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A gyrokinetic system of equations for turbulent toroidal plasmas in time-dependent

axisymmetric background magnetic fields is derived from the variational principle. Besides

governing equations for gyrocenter distribution functions and turbulent electromagnetic fields,

the conditions which self-consistently determine the background magnetic fields varying on a

transport time scale are obtained by using the Lagrangian, which includes the constraint on the

background fields. Conservation laws for energy and toroidal angular momentum of the whole

system in the time-dependent background magnetic fields are naturally derived by applying

Noether’s theorem. It is shown that the ensemble-averaged transport equations of particles,

energy, and toroidal momentum given in the present work agree with the results from the

conventional recursive formulation with the WKB representation except that collisional effects

are disregarded here. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4863426]

I. INTRODUCTION

Numerous studies have so far been done based on

gyrokinetic theories and simulations in order to investigate

microinstabilities, turbulence, and transport processes in

magnetically confined plasmas.1–4 In conventional gyroki-

netic studies, the gyrocenter phase-space variables are

defined by using the background magnetic confinement field

that is assumed to be independent of time. Recently, several

works have been trying to perform long-time gyrokinetic

turbulent transport simulations including evolutions of

equilibrium profiles5,6 although they still use the above-

mentioned assumption. However, the background or equilib-

rium magnetic field changes along with the pressure profile

on the transport time scale. Therefore, in order to accurately

describe the long-time behaviors of the gyrokinetic turbu-

lence, we need to treat the time-dependent background field

and show how to determine its time dependence. In this

work, the gyrokinetic field theory7 is extended to derive the

conditions which determine the time-dependent magnetic

confinement fields in axisymmetric toroidal systems.

Basic equations for a wide range of physical systems

including plasmas can be derived from the variational princi-

ple, which is useful to elucidate conservation properties.8

Noting that the gyrokinetic model is an approximate

representation of the Vlasov-Poisson-Ampère equations, their

conservation laws were investigated by the variational princi-

ple in our previous work,9 where it was shown how they

differ from those for the full Vlasov-Maxwell system. In the

gyrokinetic field theory, all equations which govern gyrocen-

ter distribution functions and electromagnetic fields, are

derived by applying the variation principle to the action inte-

gral of the Lagrangian, for the turbulent magnetized plasma

system consisting of particles and fields.7,10 Therefore,

Noether’s theorem8 can be utilized to elegantly derive various

conservation laws from the symmetry properties of the sys-

tem. Especially, the toroidal momentum conservation law has

been actively investigated in recent works based on the gyro-

kinetic field theory because the toroidal momentum transport

is deeply connected to one of critical issues for plasma con-

finement studies, which is how to accurately predict profiles

of toroidal flows and radial electric fields in tokamaks.4,11–17

Regarding these conservation laws, they have also been

derived from the conventional drift kinetic and gyrokinetic

equations based on the recursive formulation.14–16,18 In the

present paper, not only the particle, energy, and toroidal

momentum conservation laws in the time-dependent back-

ground fields are naturally derived from the extended gyroki-

netic field theory but also their ensemble averages are taken

with the help of the WKB representation19 in order to eluci-

date the consistency between the present results and those

from the conventional recursive formulation.

The rest of this paper is organized as follows. Section II

presents the action integral of the Lagrangian, from which

all governing equations for the gyrocenter motion, distribu-

tion functions, turbulent electromagnetic fields, and the time-

dependent equilibrium field are derived in Sec. III using the

variational principle. It should be noted that, in the present

formulation as well as in other Lagrangian and Hamiltonian

formulations, we do not treat effects of collisions and exter-

nal sources such as heating and torque terms, which remain

as future subjects. In Sec. IV, useful formulas for the gyro-

center densities and the polarization density are derived from

the gyrokinetic Vlasov and Poisson equations obtained in

Sec. III. In Sec. V, we consider general infinitesimal trans-

formations of all variables included in the Lagrangian, and

find the expression for the resultant variation of the action

integral, which gives a general form of conservation laws as

a result of Noether’s theorem. Then, as specific examples,

conservation laws of energy and toroidal angular momentum

are derived from the invariances of the system under the

time translation and the toroidal rotation. These conservation

laws are ensemble-averaged in Sec. VI with the scale separa-

tion technique using the WKB representation. Then, the
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resultant ensemble-averaged particle, energy, and toroidal

moment transport equations, which are of the second order

in the normalized gyroradius, are shown to agree with the

conventional results except that the collisional effects are

disregarded in the present results. Finally, conclusions are

given in Sec. VII.

II. LAGRANGIAN

All governing equations for the gyrokinetic system con-

sidered here is derived from the variational principle

dI � d
ðt2

t1

Ldt ¼ 0; (1)

where I denotes the action integral and d represents the vari-

ation. The Lagrangian L is written as

L ¼
X

a

ð
d6Z0 DaðZ0ÞFaðZ0; t0Þ

� La½ZaðZ0; t0; tÞ; _ZaðZ0; t0; tÞ; f/;A0;A1g�

þ
ð

d3xLf ; (2)

where Lf represents the Lagrangian density associated with

electromagnetic fields [see Eq. (14)]. The single-particle

Lagrangian La for particle species a is written in terms of the

gyrocenter coordinates Za ¼ ðZi
aÞi¼1;���;6 ¼ ðXa;Ua; la; naÞ as

LaðZ; _Z; /;A0;A1f gÞ ¼ ea

c
A�a � _Xa þ

mac

ea
la

_na � Ha; (3)

where Xa, Ua, la, and na denote the gyrocenter position,

parallel velocity, magnetic moment, and gyrophase angle,

respectively, _� d=dt represents the time derivative, and A�a
is defined by

A�a ¼ A0ðXa; tÞ þ
mac

ea
UabðXa; tÞ: (4)

[It is noted that, in Ref. 7, the gyrocenter coordinates are

denoted by Za ¼ ðXa;Ua; la; naÞ instead of Za

¼ ðXa;Ua; la; naÞ.] Here, the vector potential A0 is associ-

ated with the equilibrium magnetic field B0 ¼ r� A0,

which is assumed to be time-dependent, and the gyrocenter

Hamiltonian, which is independent of na, given by

Ha ¼
1

2
maU2

a þ laB0 þ eaWa; (5)

with

Wa ¼hwaðZa; tÞina
þ ea

2mac2
hjA1ðXa þ qa; tÞj2ina

� ea

2B0

@

@l
h½~waðZa; tÞ�2ina

: (6)

Here and hereafter, the gyrophase-average and gyrophase-

dependent parts of an arbitrary periodic gyrophase function

Q(na) are written as

hQina
�
þ

dna

2p
QðnaÞ and ~Q � Q� hQina

; (7)

respectively. On the right-hand side of Eq. (6), the gyrora-

dius vector is given by qa ¼ bðXa; tÞ � va0ðZa; tÞ=XaðXa; tÞ
with the gyrofrequency Xa ¼ eaB0=ðmacÞ, and the field vari-

able wa is defined by

waðZa; tÞ ¼/ðXaþqa; tÞ�
1

c
va0ðZa; tÞ �A1ðXaþqa; tÞ; (8)

where / and A1 denote the electrostatic potential and the

perturbation part of the vector potential, respectively. The

zeroth-order particle velocity va0 is written in terms of the

gyrocenter coordinates as

va0ðZa; tÞ ¼UabðXa; tÞ � ½2laB0ðXaÞ=ma�1=2

� ½sin na e1ðXa; tÞ þ cos na e2ðXa; tÞ�; (9)

where the unit vectors e1, e2, and b � B0=B0 form a

right-handed orthogonal system.

On the right-hand side of Eq. (2),
Ð

d6Z0 �
Ð

d3X0

Ð1
�1

dU0

Ð1
0

dl0

Ð 2p
0

dn0 represents the integral with respect to the

initial gyrocenter coordinates Z0 � ðX0;U0; l0; n0Þ;
FaðZ0; t0Þ denotes the distribution function for species a at

an arbitrarily specified initial time t0, and the Jacobian is

given by

DaðZ0; t0Þ � B�akðZ0; t0Þ=ma; (10)

where B�ak � B�a � b and B�a is defined by

B�aðZa; tÞ � r�A�a ¼ B0ðXa; tÞ þ ðmac=eaÞUar� bðXa; tÞ;
(11)

with r ¼ @=@Xa. The gyrocenter coordinates of the particle

at the time t are denoted by ZaðZ0; t0; tÞ which satisfy the

initial condition

ZaðZ0; t0; t0Þ ¼ Z0: (12)

Poisson brackets are determined from the single-particle

Lagrangian in Eq. (3). The nonvanishing components of the

Poisson brackets for pairs of the gyrocenter coordinates are

given by

Xa;Xaf g ¼ c

eaB�ak
b� I; Xa;Uaf g ¼ B�a

maB�ak
;

na; laf g ¼ ea

mac
; (13)

where I � e1e1 þ e2e2 þ bb represents the unit dyadic.

The last integral term on the right-hand side of Eq. (2) is

associated with the electromagnetic fields and the

Lagrangian density Lf is defined by

Lf ¼
1

8p
jr/ðxÞj2 � jr � ½A0ðx; tÞ þ A1ðx; tÞ�j2
� �

þ 1

4pc
kðx; tÞr � A1ðx; tÞ þ LB0; (14)
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where

LB0 ¼
1

4p
Kðx; tÞ � ½B0ðx; tÞ � Irf�rf�rv�

þ 1

4pc
aðx; tÞr � A0ðx; tÞ (15)

is newly introduced to impose constraint conditions on the

equilibrium magnetic field that is axisymmetric and time-

dependent [see also Eq. (30)]. Here, I and v represent the

covariant toroidal component of B0 and poloidal magnetic flux

divided by 2p, respectively, and f is the toroidal angle coordi-

nate. Here, I and v are both independent of f and they are writ-

ten as I ¼ Iðv; tÞ and v ¼ vðR; zÞ where the right-handed

cylindrical spatial coordinates (R, z, f) are employed.

The last two terms in Eq. (6) give the perturbation to the

Hamiltonian on the second order in the parameter d¼q/L
given by the ratio of the gyroradius to the equilibrium scale

length L. We retain these second-order perturbation terms

here because they influence the gyrokinetic Poisson equation

and/or Ampère’s law derived in Sec. III to the lowest order

in d. However, in this work, we neglect all other second-

order terms. The second-order correction terms21,22 to define

the difference between the particle and gyrocenter positions

are not considered here. In order to avoid a secular deviation

of the particle position from the gyrocenter in a long time

gyrokinetic simulation, Wang and Hahm20 considered the

correction due to the fluctuating E�B velocity in the defini-

tion of the gyrocenter position and included the polarization

drift in the gyrocenter equations of motion, which are not

retained in this work either. Besides, A�a defined in Eq. (4)

does not contain the gyrogauge-dependent term which is of

the second order in d.21 In spite of these facts, we see that

the second-order transport equations for particles, energy,

and toroidal momentum shown in Sec. VI are not influenced

by these second-order terms neglected in the present paper.

III. GYROKINETIC EQUATIONS

In this section, governing equations for the gyrocenter

motion, distribution functions, turbulent electromagnetic

fields, and the time-dependent equilibrium field are all

derived from the variational principle using the Lagrangian

shown in Eq. (2). In the derivation, variational variables are

assumed to be fixed at the boundaries of the integral regions.

A. Gyrocenter motion equations and gyrokinetic
Vlasov equation

The gyrocenter motion equations are obtained from

dI=dZa ¼ 0 as

dZa

dt
¼ Za;Haf g þ Za;Xaf g � ea

c

@A�a
@t

; (16)

which are rewritten as

dXa

dt
¼ 1

B�ak
Ua þ

ea

ma

@Wa

@Ua

� �
B�a

�

þ cb� la

ea
rB0 þrWa þ

1

c

@A�a
@t

� ��
; (17)

dUa

dt
¼ � B�a

maB�ak
� larB0 þ ea rWa þ

1

c

@A�a
@t

� �� �
; (18)

dla

dt
¼ 0; (19)

and

dna

dt
¼ Xa þ

e2
a

mac

@Wa

@la

; (20)

where the effects of the vector potential for the time-

dependent background magnetic field appear through the

terms proportional to @A�a=@t and the fluctuating electromag-

netic fields are included in the potential Wa.

The distribution function Fa(Z, t) for the time t is deter-

mined by

DaðZ; tÞFaðZ; tÞ ¼
ð

d6Z0 DaðZ0; t0ÞFaðZ0; t0Þ

� d6½Z� ZaðZ0; t0; tÞ�; (21)

where d6ðZ�ZaÞ¼ d3ðX�XaÞdðU�UaÞdðl�laÞd½n�na

ðmod2pÞ�.
Since Eqs. (16)–(20) are independent of the gyrophase na,

XaðZ0; t0; tÞ; UaðZ0; t0; tÞ, and laðZ0; t0; tÞ are all independent

of the initial gyrophase n0. The Jacobian Da is also

gyrophase-independent. Then, we find from Eq. (21) that, if Fa

is initially gyrophase-independent, it is gyrophase-independent

at any time. Hereafter, we assume without loss of generality

that Fa is gyrophase-independent, @FaðZ; tÞ=@n ¼ 0. Noting

that the Jacobian Da � B�ak=ma is time-dependent, we see that

the gyrocenter phase-space conservation law is given by

@DaðZ; tÞ
@t

þ @

@Z
� DaðZ; tÞ

dZa

dt
ðZ; tÞ

� �
¼ 0; (22)

where ðdZa=dtÞðZ; tÞ represents the value of the right-hand

side of Eq. (16) evaluated at the gyrocenter position Z and

the time t. From Eqs. (16) and (21), we have the gyrokinetic

Vlasov equation in the conservation form

@

@t
DaFað Þ þ @

@Z
� DaFa

dZa

dt

� �
¼ 0; (23)

which is rewritten with the help of Eq. (22) in the convection

form

@

@t
þ dZa

dt
� @
@Z

� �
FaðZ; tÞ ¼ 0: (24)

B. Equations for electromagnetic fields

The Coulomb gauge conditions r � A1 ¼ 0 and

r � A0 ¼ 0 for the perturbation and equilibrium parts of the

vector potential are derived from dI=dk ¼ 0 and dI=da
¼ 0, respectively. The gyrokinetic Poisson equation is

obtained from dI=d/ ¼ 0 as
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r2/ðx; tÞ ¼ � 4p
X

a

ea

ð
d6Z DaðZ; tÞd3ðXþ qa � xÞ

� FaðZ; tÞ þ
ea

~wa

B0

@Fa

@l

" #
: (25)

From dI=dA1 ¼ 0, we obtain

r2ðA0 þ A1Þ �
1

c
rk ¼ � 4p

c
jG; (26)

where the gyrokinetic current density is defined by

jG �
X

a

ea

ð
d6ZDaðZÞd3½Xþ qaðZÞ � x�

� FaðZ; tÞ va0ðZÞ �
ea

mac
A1ðXþ qaðZÞ; tÞ

� ��

þ ea
~wa

B0

@Fa

@l
va0ðZÞ

!
: (27)

Note that any vector field a can be expressed as a ¼ aL þ aT ,

where aL��ð4pÞ�1r
Ð

d3x0ðr0 �aÞ=jx�x0j and aT�ð4pÞ�1r
�ðr�

Ð
d3x0a=jx�x0jÞ represent the longitudinal (or irrota-

tional) and transverse (or solenoidal) parts, respectively.23

Then, the longitudinal and transverse parts of Eq. (27) are

written as

rk ¼ 4pðjGÞL (28)

and

r2ðA0 þ A1Þ ¼ �
4p
c
ðjGÞT ; (29)

respectively. Equation (29) represents the gyrokinetic

Ampère’s law.

From dI=dK ¼ 0, the equilibrium magnetic field B0 is

given in the axisymmetric form as

B0 ¼ Irfþrf�rv: (30)

The equilibrium vector potential A0, which satisfies the

Coulomb gauge condition and Eq. (30) with B0 ¼ r� A0,

is given by

A0 ¼ �vrfþ AP0; (31)

with

AP0 ¼ rf�rg; (32)

where g ¼ gðR; ZÞ is the solution of

D�g � R2r � ðR�2rgÞ ¼ I: (33)

The conditions for K are derived from dI=dv ¼ 0 and

dI=dI ¼ 0 as

ðr � KÞf ¼ @I

@v
Kf ; (34)

and

hKfi ¼ 0; (35)

respectively, where the toroidal-angle and flux-surface aver-

ages are defined by � � � � ð2pÞ�1Þ � � � df and h� � �i � ð2pÞ�2Þ ffiffiffi
g
p Þ

� � � dhdf, respectively, and the Jacobian for the flux

coordinates (v, h, f) is given by

ffiffiffi
g
p ¼ ½rv � ðrh�rfÞ��1 ¼ R2q

I
: (36)

Here, h denotes the poloidal angle and q � B0 � rf=B0 � rh

is the safety factor. We use the superscript ð� � �Þf and the

subscript ð� � �Þf to represent the contravariant and covariant

toroidal components, respectively: Kf � K � rf and Kf

� K � @x=@f � K � R2rf.

We also find that dI=dA0 ¼ 0 yields

r2ðA0 þ A1Þ þ r � K� 1

c
raþ 4p

c
ðjðgcÞ þ r �MÞ ¼ 0;

(37)

where the gyrocenter current is written as

jðgcÞ ¼
X

a

eanðgcÞ
a uðgcÞ

a : (38)

Here, the gyrocenter density nðgcÞ
a and the gyrocenter fluid

velocity uðgcÞ
a are defined by

nðgcÞ
a ðX; tÞ ¼ 2p

ð
dU

ð
dl DaðX;U; tÞFaðX;U; l; tÞ; (39)

and

nðgcÞ
a uðgcÞ

a ¼ 2p
ð

dU

ð
dl DaFavðgcÞ

a ; (40)

where the gyrocenter drift velocity vðgcÞ
a ¼ dXa=dt is given

by evaluating the right-hand side of Eq. (17) at (X, U, l).

The last term on the left-hand side of Eq. (37) represents the

magnetization current. The magnetization is defined by

M ¼
X

a

Ma; (41)

with

Ma ¼ c

ð
dU

ð
dl
ð

dn DaFa �lbþ maU

B0

ðvðgcÞ
a Þ? � Na

� �
;

(42)

where

Na ¼ eahDBwain þ
e2

a

2mac2
hDBðjA1j2Þin

þ e2
a

2B2
0

b
@

@l
hð ~waÞ

2in �
e2

a

B0

@

@l
h ~waDBwain;

DBwa ¼�
1

B0

1

2
bqa þ qab

� �
� r/�rA1 �

va0

c

� �"

þU

c
A1? þ

1

c

1

2
bva0? � va0?b

� �
� A1�;

DBðjA1j2Þ ¼ �
1

B0

1

2
bqa þ qab

� �
� rðjA1j2Þ; (43)
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and the perpendicular component of an arbitrary vector a is

denoted by a? � ðb� aÞ � b.

In the same way as in Eqs. (26)–(29), Eq. (37) is divided

into the longitudinal part

� 1

c
raþ 4p

c
ðjðgcÞÞL ¼ 0; (44)

and the transverse part

r2ðA0 þ A1Þ þ r � Kþ 4p
c
ððjðgcÞÞT þr�MÞ ¼ 0: (45)

Equation (45) gives the gyrokinetic Ampère’s law in a differ-

ent form from Eq. (29). The two different expressions of

the gyrokinetic Ampère’s law are necessary to determine

the equilibrium and perturbation parts of the magnetic field

separately. We define B(gc) as the magnetic field produced by

ðjðgcÞÞT

r� BðgcÞ ¼ 4p
c
ðjðgcÞÞT ; (46)

from which we obtain

1ffiffiffi
g
p

@ðBðgcÞÞf
@h

¼ 4p
c
ðjðgcÞÞT � rv;

1ffiffiffi
g
p

@ðBðgcÞÞf
@v

¼ � 4p
c
ðjðgcÞÞT � rh:

(47)

Then, using Eqs. (30) and (45), we have

Kf ¼ I � 4p
c

Mf � ðBðgcÞÞf þ B1f ; (48)

which is combined with Eqs. (35) and (36) to obtain

I ¼
þ

dh
2p

4p
c

Mf þ ðBðgcÞÞf � B1f

� �
: (49)

Using Eq. (34) and taking the f-average of the toroidal com-

ponent of Eq. (45) gives

D�v ¼
4p
c
½ðjðgcÞÞT þr�M� � r � B1

� �
� R2rf þ @I

@v
Kf :

(50)

The time-dependent axisymmetric background field B0 [see

Eq. (30)] can be self-consistently determined by using Eqs.

(49) and (50), in which effects of the turbulent current and

fields are included. The well-known Grad-Shafranov equa-

tion [see, for example, Sec. 3.10 of Ref. 19] corresponds to

the lowest-order part of Eq. (50) in the d-expansion. In fact,

on the zeroth order, turbulent fluctuations are neglected,

Kf ¼ 0 holds, and the zeroth-order current j0 ¼ ðjðgcÞÞT
þr�M satisfies the MHD equilibrium condition, c�1j0

�B0 ¼ rð
P

a na0Ta0Þ, where na0 and Ta0 denote the

zeroth-order density and temperature for species a [see

Eq. (116)], respectively. Then, using Eqs. (46)–(50) to

express j0 � rh and j0 � rf in terms of @I=@v and D�v,

respectively, and substituting them into the radial component

of the MHD equilibrium condition yield the Grad-Shafranov

equation. This derivation of the Grad-Shafranov equation is

based on the low-flow ordering used in the present work; the

magnitude of the background E�B drift velocity uE is

assumed to be on the same order as that of the diamagnetic

drift velocity given by the thermal velocity vT times d¼ q/L.

When the high-flow ordering uE ¼ OðvTÞ is used, the

large-amplitude radial electric field modifies the gyrokinetic

equations,24–26 and accordingly makes the momentum con-

servation law different from the one shown in the present

work.

In summary, for the present model, Eqs. (24), (25), (26),

(49), and (50) constitute the closed system of governing

equations which determine Fa, /, A1, I, and v (A0 and B0 are

determined from I and v). It should be noted that these gov-

erning equations do not contain the other field variables k, a,

and K, which are included in the Lagrangian, Eq. (2), as

the Lagrange undetermined multipliers associated with the

constraint conditions for A1, A0, and B0. If we fix the back-

ground magnetic field, we can eliminate Eqs. (49)–(50), and

Eqs. (24)–(26) form the closed system equations for Fa, /,

and A1 as obtained in the previous gyrokinetic formulations.

For the case of the electrostatic turbulence, A1 is neglected,

Eq. (26) is not used, and the reduced set of equations is given

by Eqs. (24), (25), (49), and (50) which determine Fa, /, I,
and v. These equations can be used to describe the gyroki-

netic system, in which the time evolutions of equilibrium

profiles are dominated by the electrostatic turbulent transport

while there are slow variations of the background magnetic

field to be consistent with the evolving profiles.

IV. GYROCENTER DENSITIES AND POLARIZATION

Integrating the gyrokinetic Vlasov equation, Eq. (23),

with respect to the velocity-space coordinates (U, l, n), we

immediately obtain

@nðgcÞ
a

@t
þr � nðgcÞ

a uðgcÞ
a

� �
¼ 0; (51)

where nðgcÞ
a and uðgcÞ

a are defined in Eqs. (39) and (40). The

delta-function part appearing in Eq. (25) is rewritten as

d3ðXþ qa � xÞ ¼
X1
n¼0

1

n!

X
i1;���;in

qai1 � � �qain

@nd3ðX� xÞ
@Xi1 � � �@Xin

; (52)

which is a useful formula to represent effects of finite gyrora-

dii. Several numerical schemes to evaluate the phase-space

integral including d3ðXþ qa � xÞ as seen in Eq. (25) have

been devised for gyrokinetic turbulence simulation.27–29

Substituting Eq. (52) into Eq. (25) and rewriting x as X, the

gyrokinetic Poisson equation is rewritten as

r � EL ¼ 4p
X

a

eanðgcÞ
a �r � PðpolÞ

� �
; (53)

where EL ¼ �r/; r ¼ @=@X, and PðpolÞ represent the

polarization density defined by
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PðpolÞ ¼
X

a

ea

X1
n¼1

ð�1Þn�1

n!

X
i1;���;in

ð
dU

ð
dl
ð

dn

�
@n�1ðDaF�aqaqai1 � � � qain�1

Þ
@Xi1 � � � @Xin�1

: (54)

Here, qai denotes the ith Cartesian component of

qa ¼ bðX; tÞ � va0ðZ; tÞ=XaðX; tÞ, and

F�a ¼ Fa þ
ea

~wa

B0

@Fa

@l
: (55)

We can also rewrite P
(pol) as

PðpolÞ ¼ Pg þ Pw; (56)

where

Pg ¼ �
X

a

ea

X1
l¼1

1

ð2lÞ!
X

i1;���;i2l�1

ð
dU

ð
dl
ð

dn

�
@2l�1ðDaFaqaqai1 � � � qai2l�1

Þ
@Xi1 � � � @Xi2l�1

(57)

and

Pw ¼
X

a

e2
a

B0

X1
n¼1

ð�1Þn�1

n!

X
i1;���;in

ð
dU

ð
dl
ð

dn

�
@n�1½Da

~wað@Fa=@lÞqaqai1 � � � qain�1
�

@Xi1 � � � @Xin�1

: (58)

We see that the Pw represents the polarization caused by the

field w and that the charge density (at the position X) for the

case of w ¼ 0 is given by

X
a

eanðgcÞ
a �r � Pg ¼

X
a

ea

ð
d6Z0DaðZ0; tÞFaðZ0; tÞ

� d3ðX0 þ qa � XÞ; (59)

which shows that the particle charge density should be eval-

uated from the gyrocenter charge density with keeping the

corrections due to finite gyroradii.

Using Eqs. (38) and (51), we find

@

@t

X
a

eanðgcÞ
a

� �
þr � jðgcÞ ¼ 0: (60)

Equation (53) is rewritten as

X
a

eanðgcÞ
a ¼ r � EL

4p
þ PðpolÞ

� �
; (61)

which is substituted into Eq. (60) to obtain

j
ðgcÞ
L ¼ � @

@t

EL

4p
þ P

ðpolÞ
L

� �
: (62)

Thus, the longitudinal part j
ðgcÞ
L of the gyrocenter current is

equal to the minus sign of the longitudinal part of the

displacement current plus the polarization current. Then,

using Eqs. (60) and (62), we find that the useful formula

@

@t
A
X

a

eanðgcÞ
a

� �* +
þ r � Aj

ðgcÞ
L

� �	 


¼ @A
@t

X
a

eanðgcÞ
a

* +
þ hjðgcÞ

L � rAi;

¼ r � @A
@t

EL

4p
þ P

ðpolÞ
L

� �� �	 


� @

@t

EL

4p
þ P

ðpolÞ
L

� �
� rA

� �	 

; (63)

holds for any function AðX; tÞ. The relation in Eq. (63) is

used in Sec. V B to derive Eq. (101).

V. CONSERVATION LAWS

In this section, conservation laws for energy and toroidal

angular momentum are derived from Noether’s theorem in

the way similar to that in Ref. 9. First, we consider general

infinitesimal transformations of the Eulerian field variables

given as function of (x, t)

t0 ¼ tþ dtEðx; tÞ;
x0 ¼ xþ dxEðx; tÞ;

/0ðx0; t0Þ ¼ /ðx; tÞ þ d/ðx; tÞ;
A01ðx0; t0Þ ¼ A1ðx; tÞ þ dA1ðx; tÞ;
A00ðx0; t0Þ ¼ A0ðx; tÞ þ dA0ðx; tÞ;
k0ðx0; t0Þ ¼ kðx; tÞ þ dkðx; tÞ;
a0ðx0; t0Þ ¼ aðx; tÞ þ daðx; tÞ;
K0ðx0; t0Þ ¼ Kðx; tÞ þ dKðx; tÞ:

(64)

Here, dtE and d xE are generally functions of (x, t) while

d/; dA1; dA0; dk; da, and dK are produced by the variations

in their functional forms and those in the variables (x, t)

d/ðx; tÞ ¼ d/ðx; tÞ þ dtE @t/þ dxE � r/;

dA1ðx; tÞ ¼ dA1ðx; tÞ þ dtE @tA1 þ dxE � rA1;

dA0ðx; tÞ ¼ dA0ðx; tÞ þ dtE @tA0 þ dxE � rA0;

dkðx; tÞ ¼ dkðx; tÞ þ dtE @tkþ dxE � rk;

daðx; tÞ ¼ daðx; tÞ þ dtE @taþ dxE � ra;

dKðx; tÞ ¼ dKðx; tÞ þ dtE @tKþ dxE � rK;

(65)

where d/ðx; tÞ ¼ /0ðx; tÞ � /ðx; tÞ; dA1ðx; tÞ ¼ A01ðx; tÞ
�A1ðx; tÞ; dA0ðx; tÞ ¼ A00ðx; tÞ � A0ðx; tÞ, dkðx; tÞ ¼ k0ðx; tÞ
�kðx; tÞ; daðx; tÞ ¼ a0ðx; tÞ � aðx; tÞ; dKðx; tÞ ¼ K0ðx; tÞ
�Kðx; tÞ, and the second-order variation terms are neglected.

Infinitesimal transformations of the axisymmetric functions

v and I associated with the equilibrium magnetic field are

given by

v0ðR0; z0; t0Þ ¼ vðR; z; tÞ þ dvðR; z; tÞ;
I0ðv0ðR0; z0; t0Þ; t0Þ ¼ IðvðR; z; tÞ; tÞ þ dIðR; z; tÞ;

(66)
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where R0 ¼ Rðx0Þ and z0 ¼ zðx0Þ represent the R and z coordi-

nates of the position x0. Then, dvðR; z; tÞ and dIðR; z; tÞ are

written as

dvðR; z; tÞ ¼ dvðR; z; tÞ þ dtE @tvþ dR @Rvþ dz @zv;

dIðR; z; tÞ ¼ dIðR; z; tÞ þ dtE @tIðv; tÞ þ dv @vIðv; tÞ;
(67)

where dvðR; z; tÞ ¼ v0ðR; z; tÞ � vðR; z; tÞ; dIðR; z; tÞ ¼
I0ðvðR; z; tÞ; tÞ �IðvðR; z; tÞ; tÞ; dR ¼ R0 � R, and dz ¼ z0 � z.

We also consider the following infinitesimal transforma-

tions based on the Lagrangian description using ðZ0; t0; tÞ as

independent variables

t0 ¼ tþ dtaðZ0; t0; tÞ;
Z0aðZ0; t0; t0Þ ¼ ZaðZ0; t0; tÞ þ dZaðZ0; t0; tÞ;

(68)

where the Lagrangian variations dta and dXa are related to

the Eulerian variations dtE and dxE by

dtaðZ0; t0; tÞ ¼ dtEðXaðZ0; t0; tÞ; tÞ;
dXaðZ0; t0; tÞ ¼ dxEðXaðZ0; t0; tÞ; tÞ:

(69)

Similar to Eqs. (65) and (67), dZa is caused by the variations

in their functional forms and the variation dta

dZaðZ0; t0; tÞ ¼ dZaðZ0; t0; tÞ þ dta @tZaðZ0; t0; tÞ; (70)

where dZaðZ0; t0; tÞ ¼ Z0aðZ0; t0; tÞ � ZaðZ0; t0; tÞ. Recall

that, in Sec. III, the governing equations for Za, /, A1, A0, k, a,

and K are derived as Euler-Lagrange equations from dI ¼ 0

by considering only the variations in the functional forms

which are assumed to vanish on the integral boundaries. On the

other hand, when the variations given by Eqs. (64)–(70) are

taken about the solutions of the Euler-Lagrange equations, the

variation dI of the action integral does not generally vanish

but it is written as

dI ¼ dI p þ dIpf þ dI f ; (71)

where

dI p ¼
X

a

ð
dt

ð
d6Za0DaðZa0; t0ÞFaðZa0; t0Þ

� @

@t
La �

@La

@ð@tZaÞ
� @tZa

� �
dta þ

@La

@ð@tZaÞ
� dZa

� �
;

(72)

dIpf ¼
X

a

ð
dt

ð
d6Zr �

�
DaðZ; tÞFaðZ; tÞdA0

� �lbþmaU

B0

ðvðgcÞ
a Þ? � Na

� �
� dRa

�
; (73)

and

dI f ¼
ð

dt

ð
d3x

@

@t
Lf dtE
� �

þr � � @Lf

@ðr/Þ @t/

�
þ
X1

n¼0

X3

k¼1

@Lf

@ðrAnkÞ
@tAnk þ

@Lf

@ðrvÞ @tv

" !
dtE þ Lf dxE

� @Lf

@ðr/Þr/þ
X1

n¼0

X3

k¼1

@Lf

@ðrAnkÞ
rAnk þ

@Lf

@ðrvÞrv

 !
� dxE

þ @Lf

@ðr/Þ d/þ
X1

n¼0

X3

k¼1

@Lf

@ðrAnkÞ
dAnk

)
þ @Lf

@ðrvÞ dv

#
: (74)

On the right-hand side of Eq. (73), dRa is associated with effects of finite gyroradii [see Eq. (52)] on electromagnetic fields

and defined by

dRa ¼ ea

X1
n¼1

1

n!

X1
i1¼1

� � �
X1

in�1¼1

DaF�aqaqai1 � � � qain�1

@n�1dwa

@Xi1 � � � @Xin�1

�
@ðDaF�aqaqai1 � � � qain�1

Þ
@Xi1

@n�2dwa

@Xi2 � � � @Xin�1

"

þ � � � þ ð�1Þn�1 @
n�1ðDaF�aqaqai1 � � � qain�1

Þ
@Xi1 � � � @Xin�1

dwaþ
ea

mac2
DaFaqaqai1 � � � qain�1

@n�1ðA1 � dA1Þ
@Xi1 � � � @Xin�1

 

�
@ðDaFaqaqai1 � � � qain�1

Þ
@Xi1

@n�2ðA1 � dA1Þ
@Xi2 � � � @Xin�1

þ � � � þð�1Þn�1 @
n�1ðDaFaqaqai1 � � � qain�1

Þ
@Xi1 � � � @Xin�1

ðA1 � dA1Þ
��
; (75)

where dwa is given by

dwa ¼ d/ðXa; tÞ �
1

c
va0ðZa; tÞ � dA1ðXa; tÞ: (76)

We recall that the conservation of the magnetic moment l
results from the invariance under the variation of the

gyrophase na although, in order to prepare for deriving the

conservation laws of energy and toroidal momentum in the

following subsections, we hereafter consider the case in

which dna¼ 0 and accordingly @La=@ð@tZaÞ � dZa ¼
@La=@ð@tXaÞ � dXa in Eq. (72). Then, using Eqs. (72)–(74),

we can rewrite Eq. (71) as
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dI ¼ �
ð

dt

ð
d3X

@

@t
dG0ðX; tÞ þ r � dGðX; tÞ

� �
; (77)

with the functions dG0 and dG defined by

dG0ðX; tÞ ¼ Ec dtE � Pc � dxE;

dGðX; tÞ ¼ Qc dtE �Pc � dxE þ S/ d/� RA1 � dA1

�RA0 � dA0 þ Svdvþ dT; (78)

where

Ec ¼
X

a

ð
dU

ð
dl
ð

dn DaFaHa

þ 1

8p
�jr/j2 þ jB0 þ B1j2
� �

;

Pc ¼
X

a

ð
dU

ð
dl
ð

dn DaFa maUbþ ea

c
A0

� �
;

Qc ¼
X

a

ð
dU

ð
dl
ð

dn DaFa HavðgcÞ
a þ @A0

@t

�

� �lbþ maU

B0

ðvðgcÞ
a Þ? � Na

� ��
þ 1

4p
@/
@t
r/

� 1

4p
@ðA0 þ A1Þ

@t
� ðB0 þ B1Þ

þ 1

4pc
k
@A1

@t
þa

@A0

@t

� �
� 1

4p
K� @A0

@t
þ @v
@t
rf

� �
;

Pc ¼
X

a

ð
dU

ð
dl
ð

dn DaFa vðgcÞ
a maUbþ ea

c
A0

� ��

þ �lbþ maU

B0

ðvðgcÞ
a Þ? � Na

� �
� ðrA0ÞT

�

þ 1

8p
jr/j2 � B2
� �

Iþ 1

4p

�
�ðr/Þðr/Þ

þððrAÞ � ðrAÞTÞ � ðrAÞT � k
c
ðrA1ÞT

� a
c
ðrA0ÞT þ K� ððrA0ÞT þ ðrfÞðrvÞÞ

�
;

S/ ¼�
1

4p
r/;

RA1 ¼
1

4p
B� Iþ k

c
I

� �
;

RA0 ¼
1

4p
ðB� KÞ � Iþ a

c
I

� �
þ
X

a

ð
dU

ð
dl
ð

dn

� DaFa lb� maU

B0

ðvðgcÞ
a Þ? þ Na

� �
� I;

Sv ¼
1

4p
K�rf;

dT ¼
X

a

ð
dU

ð
dl
ð

dn dRa: (79)

Here, the superscript T represents the transpose of the tensor,

and I denotes the unit tensor. Comparing the variation dI
of the gyrokinetic action integral shown in Eqs. (77)–(79)

and the similar expression of dI given in Ref. 9 for the

Vlasov-Poisson-Ampère system, we find that more compli-

cated terms appear in dG0 and dG in the present system due

to effects of the finite gyroradii and the new variational fields

included for separately determining the turbulent and back-

ground fields.

It should be noted that Eq. (77) is derived by using

the Euler-Lagrange equations shown in Sec. III, of which

Eq. (35) requires the integral over the flux surface. Thus,

given any spatial point in the integral domain of Eq. (77), the

flux surface including the point should be wholly contained

in the integral domain in order for Eq. (77) to be valid. If the

variations in the variables are such that dI ¼ 0 holds for an

arbitrary spatiotemporal integral domain represented by

½t1; t2� � ½s1; s2� where [s1, s2] represents the spatial volume

region sandwiched between two flux surfaces labeled by s1

and s2, then the conservation law is derived as

@

@t
dG0ðX; tÞ þ r � dGðX; tÞ

	 


¼ @

@t
dG0ðX; tÞ

	 

þ 1

V0
@

@s
V0hdG � rsi
� �

¼ 0: (80)

This is Noether’s theorem for the present gyrokinetic system.

Here, we use flux coordinates (s, h, f), where s denotes an ar-

bitrary radial coordinate to label flux surfaces, so that v is

written as a function v¼ v(s, t). The volume enclosed by the

flux surface with the label s at the time t is denoted by V (s,

t) and its radial derivative is represented by V0 � @V=@s.

Under the nonstationary background field B0, flux surfaces

may change their shapes and the grid of the flux coordinates

moves. Then, the grid velocity30 is given by

us ¼
@xðs; h; f; tÞ

@t
; (81)

and we obtain the following formula

@

@t
dG0

	 

¼ 1

V0
@

@t
V0hdG0i
� �

� @

@s
V0hdG0us �rsi
� �� �

; (82)

where on the right-hand side, the partial derivatives @/@t and

@/@s act on functions of (s, t) obtained after taking the flux-

surface average while, on the left-hand side, the partial time

derivative @/@t is taken with fixed X before the flux-surface

average [see Eq. (2.35) in Ref. 30]. On the right-hand side of

Eq. (82), us � rs represents the radial velocity of the flux sur-

face and the last term gives the correction due to the radial

surface motion for evaluating the surface-averaged rate of

change. Substituting Eq. (82) into Eq. (80), we obtain

@

@t
V0hdG0i
� �

þ @

@s
V0h dG� dG0usð Þ � rsi
� �

¼ 0: (83)

A. Energy conservation

In order to derive the energy conservation law, we con-

sider the infinitesimal translation in time represented by

dtE¼ � where � is an infinitesimally small constant. Here, all

other variations dxE, d/; dA1; dA0; dv; dI; dk; da; dK, and

dZa are regarded as zero. Under this infinitesimal time
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translation, dI ¼ 0 is satisfied for an arbitrary integral do-

main in the form of ½t1; t2� � ½s1; s2� [see the remark before

Eq. (80)] because the integrands in the action integral I given

by Eq. (2) have no explicit time dependence while they im-

plicitly depend on t through /, A1, A0, k, a, K, and Za. Then,

using the time translational symmetry and Eqs. (78)–(80),

we obtain

@Ec

@t

	 

þ hr � Qc þQRð Þi ¼ 0; (84)

where QR arises from Eq. (75) and is defined by

QR¼
X

a

ea

X1
n¼1

1

n!

X1
i1¼1

���
X1

in�1¼1

ð
dU

ð
dl
ð

dn

� �DaF�aqaqai1 ���qain�1

@n�1@twa

@Xi1 ���@Xin�1

"

þ
@ðDaF�aqaqai1 ���qain�1

Þ
@Xi1

@n�2@twa

@Xi2 ���@Xin�1

þ���þð�1Þn
@n�1ðDaF�aqaqai1 ���qain�1

Þ
@Xi1 ���@Xin�1

@twa

þ ea

mac2
�DaF�aqaqai1 ���qain�1

@n�1ðA1 �@tA1Þ
@Xi1 ���@Xin�1

 

þ
@ðDaF�aqaqai1 ���qain�1

Þ
@Xi1

@n�2ðA1 �@tA1Þ
@Xi2 ���@Xin�1

þ���

þð�1Þn
@n�1ðDaF�aqaqai1 ���qain�1

Þ
@Xi1 ���@Xin�1

ðA1 �@tA1Þ
��
: (85)

With the help of the gyrokinetic Poisson equation in

Eq. (25), the canonical energy density Ec is rewritten as

Ec ¼ E þr � �
1

4p
/r/þUR

� �
; (86)

where E and UR are defined by

E ¼
X

a

ð
dU

ð
dl
ð

dn DaFa
ma

2
va0 �

ea

mac
A1

����
����
2

 

þ ea

2B0

@

@l
h~wa 2~/ � ~wa

� �
in
�

þ 1

8p
jr/j2 þ jB0 þ B1j2
� �

(87)

and

UR ¼
X

a

ea

X1
n¼1

1

n!

X1
i1¼1

� � �
X1

in�1¼1

ð
dU

ð
dl
ð

dn

� DaF�aqaqai1 � � � qain�1

@n�1/
@Xi1 � � � @Xin�1

"

�
@ðDaF�aqaqai1 � � � qain�1

Þ
@Xi1

@n�2/
@Xi2 � � � @Xin�1

þ � � � þ ð�1Þn�1 @
n�1ðDaF�aqaqai1 � � � qain�1

Þ
@Xi1 � � � @Xin�1

/

�
; (88)

respectively. Substituting Eq. (86) into Eq. (84), we obtain

the energy conservation written as

@E
@t

	 

þ hr �Qi ¼ 0; (89)

which is rewritten by using Eq. (83) as

@

@t
V0hEi
� �

þ @

@s
V0h Q� Eusð Þ � rsi
� �

¼ 0: (90)

Here, Q is defined by

Q ¼ Q�c þQ�R; (91)

where

Q�c ¼Qc�
1

4p
@

@t
/r/ð Þ

¼
X

a

ð
dU

ð
dl
ð

dn DaFa HavðgcÞ
a þ@A0

@t

�

� �lbþmaU

B0

ðvðgcÞ
a Þ? �Na

� ��
� 1

4p
/r@/

@t

� 1

4p
@ðA0þA1Þ

@t
�ðB0þB1Þ

þ 1

4pc
k
@A1

@t
þa

@A0

@t

� �
� 1

4p
K� @A0

@t
þ @v
@t
rf

� �
(92)

and

Q�R ¼ QR þ
@UR

@t
: (93)

In the energy conservation law given by Eq. (89) [or

Eq. (90)], the energy density E is defined by Eq. (87) and its

volume integral gives the same energy integral as shown by

Eq. (59) in Ref. 7. The energy flux Q defined by Eq. (91)

with Eqs. (92) and (93) has a complicated form although it is

shown later in Sec. VI B that the ensemble average of Q

coincides with the well-known expression of the radial

energy transport to the lowest order in the d-expansion.

B. Conservation of toroidal angular momentum

In Subsection V B, the energy conservation law is

derived from the invariance of the system under the time

translation. It should be noted that, since the Lagrangian

explicitly contains rf through LB0 defined in Eq. (15) to

derive the axisymmetric equilibrium field, the present gyro-

kinetic system is not invariant under the spatial translation

but it is still invariant under the toroidal rotation. Therefore,

the toroidal angular momentum conservation is derived from

the fact that dI ¼ 0 under the infinitesimal toroidal rotation

represented by dxE ¼ �efðXÞ. Here, � is again an infinitesi-

mally small constant, and efðXÞ is defined by

efðXÞ ¼ @X=@f ¼ R2rf; (94)

where the right-handed cylindrical spatial coordinates (R, z, f)

are used. We also define ẑ by
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ẑ ¼ Rrf�rR; (95)

which represents the unit vector in the z-direction. Then, if

putting the origin of the position vector X at (R, z)¼ (0, 0),

we have efðXÞ ¼ X� ẑ. Under the infinitesimal toroidal

rotation, the variations dtE, d/; dv; dI; dk, and da are all

regarded as zero while the variations of the vector variables

are given by

dA1 ¼ �A1 � ẑ; dA0 ¼ �A0 � ẑ; dK ¼ �K� ẑ: (96)

Then, using dI ¼ 0 under the infinitesimal toroidal rotation

and Eqs. (78)–(80), we obtain

@ðPc � efÞ
@t

	 

þ 1

V0
@

@s
V0hrs � Pc � efð
�

þ RA1 � A1 þ RA0 � A0ð Þ � ẑ þ PRf�iÞ ¼ 0; (97)

where

Pc � ef ¼
X

a

ð
dU

ð
dl
ð

dn DaFa maUbf þ
ea

c
A0f

� �
; (98)

hrs � Pc � ef þ RA1 � A1 þ RA0 � A0ð Þ � ẑ
� �

i

¼
X

a

ð
dU

ð
dl
ð

dn DaFavðgcÞ
a maUbf þ

ea

c
A0f

� �

þ 1

4p
� ðr/ � rsÞ @/

@f

	 

� hBs

1B1fi
�

�h½ðr � B1Þ � rs�A1fi þ
1

c
ðA1 � rsÞ @k

@f

	 
�
; (99)

and

PRf ¼
X

a

ea

X1
n¼1

1

n!

X1
i1¼1

� � �
X1

in�1¼1

ð
dU

ð
dl
ð

dn

� DaF�aqaqai1 � � � qain�1

@n�1@fwa

@Xi1 � � � @Xin�1

"

�
@ðDaF�aqaqai1 � � � qain�1

Þ
@Xi1

@n�2@fwa

@Xi2 � � � @Xin�1

þ � � � þ ð�1Þn�1 @
n�1ðDaF�aqaqai1 � � � qain�1

Þ
@Xi1 � � � @Xin�1

@fwa

þ ea

mac2
DaF�aqaqai1 � � � qain�1

@n�1ðA1 � @fA1Þ
@Xi1 � � � @Xin�1

 

�
@ðDaF�aqaqai1 � � � qain�1

Þ
@Xi1

@n�2ðA1 � @fA1Þ
@Xi2 � � � @Xin�1

þ � � �

þð�1Þn�1 @
n�1ðDaF�aqaqai1 � � � qain�1

Þ
@Xi1 � � � @Xin�1

ðA1 � @fA1Þ
��
:

(100)

Using Eqs. (97)–(100) and Eq. (63) with A ¼ A0f, the toroi-

dal angular momentum conservation law is written as

@

@t
Pkf �

1

c
P
ðpolÞ
L þ EL

4p

� �
� rA0f

� �	 


þ 1

V0
@

@s
V0 Ps

kf þPs
Rf �

1

4p
hA1fðr � B1Þ � rsi

�

� 1

4p
hELfE

s
L þ B1fB

s
1i þ

1

4pc

@k
@f

As
1

	 


þ 1

c

@A0f

@t
P
ðpolÞ
L þ EL

4p

� �
� rs

	 
��
¼ 0; (101)

where

Pkf ¼
X

a

ð
dU

ð
dl
ð

dn DaFamaUbf; (102)

Ps
kf ¼

X
a

ð
dU

ð
dl
ð

dn DaFamaUbfv
ðgcÞ
a � rs; (103)

and

Ps
Rf ¼ PRf � rs: (104)

In Sec. VI C, we derive the ensemble-averaged toroidal

angular momentum conservation from Eq. (101) in order to

confirm that it is consistent with the conventional result up to

the second order in d.

VI. ENSEMBLE-AVERAGED CONSERVATION LAWS

In this section, the conservation laws derived in Sec. V

are ensemble-averaged for the purpose of verifying their

consistency with those obtained by previous works.14,16,18

First, we divide the vector potential A and the magnetic

field B into the average and fluctuation parts as

Aðx; tÞ ¼ hAðx; tÞiens þ Âðx; tÞ;
Bðx; tÞ ¼ hBðx; tÞiens þ B̂ðx; tÞ;

(105)

where h� � �iens represents the ensemble average, and we im-

mediately find hÂiens ¼ hB̂iens ¼ 0. We also identify the zer-

oth fields A0 and B0 with the ensemble-averaged parts to

write

A0 ¼ hAiens; A1 ¼ Â;

B0 ¼ hBiens; B1 ¼ B̂:
(106)

Regarding the electrostatic potential /, it is written as the

sum of the average and fluctuation parts

/ðx; tÞ ¼ h/ðx; tÞiens þ /̂ðx; tÞ: (107)

Here, assuming that h/ðx; tÞiens 6¼ 0, the background the

E�B flow is retained and its velocity is regarded as OðdvTÞ,
where d and vT represent the drift ordering parameter and the

thermal velocity, respectively. Combining Eqs. (8), (106),

and (107), we have

wa ¼ hwaiens þ ŵa; (108)
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where

hwaiens ¼ h/iens; ŵa ¼ /̂ � v0

c
� Â: (109)

We assume that the ensemble average hQiens of any

variable Q considered here has a slow temporal variation

subject to the so-called the transport ordering and that it has

a gradient scale length L which is on the same order as gradi-

ent scale lengths of the equilibrium field and pressure pro-

files. These assumptions are expressed by

@

@t
lnhQiens ¼ Oðd2vT=LÞ;

jrlnhQiensj ¼ Oð1=LÞ:
(110)

We also impose the constraint of axisymmetry on hQiens that

is written as

@hQiens

@f
¼ 0; (111)

even though Q itself is not axisymmetric. The spatiotempo-

ral variations of the fluctuation part Q̂ are assumed to be

subject to the conventional gyrokinetic orderings

@

@t
ln Q̂ ¼ OðvT=LÞ;

jb � r ln Q̂j ¼ Oð1=LÞ;
jb�r ln Q̂j ¼ Oð1=qTÞ;

(112)

where qT stands for the thermal gyroradius. Besides, we use

the WKB representation19 of Q̂

Q̂ðx; tÞ ¼
X
k?

Q̂k?ðx; tÞexp iSk?ðx; tÞ
� �

: (113)

Here, Q̂k?ðx; tÞ has a gradient scale length L while the eiko-

nal Sk?ðx; tÞ represents the rapid perpendicular variation with

the wave number vector k? � rSk?ð�1=qÞ that is perpen-

dicular to the background field B0. It is found from Eqs.

(110), (112), and (113) that hQ̂�k?Q̂k0?
iens ¼ hjQ̂k?j

2iensdk?k0?
,

where dk?k0?
¼ 1 for k? ¼ k0? and¼ 0 for k? 6¼ k0?.

The distribution function Fa for species a is also divided

into the average and fluctuation parts as

Fa ¼ hFaiens þ F̂a; (114)

where the ensemble-averaged part hFaiens consists of the

local Maxwellian part and the deviation from it

hFaiens ¼ FaM þ hFa1iens: (115)

The local Maxwellian distribution function FaM is written as

FaM ¼ na0

ma

2pTa0

� �3=2

exp � 1

Ta0

1

2
maU2 þ lB0

� �� �
; (116)

where the equilibrium density na0 and temperature Ta0 are

regarded as uniform on flux surfaces. The first-order ensem-

ble-averaged distribution function hFa1iens is determined by

the drift kinetic equation, which can be derived by substitut-

ing Eq. (115) into the ensemble average of Eq. (24). The

derived equation agrees, to OðdÞ, with the well-known line-

arized drift kinetic equation, on which the neoclassical trans-

port theory is based.30

We write the fluctuation part F̂a as

F̂a ¼ �FaM

eahŵain
Ta

þ ĥa: (117)

Then, from the fluctuation part of the gyrokinetic equation in

Eq. (24), we can derive

@ĥa

@t
þ ĥa;Ha

� �

¼ FaM
ea

Ta0

@hŵain
@t

� v̂ðgcÞ
a � r ln pa0 þ

ea

Ta0

rh/iens

�"

þ
1

2
maU2 þ lB0

Ta0

� 5

2

0
@

1
A
r ln Ta0

1
CA
3
75; (118)

which is valid to the lowest order in d. Equation (118) agrees

with the conventional gyrokinetic equation for the nonadia-

batic part ĥa of the perturbed distribution function derived

from using the WKB representation.18,31 On the right-hand

side of Eq. (118), the turbulent part v̂ðgcÞ
a of the gyrocenter

drift velocity vðgcÞ
a ¼ dXa=dt ¼ fXa;Hag is written as

v̂ðgcÞ
a ¼ c

B0

b�rhŵaðXþ qa; tÞin þOðd2Þ: (119)

Here, the gyrophase-averaged turbulent field is given in

terms of the WKB representation by hŵaðXþ qa; tÞin
¼
P

k?
ŵak?exp½iSk?ðX; tÞ� and

ŵak? ¼ J0

k?v?
Xa

� �
/k? �

U

c
Akk?

� �
þ J1

k?v?
Xa

� �
v?
c

Bkk?
k?

;

(120)

where J0 and J1 are the zeroth- and first-order Bessel func-

tions, respectively, and v? � jðb� va0Þ � bj.
We find from Eqs. (56)–(58) that the ensemble average

of P(pol) are written as

hPðpolÞiens ¼ hPgiens þ hPwiens; (121)

where

hPgiens¼�
1

2

X
a

ear�
ð

dU

ð
dl
ð

dn DaFaMqaqa

� �
þOðd2Þ

¼�
X

a

mac2

2ea
r� na0Ta0

B2
0

I�bbð Þ
� �

þOðd2Þ; (122)

and

hPwiens ¼
X

a

e2
a

B0

ð
dU

ð
dl
ð

dn Dah~wiens

@FaM

@l
qa þOðd2Þ

¼
X

a

na0mac2

B2
0

hELiens þOðd2Þ: (123)
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Here, h~wiens ¼ h~/iens ’ qa � rh/iens ¼ �qa � hELiens is

used.

Taking the ensemble average of the gyrokinetic Poisson

equation, Eq. (53), and noting that �r � hPðpolÞiens and

r � hELiens are of OðdÞ, we obtain
P

a eahnðgcÞ
a iens ¼ OðdÞ.

On the other hand, it is shown by substituting Eq. (117)

into Eq. (25) and using the Debye length kD �
ð4p
P

a na0e2
a=Ta0Þ�2

that the turbulent part of the gyrokinetic

Poisson equation is written in the WKB representation as

k2
? þ k�2

D

� �
/̂k? ¼ 4p

X
a

ea

ð
dU

ð
dl
ð

dn Da

� ĥak?J0

k?v?
X

� �
; (124)

which is valid to the lowest order in d. Equation (124) coin-

cides with the gyrokinetic Poisson equation derived by

the conventional recursive formulation.18,32,33 It can also be

shown from Eqs. (27) and (117) that, to the lowest order in

d, the WKB representation of the turbulent part of Eq. (29)

agrees with the conventional expression of Ampère’s

law.18,32,33

A. Ensemble-averaged particle transport equation

Before deriving the ensemble-averaged conservation

laws of energy and toroidal angular momentum in the next

subsections, we here consider the ensemble-averaged parti-

cle transport equation. Taking the ensemble average of

Eq. (51) immediately yields

@hnðgcÞ
a iens

@t

	 

þ 1

V0
@

@s
ðV0hhnðgcÞ

a uðgcÞ
a � rsiiÞ ¼ 0; (125)

where

hnðgcÞ
a iens ¼ na0 þOðdÞ (126)

and hh� � �ii represents a double average over the flux surface

and the ensemble. Here, na0 is the equilibrium density which

is a flux-surface function and characterizes the Maxwellian

distribution function FaM in Eq. (116). The radial particle

flux is written as

ðCaÞs ¼ hhnðgcÞ
a uðgcÞ

a � rsii ¼ ðCNA
a Þ

s þ ðCA
a Þ

s; (127)

which consists of the nonturbulent part

ðCNA
a Þ

s ¼
ð

dU

ð
dl
ð

dn DahFaienshvðgcÞ
a iens � rs

	 

(128)

and the turbulence-driven part

ðCA
a Þ

s ¼
ð

dU

ð
dl
ð

dn DahF̂av̂ðgcÞ
a iens � rs

	 

: (129)

Here, the gyrocenter drift velocity is written as the sum of

the ensemble-averaged and turbulent parts

vðgcÞ
a ¼ hvðgcÞ

a iens þ v̂
ðgcÞ
a ; (130)

where hvðgcÞ
a iens is obtained by taking the ensemble average

of the right-hand side of Eq. (17) and the turbulent part of

the gyrocenter drift velocity is given by Eq. (119). Using

Eqs. (82), (125), and (127), the ensemble-averaged particle

transport equation is written as

@

@t
V0na0ð Þ þ @

@s
V0 ðCNA

a Þ
s þ ðCA

a Þ
s � na0hus � rsi

� �� �
¼ 0:

(131)

Substituting Eq. (17) into Eq. (128), the nonturbulent radial

particle flux is expressed by

ðCNA
a Þ

s ¼ c

eaB0

b� r � PCGL
a1

� �� �
� rs

	 


þna0

c

B0

hEiens � b
� �

� rs

	 

þOðd3Þ; (132)

where PCGL
a1 represents the first-order part of the pressure ten-

sor in the Chew-Goldberger-Low (CGL) form30 defined by

PCGL
a1 ¼

ð
dU

ð
dl
ð

dn DahFa1iens

� maU2bbþ lB0 I� bbð Þ
� �

; (133)

and the ensemble-averaged electric field is given by

hEiens ¼ �rh/iens �
1

c

@A0

@t
:

The right-hand side of Eq. (132) expresses the neoclassical

radial particle flux and the radial E�B drift which are well-

known by the conventional neoclassical transport theory30

although the collisional effects are not included in the pres-

ent formulation based on the Lagrangian shown in Eq. (2).

Substituting Eqs. (119) into Eq. (129) yields the turbulent ra-

dial particle flux given by

ðCA
a Þ

s ¼� c

B0

ð
dU

ð
dl
ð

dn Daĥaðrŵa � bÞ � rs

	 
	 

þOðd3Þ; (134)

which is equivalent to the expression obtained by the con-

ventional gyrokinetic theory based on the WKB

formalism.18

As shown above, the well-known expressions of the

neoclassical and turbulent particle fluxes are included in

ðCNA
a Þ

s
and ðCA

a Þ
s
. However, the classical particle flux does

not appear in ðCNA
a Þ

s
, respectively. This is because colli-

sional processes are disregarded by the Lagrangian. The neo-

classical particle flux included in ðCNA
a Þ

s
can also be shown

to vanish after all by using the fact that hFa1iens should sat-

isfy the drift kinetic equation with no collision term.

B. Ensemble-averaged energy conservation law

In the subsequent subsections, the ensemble-averaged

energy and toroidal angular momentum conservation laws

are derived from the results obtained by Noether’s theorem

in Secs. V A and V B. Taking the ensemble average of the
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energy density defined by Eq. (87) and expanding it in d, we

have

hEiens ¼
3

2

X
a

na0Ta0 þ
B2

0

8p
þOðdÞ; (135)

where the energy density of the electric field is neglected as

a small quantity of Oðd2Þ. The radial components of the first

two terms on the right-hand side of Eq. (92) are double-

averaged over the ensemble and the flux surface to obtain

X
a

ð
dU

ð
dl
ð

dn DaFa HavðgcÞ
a � l

@A0

@t
� b

� �
� rs

	 
	 


¼
X

a

ðqaÞs þ
5

2
Ta0ðCaÞs

� �
þOðd3Þ; (136)

Here, the radial particle flux ðCaÞs is given by Eqs. (127) and

the radial heat flux ðqaÞs is written as

ðqaÞs ¼ ðqNA
a Þ

s þ ðqA
a Þ

s; (137)

which consists of the nonturbulent part

ðqNA
a Þ

s ¼
ð

dU

ð
dl
ð

dn DahFa1ienshvðgcÞ
a iens � rs

	

� 1

2
maU2 þ lB0 �

5

2
Ta0

� �

; (138)

and the turbulence-driven part

ðqA
a Þ

s ¼
ð

dU

ð
dl
ð

dn DahF̂av̂ðgcÞ
a iens � rs

	

� 1

2
maU2 þ lB0 �

5

2
Ta0

� �

: (139)

In the similar manner to Eq. (132), the nonturbulent heat flux

is written as

ðqNA
a Þ

s¼Ta0

c

eaB0

b� r�HCGL
a

� �� �
�rs

	 

þOðd3Þ; (140)

where the heat stress tensor HCGL
a is defined by

Ta0H
CGL
a ¼

ð
dU

ð
dl
ð

dn DahFa1iens

� 1

2
maU2 þ lB0 �

5

2
Ta0

� �
� maU2bbþ lB0 I� bbð Þ
� �

: (141)

The expression of Eq. (140) coincides with that of the

neoclassical radial heat flux in terms of the heat stress ten-

sor.30 The turbulent heat flux in Eq. (139) is also written in

the same form as used in the conventional gyrokinetic

theory18

ðqA
a Þ

s ¼� c

B0

ð
dU

ð
dl
ð

dn Daĥaðrŵa � bÞ � rs

		

� 1

2
maU2 þ lB0 �

5

2
Ta0

� �


þOðd3Þ: (142)

Now, using Eqs. (82), (90)–(93), (135), and (136), we find

@

@t
V0

3

2

X
a

na0Ta0 þ
B2

0

8p

" # !

¼ � @

@s
V0
X

a

ðqaÞs þ
5

2
Ta0ðCaÞs

� �
þ hSðPoyntingÞ � rsi

" 

� 3

2

X
a

na0Ta0 þ
B2

0

8p

 !
hus � rsi

#!
þOðd3Þ; (143)

where SðPoyntingÞ � ðc=4pÞhEiens � B0 represents the nontur-

bulent part of the Poynting vector. It is shown in Ref. 18 that

the turbulent Poynting energy flux ðc=4pÞhhðÊ � B̂Þ � rsii
of Oðd2Þ is contained in

P
a ðqA

a Þ
s
. Here, using

ðr�B0Þ �rs¼ð4p=cÞJ0 �rs¼ 0, we have hSðPoyntingÞ �rsi
¼�ð1=4pÞhð@A0=@t�B0Þ �rsi, which leads to

@

@s
V0hSðPoyntingÞ �rsi
� �

¼� 1

4p
@

@s
V0

@A0

@t
�B0

� �
�rs

	 
" #
;

¼� V0

4p
r� @A0

@t
�B0

� �	 

; (144)

and

@

@t

B2
0

8p

� �	 

¼ 1

4p
B0 � r �

@A0

@t

� �	 

;

¼ 1

4p
r � @A0

@t
� B0

� �
þ ðr � B0Þ �

@A0

@t

	 

;

¼ � 1

V0
@

@s
V0hSðPoyntingÞ � rsi
� �

� hJ0 � hEiensi:

(145)

Combining Eqs. (143)–(145), we obtain

@

@t
V0

3

2

X
a

na0Ta0

 !
þ @

@s
V0
X

a

ðqaÞs þ
5

2
Ta0ðCaÞs

� �" 

� 3

2

X
a

na0Ta0 hus � rsi
#!
¼ V0hJ0 � hEiensi þ Oðd3Þ:

(146)

Equations (143) and (146) take the well-known forms of the

energy balance equations34 except that the terms associated

with the electric field energy and the kinetic energies due to

the fluid velocities are neglected here as small quantities of

higher order in d. As explained in the end of Sec. VI A, since

collisions are disregarded, the radial particle and heat fluxes,

ðCaÞs and ðqaÞs, which appear in Eq. (146), do not contain the

contributions of the classical fluxes. Besides, it is shown from

the drift kinetic equation without the collision term that the

neoclassical parts included in ðCNA
a Þ

s
and ðqNA

a Þ
s

become zero.

C. Ensemble-averaged conservation law of toroidal
angular momentum

In this subsection, the ensemble-averaged toroidal angu-

lar momentum conservation law is derived from using the
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results in Sec. V B. Using Eqs. (30), (121)–(123), and

A0f¼�v, we obtain

� 1

c
P
ðpolÞ
L þ EL

4p

� �
� rA0f

	 

ens

¼
X

a

na0mac

B0

EL � bþ 1

4pc
EL � B0

* +
ens

� ef

þ 1

c
hPgiens � rvþOðd2Þ;

¼
X

a

na0mauE þ
SðPoyntingÞ

c2

 !
� ef þ

1

c
hPgiens � rv

þOðd2Þ; (147)

where uE � chEiens � b=B0 represents the nonturbulent part

of the E�B drift velocity [note that the contributions of

ET � �c�1@A=@t to uE and SðPoyntingÞ are smaller by the fac-

tor of d than those of EL � �r/]. We find that the term
1
c hPgiens � rv in Eq. (147) cannot be written in the form of

the toroidal component of the momentum
P

a na0mauðdiaÞ
a

due to the diamagnetic drift velocity uðdiaÞ
a � ðc=eana0B0Þb

�rðna0Ta0Þ although the magnitude of 1
c hPgiens � rv is on

the same order of
P

a na0mauðdiaÞ
a � ef. Then, using Eqs. (10)

and (47) and (110) and (147), we have

@

@t

	
Pkf �

1

c
P
ðpolÞ
L þ EL

4p

� �
� rA0f



ens

¼ @

@t

X
a

na0ma uakbþ uE
� �

þ SðPoyntingÞ

c2

 !
� ef

"

þ 1

c
hPgiens � rv

�
þOðd4Þ; (148)

where uak represents the nonturbulent part of the parallel

fluid velocity for particle species a defined by na0uak
�
Ð

dU
Ð

dl
Ð

dnhFa1iensU. It should be noted that, on the

right-hand side of Eqs. (148), each of the temporal variation

terms including uak; uE; SðPoyntingÞ; hPgiens is of Oðd3Þ while

SðPoyntingÞ=c2 ¼ ðv2
A=c2Þ

P
a na0mauE is obtained from using

the Alfv�en velocity vA � B0=ð4p
P

a na0maÞ1=2
.

Using Eqs. (8), (100), (103), (104), (113), (117), and

(119), we have

hhPs
Rfii ¼

X
a

ea

X
k?

X1
n¼1

in

ðn� 1Þ!

ð
dU

ð
dl
ð

dn Daĥ
�
ak

		

� ðrs � qaÞðk? � efÞðk? � qaÞn�1

� /̂k? �
va0

c
� Âk?

� �


þOðd3Þ;

¼
X

a

ea

ð
dU

ð
dl
ð

dn DaĥaðXÞðrs � qaÞ
		

�ðef � r?ÞŵaðXþ qaÞ
EE
þOðd3Þ;

¼
X

a

		ð
dU

ð
dl
ð

dn Daĥamaðva0? � efÞ

� ðv̂ðgcÞ
a � rsÞ




þOðd3Þ (149)

and

hhPs
kf þPs

Rfii ¼
X

a

ðPNA
a Þ

s þ ðPA
a Þ

s
� �

þOðd3Þ; (150)

where the nonturbulent and turbulence-driven parts of the

radial flux of the toroidal angular momentum are defined by

ðPNA
a Þ

s ¼
	ð

dU

ð
dl
ð

dn DahFa1iens

� maUbfhvðgcÞ
a iens � rs



; (151)

and

ðPA
a Þ

s ¼
		ð

dU

ð
dl
ð

dn Daĥa

� maðUbþ va0?Þ � efðv̂ðgcÞ
a � rsÞ




; (152)

respectively. Finally, the ensemble-averaged toroidal angular

momentum conservation law is rewritten by using Eqs. (82),

(101), (148), and (150) as

@

@t
V0

X
a

na0maðuakbþ uEÞ þ
SðPoyntingÞ

c2

" #
� ef

* +0
@

1
A

þ @

@s
V0
X

a


ðPNA

a Þ
s þ ðPA

a Þ
s

" 

�
X

a

na0maðuakbþ uEÞ þ
SðPoyntingÞ

c2

" #
� efðus � rsÞ

* +)

� 1

4p
hhrs � ÊLÊL þ B̂B̂ þ ðr � B̂ÞÂ

� �
� efii

��
¼ Oðd3Þ; (153)

where the terms including ðuakbþ uEÞ and SðPoyntingÞ are of

Oðd3Þ although they are explicitly written down for compari-

son with the toroidal momentum balance equation in Ref. 16.

In Ref. 16, the toroidal flow velocity V0 on the order of

the sonic speed (high-flow ordering) is assumed to be given

by the sum of the parallel flow velocity and the E�B drift

velocity of OðvTÞ although the toroidal momentum balance

equation, Eq. (57), in Ref. 16 is still valid to Oðd2Þ even if

we use it for the present case of V0 ¼ OðdvTÞ (low-flow

ordering). Keeping this in mind, we see that, up to Oðd2Þ,
Eq. (153) is consistent with Eq. (57) in Ref. 16. The classical

toroidal momentum flux is not included in the nonturbulent

toroidal momentum flux ðPNA
a Þ

s
because collisions are not

taken into account in the present formulation. It is also

shown from the drift kinetic equation with no collision term

that ðPNA
a Þ

s
vanishes. The expression of the turbulent toroi-

dal momentum flux ðPA
a Þ

s
in Eq. (152) coincides with

the one derived from the WKB formalism [see Eq. (53) in

Ref. 16]. The terms associated with the turbulent Maxwell

stress tensor ðÊLÊL þ B̂B̂Þ=ð4pÞ in Eq. (153) corresponds to

the anomalous toroidal momentum production termP
ah
Ð

d3v mavfDai [see Eq. (63) in Ref. 16]. The last stress

012515-14 Sugama, Watanabe, and Nunami Phys. Plasmas 21, 012515 (2014)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

133.75.110.124 On: Mon, 20 Apr 2015 06:19:59



term including ðr � B̂ÞÂ on the left-hand side is combined

with ðPA
a Þ

s
to generate the anomalous stress term ðPanom

a Þs
[see Eq. (60) in Ref. 16]. The inertia terms @ð� � �Þ=@t in

Eq. (153) agree with ð@=@tÞhð
P

a manaÞð1þ v2
PA=c2ÞR2Vfi

in Ref. 16 although they are of Oðd3Þ due to the low-flow

ordering. The correction term due to the radial motion

us � rs of the flux surface is retained here but it is also of

Oðd3Þ. Besides, it is shown in Ref. 14 that, when there exists

the up-down symmetry of the background magnetic field,

ðPA
a Þ

s
and all other stress terms due to ÊL ¼ �r/̂ and B̂ in

Eq. (153) become zero. Therefore, for that case, the nontri-

vial toroidal momentum balance equation is of Oðd3Þ as

argued in Ref. 14.

VII. CONCLUSIONS

In this work, a gyrokinetic system of equations for tur-

bulent toroidal plasmas in time-dependent axisymmetric

background magnetic fields are derived from the variational

principle using the Lagrangian which includes the constraint

on the background fields. From these equations, the back-

ground fields, which vary on the transport time scale, can be

determined self-consistently with the relaxation of the pres-

sure profile due to the turbulent particle and heat transport.

Conservation laws of energy and toroidal angular mo-

mentum are derived from applying Noether’s theorem to the

action integral of the Lagrangian. Besides, assuming separate

spatiotemporal scales for the average and fluctuation parts of

physical variables, ensemble averages of particle, energy,

and toroidal angular momentum conservation laws are taken.

The resultant ensemble-averaged conservation laws are

consistent to the lowest order in the gyrokinetic ordering

parameter d, namely Oðd2Þ, with those obtained by the con-

ventional gyrokinetic theory based on the WKB formalism.

We should note that the present and conventional gyrokinetic

equations are both accurate up to OðdÞ and that the classical

and neoclassical transport fluxes vanish in the present work

because collisional processes are ignored here.

As shown in Ref. 14, in the case of the low-flow order-

ing, all terms in the ensemble-averaged toroidal momentum

conservation law vanish to Oðd2Þ in the axisymmetric back-

ground magnetic field with the up-down symmetry, for

which the background radial electric field Es cannot be deter-

mined by the Oðd2Þ toroidal momentum balance equation

although the Oðd2Þ transport equations for particles and

energy are not influenced by Es either. It is known that, for

rotating plasmas with large toroidal flows on the order of the

ion thermal speed, Es can be determined from the Oðd2Þ to-

roidal momentum transport equation.16 It should be noted

here that the above-mentioned remarks on the momentum

transport strongly depend on the ordering argument com-

bined with the scale separation assumptions using the WKB

representation as described in Sec. VI. The scale separation

assumptions may not be satisfied by some solutions of the

gyrokinetic equations, which may show significantly nonlo-

cal turbulent momentum transport different from the predic-

tion by the above ordering argument.

In the present work, collisions are neglected so that the

resistive diffusion of the background magnetic field is not

treated here. In order to describe the resistive diffusion pro-

cess, we need to add the collision term into the gyrokinetic

equation, which yields the resistivity relating the electric

current to the inductive electric field. As future tasks, we

plan to extend the present work to include effects of colli-

sions, external sources, and large toroidal flows.

ACKNOWLEDGMENTS

This work was supported in part by the Japanese Ministry

of Education, Culture, Sports, Science, and Technology (Grant

Nos. 21560861, 22760660, and 24561030) and in part by the

NIFS Collaborative Research Programs (NIFS12KNTT015

and NIFS13KNST057).

1Y. Idomura, T.-H. Watanabe, and H. Sugama, C. R. Phys. 7, 650 (2006).
2A. J. Brizard and T. S. Hahm, Rev. Mod. Phys. 79, 421 (2007).
3X. Garbet, Y. Idomura, L. Villard, and T.-H. Watanabe, Nucl. Fusion 50,

043002 (2010).
4J. A. Krommes, Annu. Rev. Fluid Mech. 44, 175 (2012).
5Y. Idomura, H. Urano, N. Aiba, and S. Tokuda, Nucl. Fusion 49, 065029

(2009).
6W. X. Wang, P. H. Diamond, T. S. Hahm, S. Ethier, G. Rewoldt, and

W. M. Tang, Phys. Plasmas 17, 072511 (2010).
7H. Sugama, Phys. Plasmas 7, 466 (2000).
8H. Goldstein, C. Poole, and J. Safko, Classical Mechanics, 3rd ed.

(Addison-Wesley, San Francisco, 2002), Chap. 13.
9H. Sugama, T.-H. Watanabe, and M. Nunami, Phys. Plasmas 20, 024503

(2013).
10A. J. Brizard, Phys. Plasmas 7, 4816 (2000).
11B. Scott and J. Smirnov, Phys. Plasmas 17, 112302 (2010).
12A. J. Brizard and N. Tronko, Phys. Plasmas 18, 082307 (2011).
13F. I. Parra and P. J. Catto, Phys. Plasmas 17, 056106 (2010).
14H. Sugama, T.-H. Watanabe, M. Nunami, and S. Nishimura, Plasma Phys.

Controlled Fusion 53, 024004 (2011).
15H. Sugama and W. Horton, Phys. Plasmas 4, 405 (1997); 4, 2215 (1997).
16H. Sugama and W. Horton, Phys. Plasmas 5, 2560 (1998).
17J. A. Krommes and G. W. Hammett, PPPL Technical Report No. 4945,

2013.
18H. Sugama, M. Okamoto, W. Horton, and M. Wakatani, Phys. Plasmas 3,

2379 (1996).
19R. D. Hazeltine and J. D. Meiss, Plasma Confinement (Addison-Wesley,

Redwood City, California, 1992), p. 298.
20L. Wang and T. S. Hahm, Phys. Plasmas 17, 082304 (2010).
21R. G. Littlejohn, J. Plasma Phys. 29, 111 (1983).
22I. Calvo and F. I. Parra, Plasma Phys. Controlled Fusion 54, 115007

(2012).
23J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New York,

1998), Sec. 6.3.
24T. S. Hahm, Phys. Plasmas 3, 4658 (1996).
25T. S. Hahm, L. Wang, and J. Madsen, Phys. Plasmas 16, 022305 (2009).
26N. Miayato, B. D. Scott, D. Strintzi, and S. Tokuda, J. Phys. Soc. Jpn. 78,

104501 (2009).
27W. W. Lee, J. Comput. Phys. 72, 243 (1987).
28Z. Lin and W. W. Lee, Phys. Rev. E 52, 5646 (1995).
29W. X. Wang, Z. Lin, W. M. Tang, W. W. Lee, S. Ethier, J. L. V.

Lewandowski, G. Rewoldt, T. S. Hahm, and J. Manickam, Phys. Plasmas

13, 092505 (2006).
30S. P. Hirshman and D. J. Sigmar, Nucl. Fusion 21, 1079 (1981).
31E. A. Frieman and L. Chen, Phys. Fluids 25, 502 (1982).
32T. M. Antonsen, Jr. and B. Lane, Phys. Fluids 23, 1205 (1980).
33P. J. Catto, W. M. Tang, and D. E. Baldwin, Plasma Phys. 23, 639 (1981).
34P. Helander and D. J. Sigmar, Collisional Transport in Magnetized

Plasmas (Cambridge University Press, Cambridge, 2002), p.162.

012515-15 Sugama, Watanabe, and Nunami Phys. Plasmas 21, 012515 (2014)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

133.75.110.124 On: Mon, 20 Apr 2015 06:19:59

http://dx.doi.org/10.1016/j.crhy.2006.06.007
http://dx.doi.org/10.1103/RevModPhys.79.421
http://dx.doi.org/10.1088/0029-5515/50/4/043002
http://dx.doi.org/10.1146/annurev-fluid-120710-101223
http://dx.doi.org/10.1088/0029-5515/49/6/065029
http://dx.doi.org/10.1063/1.3459096
http://dx.doi.org/10.1063/1.873832
http://dx.doi.org/10.1063/1.4789869
http://dx.doi.org/10.1063/1.1322063
http://dx.doi.org/10.1063/1.3507920
http://dx.doi.org/10.1063/1.3625554
http://dx.doi.org/10.1063/1.3327127
http://dx.doi.org/10.1088/0741-3335/53/2/024004
http://dx.doi.org/10.1088/0741-3335/53/2/024004
http://dx.doi.org/10.1063/1.872099
http://dx.doi.org/10.1063/1.872385
http://dx.doi.org/10.1063/1.872941
http://dx.doi.org/10.1063/1.871922
http://dx.doi.org/10.1063/1.3467498
http://dx.doi.org/10.1017/S002237780000060X
http://dx.doi.org/10.1088/0741-3335/54/11/115007
http://dx.doi.org/10.1063/1.872034
http://dx.doi.org/10.1063/1.3073671
http://dx.doi.org/10.1143/JPSJ.78.104501
http://dx.doi.org/10.1016/0021-9991(87)90080-5
http://dx.doi.org/10.1103/PhysRevE.52.5646
http://dx.doi.org/10.1063/1.2338775
http://dx.doi.org/10.1088/0029-5515/21/9/003
http://dx.doi.org/10.1063/1.863762
http://dx.doi.org/10.1063/1.863121
http://dx.doi.org/10.1088/0032-1028/23/7/005

