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This is the first numerical simulation demonstrating that a macromagnetohydrodynamic
�macro-MHD� mode is excited as a result of multi-scale interaction in a quasi-steady equilibrium
formed by a balance between microturbulence and zonal flow based on a reduced two-fluid model.
This simulation of a macro-MHD mode, a double tearing mode, is accomplished in a reversed shear
equilibrium that includes zonal flow and turbulence due to kinetic ballooning modes. In the
quasi-steady equilibrium, a macroscale fluctuation that has the same helicity as the double tearing
mode is a part of the turbulence. After a certain period of time, the macro-MHD mode begins to
grow. It effectively utilizes free energy of the equilibrium current density gradient and is
destabilized by a positive feedback loop between zonal flow suppression and magnetic island
growth. Thus, once the macro-MHD appears from the quasi-equilibrium, it continues to grow
steadily. This simulation is more comparable with experimental observations of growing
macro-MHD activity than earlier MHD simulations starting from linear macroinstabilities in a static
equilibrium. © 2007 American Institute of Physics. �DOI: 10.1063/1.2716669�

Macromagnetohydrodynamic �macro-MHD� activities
substantially degrade magnetic confinement of toroidal plas-
mas by producing global fluctuations, and the evolution of
these activities is observed in experiments.1 Such macro-
MHD instabilities have been analyzed by nonlinear MHD
simulations starting from linear instability growth under a
static equilibrium.2–4 However, observations in the experi-
ment apparently include microturbulence and zonal flow,5,6

and the macro-MHD can nonlinearly originate from turbu-
lent fluctuations. In fact, MHD activities are observed before
the disruption in reversed shear plasmas with a transport bar-
rier related to zonal flows and microturbulence,1 and micro-
turbulence is observed in Large Helical Device plasmas that
usually exhibit MHD activities.7 In these experiments, the
turbulence can affect macro-MHD in several ways through
multiscale interactions. In order to understand the growth of
fluctuation observed in the experiments, we have to carry out
nonlinear numerical simulation including not only the MHD
instability but also the microturbulence and zonal flow cre-
ated by the turbulence.

Multiscale interactions described in Fig. 1 play key roles
in understanding effects of microturbulence on macro-MHD
mode. A typical multiscale interaction in the magnetic con-
finement is the interaction between microturbulence and
zonal flow.5 Effects of microturbulence on macro-MHD
mode through nonlinear mode coupling are studied theoreti-
cally and numerically, and they are described by a negative
eddy viscosity or by an anomalous resistivity.8–12 On the
other hand, the zonal flow caused by the turbulence can also
affect the macro-MHD instability through the shearing of its
radial structure. These effects of turbulence on macro-MHD
should be simultaneously taken into account in numerical

simulations. Our goal is to understand the mechanism of
macroscale MHD instability in the reversed shear plasmas
based on the analysis of multiscale interactions among mac-
roscale MHD, microturbulence, and zonal flows.

In this letter, we obtain a quasi-steady equilibrium estab-
lished by a balance between microturbulence and zonal flow
and demonstrate that a macroscale MHD mode appears in
the quasi-steady equilibrium by numerically solving reduced
two-fluid equations. We also present the mechanism of
macro-MHD development from turbulent fluctuations. This
MHD activity spreads the microturbulence over the plasma
because it breaks magnetic surfaces globally.

We carry out three-dimensional numerical simulations of
a reduced set of two-fluid equations that extends the standard
reduced two-fluid equations,13 by including temperature gra-
dient effects.14–16 The equations are
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where df /dt=�f /�t+ ã�� , f�, ��f =��f /�	−�ã�� , f�, K�f�
=2��r cos 
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n=neq+ ñ / ã, Ti=Teq+ T̃i / ã, Te=�Teq, pi=neqTeq+Teqñ / ã

+neqT̃i / ã, pe=�neqTeq+�Teqñ / ã, p= pi+ pe, ve� =v� +J /neq, ã
=a /�i, �L=� /2�me /mi����, �L= ��−1��8Teq/�����. In these
equations, n, v�, �, �, Ti, �i, �=a /R, R, and a are the elec-
tron density, the parallel ion velocity, the electric potential,
the flux function, the ion temperature, Larmor radius,
the inverse of aspect ratio, the major radius, and the
minor radius, respectively. The normalizations are
�tvti /a , r /�i , �i�� , a�� , e� /T0 , � /�B0�i , n /n0 , T /T0 , v� /vti�
→ �t ,r ,�� ,�� ,� ,� ,n ,T ,v��. In the numerical calculations
we employ 128 toroidal modes and 256 poloidal modes that
distribute within 1�m /n�q�r /a=0.93�, and 256 uniform
grid points in the radial direction, where m and n are poloidal
and toroidal mode numbers, respectively. We set �=0.25,
�i /a=1/80, �=1, the artificial dissipations �Q=�n=�v=�T

=m4�10−7, and the normalized resistivity �=4�10−4,
which corresponds to S=1.6�106. With respect to boundary
conditions, the plasma is assumed to be surrounded by a
perfectly conducting wall. Numerical accuracy was checked
by comparing the case of 256 radial grid points with the case
of 400 radial grid points and by confirming that energy spec-
tra for toroidal and poloidal mode numbers sufficiently de-
crease in high wave number regions.

We consider a reversed shear tokamak plasma with �
=1% and weak collisions. The equilibrium q-profile, density
profile, and temperature profile are q=1.05+2�r /a�2

+1/ �3r /a+0.01�4, neq=0.8+0.2 exp�−2�r /a�2�, and Teq

=0.55+0.45�1− �r /a�2�2, respectively. This equilibrium is
unstable against the �m ,n�= �2,1� double tearing mode,
which is current driven macro-MHD instability, because the
q-profile has two q=2 resonant surfaces.2 The double tearing
mode spreads between two resonant surfaces of q=2 at r /a

=0.38 and 0.69 as represented by the electric potential profile
in Fig. 2 and grows faster than single tearing modes. The n
=2 and three macro-MHD modes are almost stable. The
equilibrium is also unstable against the 6�n�22 kinetic
ballooning instabilities;17 i.e., microinstabilities. A balloon-
ing structure of the microinstability appears in the bad cur-
vature and positive shear region, as shown in Fig. 2. We start
the nonlinear simulation at t=0, by taking the linear eigen-
functions of microinstabilities with small amplitudes as the
initial condition. In order to obtain a quasi-steady equilib-
rium, we fix the background profiles of density and tempera-
ture during the simulation, while we do not fix the q-profile.

Nonlinear evolution consists of three subsequent stages.
The first one is growth of microinstabilities within 0� t
�50. The second one is a quasi-steady equilibrium formed
by a balance between the turbulence and zonal flow within
60� t�140. The third one is growth of a macro-MHD mode
in 150� t. Figure 3 shows time evolution of the magnetic
energy for each toroidal mode number n. Figure 4 shows the

FIG. 2. �Color� The electric potential profile of eigenfunction on a poloidal
section for instabilities: n=1 represents the double tearing mode; n=15 and
18 the kinetic ballooning modes.

FIG. 3. �Color� Time evolution of the magnetic energy for each toroidal
mode n, where the time is normalized by the ion thermal transit time. In the
second stage a quasi-steady equilibrium is formed by a balance of turbu-
lence with zonal flow. In the third stage a macro-MHD instability �n=1�
appears.

FIG. 1. Schematic drawing of multiscale interactions.

FIG. 4. �Color� Time evolution of the electric potential on the same poloidal
section.
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electric potential on a poloidal section at t=48, 64, 80, 144,
168, and 184. Figure 5 shows the equicontour of helical flux
of m /n=2 on a poloidal section.

In the first stage, i.e., 0� t�50, the microinstabilities
grow exponentially and nonlinear mode coupling among
them rapidly drives the energy of both high and low wave
numbers, as shown in Fig. 3. This is the energy transfer of
microturbulence. The microturbulence also produces coher-
ent structures including zonal flow with a �m ,n�= �0,0�
structure and n=1 macroscale fluctuation through the energy
transfer, as indicated by the traces with n=0 and n=1 in Fig.
3. The spatial profile of zonal flow is shown in Fig. 6�a�. The
zonal flow not only has �m ,n�= �0,0� structure but also has
�m ,n�= �1,0� structure because of the geodesic acoustic
mode.18

In the second stage, i.e., 60� t�140, we successfully
obtain the quasi-steady equilibrium including turbulent fluc-
tuations, zonal flow, and resonant surfaces of macro-MHD
instability. The zonal flow twists the radial structure of the
microinstability at t=64 in Fig. 4 and suppresses the growth
of the instability, and then the system reaches a quasi-steady
equilibrium in t�60, as shown in Fig. 3. The potential pro-
file at t=80 presents a typical fluctuation of the turbulence in
the quasi-steady equilibrium. Here we consider the �m ,n�
= �2,1� double tearing mode in this stage. There are no m
=2 magnetic islands at two resonant surfaces in Fig. 5 within
60� t�140, and the energy of n=1 mode fluctuates around

the same amplitude as that of the turbulence indicated by
high n mode in Fig. 3. This is because the �m ,n�= �2,1�
mode is a part of the turbulence; i.e., it is caused by the
energy transfer of microturbulence. In addition, spatial dis-
tributions of the electric potential of n=1 mode at t=64 and
80 in Fig. 7 are strongly twisted by zonal flow and do not
look like the eigenfunction of the double tearing mode in
Fig. 2. The zonal flow has a stabilizing effect not only on the
microturbulence but also on the tearing mode by twisting
their radial structure.

In the third stage, i.e., 150� t, the �m ,n�= �2,1� double
tearing mode, i.e., the macro-MHD, appears. The energy of
the n=1 mode grows from t�150 and dominates at t�170
in Fig. 3. The m=2 structure dominates the electric potential
profile at t=168 and 184 in Fig. 4. In addition, two m=2
magnetic island-chains appear on two resonant surfaces at t
=168 and 184 in Fig. 5.

Let us investigate the mechanism of macro-MHD insta-
bility in the third stage. The zonal flow has a stabilizing
effect on the double tearing mode as explained above. Before
appearance of a double tearing mode at t=144 there seems to
be a randomly varying phase difference between the fluctua-
tions on the inner and on the outer resonant surfaces, as
shown in the equicontour of the helical flux in Fig. 5. This
suggests that the reduction of the stabilizing effect of zonal
flow can cause the macro-MHD instability. In fact, when the
�m ,n�= �2,1� double tearing mode appears and dominates at
t�170 in Figs. 3 and 4, the twisting by zonal flow vanishes
and the spatial distributions at t=168 and 184 in Fig. 7 are
similar to the eigenfunction of the double tearing mode in
Fig. 2. The suppression of zonal flow is also observed at t
�150 in Fig. 6�b�. The reduction of zonal flow can be
caused by the torque of Maxwell stress acting on the poloidal
flow. The stress is induced by the interaction between two
magnetic island-chains,19 and it can weaken the shearing,
thereby leading to the phase locking of two island-chains.
The phase of X-point of inner islands corresponds to the
phase of the O-point of outer islands, i.e., islands lock with a
phase difference of , at t=168 and 184 in Fig. 5 when the
double tearing mode grows. At this time the plasma can ef-
fectively release the free energy of the equilibrium current

FIG. 5. Time evolution of the equicontour of helical flux of m /n=2 on the
same poloidal section.

FIG. 6. �Color� �a� Spatial profile of zonal flow on a poloidal section. �b�
Time evolution of zonal flow profile on a plane with 
=0.

FIG. 7. �Color� Time evolution of the electric potential of n=1 mode on the
same poloidal section.
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density gradient. Once the magnetic islands grow they can
produce stronger Maxwell stress. Hence, the mechanism of
macro-MHD appearance is the positive feedback loop be-
tween zonal flow reduction and growth of magnetic island-
chains.

Further, we consider effects of macro-MHD on the mi-
croturbulence. The macro-MHD, i.e., the tearing mode, can
influence the microturbulence because the tearing mode
breaks magnetic surfaces through global magnetic reconnec-
tion, as shown in the frame t=168 and 184 in Fig. 5. The
radial distribution of turbulence at t=184 is broader than the
distribution at t=80, as shown in the electric potential pro-
files in Fig. 4. This expansion is also observed in the evolu-
tion of the zonal flow profile at t�160 in Fig. 6�b�. Thus, the
reconnection spreads the microturbulence over the plasma.

We remark that the positive feedback loop producing
macro-MHD occurs only when the equilibrium has resonant
surfaces of MHD mode, otherwise the balanced state contin-
ues. That is confirmed by another simulation against initial
equilibrium of qmin�2. In this case, we have no growth of
macro-MHD, i.e., double tearing mode, and have a steady
state formed by a balance between the microturbulence and
zonal flow.

In summary, we have found that the macro-MHD mode,
�m ,n�= �2,1� double tearing mode, grows from the turbulent
fluctuations in a quasi-steady equilibrium formed by a bal-
ance between the turbulence and zonal flow. Only after ob-
taining the quasi-equilibrium, which includes the microtur-
bulence, zonal flow, and two resonant surfaces of q=2 are
we able to obtain this simulation result of macro-MHD
mode. The present multiscale simulation is more realistically
comparable to the experimental observation of growing
macro-MHD activity such as the one presented in Ref. 1 than
earlier MHD simulations starting from linear macroinstabil-
ity growth in a static equilibrium. This is because plasmas in
experiments inherently include turbulent fluctuations and
zonal flows and they apparently affect the growth of macro-
MHD mode through multiscale interactions.

Here we discuss how macro-MHD mode appears in the
quasi-steady equilibrium. The mechanism of macro-MHD
growth is the positive feedback loop between suppression of
the zonal flow and growth of magnetic fluctuation. The sup-
pression is caused by poloidal component of torque due to
Maxwell stress through nonlinear interactions between mag-
netic fluctuations on two resonant surfaces, and then this
torque causes phase locking between the fluctuations. The
fluctuation grows as macro-MHD mode further when the
zonal flow is suppressed, and then the fluctuations produce
more strong torque. This positive feedback loop effectively
releases the free energy of equilibrium current density gradi-

ent and produces macro-MHD instability. The phase locking
observed during the growth of the double tearing modes in
our simulation is similar to the observation of n=1 macro-
MHD fluctuations in the reversed shear tokamak
experiment.1 When the fluctuations are growing, the phases
of fluctuations at two resonant surfaces of q=3 coincide,
while phases differ before the growth.

The formation of quasi-steady equilibrium without
macro-MHD instability can give a key to resolving the dif-
ficulty in tokamak plasma operations with qmin�2. We do
not understand the details of the quasi-equilibrium, i.e., the
second stage, yet. The duration of the quasi-equilibrium can
be affected by linear growth rate of macro-MHD instability
and by the zonal flow damping due to collisions. Investigat-
ing this equilibrium in detail we can obtain a way to establish
tokamak plasmas with qmin�2 in the experiments.
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