOP. M. Schoch, K. A. Conner, D. R. Demers, and X. Zhang, Rev. Sci.
versity Program in the field dplasma and nuclear fusipas Instrum. 74, 1846(2003.
well as JSPS Grant-in-Aid for Scientific Research®Y. W. Tsui, P. M. Schoch, and A. J. Wootton, Phys. Fluids5 1274

[15206107. The author thanks Dr. T. Notake for preparation ,,1993-

Y. Hamada, A. Nishizawa, T. Ido, T. Watari, M. Kojima, K. Kawasumi, K.

of the illustration(Fig. 1). Narihara, K. Toi, and JIPP T-IlU Group, Nucl. Fusio#, 81 (2005.
2Y. Hamada, N. Nishizawa, Y. Kawasumi, A. Fujisawa, H. Iguchi, and JIPP
IN. Winsor, J. L. Johnson, and J. M. Dawson, Phys. Fluids 2448 T-1IU Group, Fusion Eng. Des34-35 663(1997).

(1968. 2T, 1do, Y. Miura, K. Hoshino, Y. Hamada, Y. Nagashima, H. Ogawa, K.
2A. Hasegawa and M. Mima, Phys. Fluiddl, 87 (1978. Shinohara, K. Kamiya, A. Nishizawa, Y. Kawasumi, Y. Kusama, and
SA. Hasegawa and M. Wakatani, Phys. Rev. L&®, 1581(1987). JFT-2M Group, “Electrostatic fluctuation and fluctuation-induced particle
P. H. Diamond, S. Champeaux, M. Malket al, Nucl. Fusion41, 1067 flux during formation of the edge transport barrier in the JFT-2M toka-

(2002). mak,” in CD Proceedings of the 20th IAEA Conference on Fusion Energy
5K. Itoh and S-I. Itoh., Plasma Phys. Controlled Fusi88, 1 (1996. 2004, Portugal, IAEA, EX/4-6Rb.
5T. S. Hahm, M. A. Beer, Z. Lin, G. W. Hammett, W. W. Lee, and W. M. 2°A. Fujisawa, K. Itoh, H. Iguchét al, Phys. Rev. Lett93, 165002(2004).
Tang, Phys. Plasmas8, 922(1999. M. G. Shats and W. M. Solomon, Phys. Rev. Le88, 045001(2002).

“A. M. Dimits, T. J. Williams, J. A. Byers, and B. |. Chohen, Phys. Rev. 2’G. S. Xu, B. N. Wan, M. Song, and J. Li, Phys. Rev. L&, 125001

Lett. 77, 71 (1996. (2003.
8B. Scot, Phys. Plasmag 1845(2000. %G. D. Conway, B. Scott, J. Schirmer, M. Reich, A. Kendl, and ASDEX
°T. S. Hahm, K. H. Burrel, Z. Lin, R. Nazikian, and E. J. Synakovskii, Upgrade Team, “Direct measurement of zonal flows and geodesic acoustic

Plasma Phys. Controlled Fusict2, A205 (2000. moddGAM) oscillations in ASDEX upgrade using doppler reflectom-
1OM. Ramisch, U. Stroth, S. Niedner, and B. Scott, New J. PHysl2.1 etry,” in CD Proceedings of 31st EPS Conference on Controlled Fusion

(2003. and Plasma Physi¢s2004, European Physical Society, London, paper,
P, H. Diamond, S.-I. Itoh, K. ltoh, and T. S. Hahm, to be published in P4.124.

Plasma Phys. Controlled Fusion. 2°T.10 Team, “Transport and turbulence studies in the T-10 tokamalchin
12T, S. Hahm, Plasma Phys. Controlled Fusié# A87 (2002. Proceedings of the 19th IAEA Conference on Fusion Ene&2992, Lyon,

133, V. Novakovskii, C. S. Liu, R. Z. Sagdeef, and M. N. Rosenbluth, Phys. IAEA, paper OV/5-2.



