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Entropy production and Onsager symmetry in neoclassical transport processes of magnetically
confined plasmas are studied in detail for general toroidal systems, including nonaxisymmetric
configurations. It is found that the flux surface average of the entropy production defined from the
linearized collision operator and the gyroangle-averaged distribution function coincides with the
sum of the inner products of the thermodynamic forces and the conjugate fluxes consisting of the
Pfirsch–Schlüter, banana-plateau, nonaxisymmetric parts of the neoclassical radial fluxes and the
parallel current. It is proved from the self-adjointness of the linearized collision operator that the
Onsager symmetry is robustly valid for the neoclassical transport equations in the cases of general
toroidal plasmas consisting of electrons and multi-species ions with arbitrary collision frequencies.
It is shown that the Onsager symmetry holds whether or not the ambipolarity condition is used to
reduce the number of the conjugate pairs of the transport fluxes and the thermodynamic forces. The
full transport coefficients for the banana-plateau and nonaxisymmetric parts are separately derived,
and their symmetry properties are investigated. The nonaxisymmetric transport equations are
obtained for arbitrary collision frequencies in the Pfirsch–Schlüter and plateau regimes, and it is
directly confirmed that the total banana-plateau and nonaxisymmetric transport equations satisfy the
Onsager symmetry. © 1996 American Institute of Physics. �S1070-664X�96�02001-3�

I. INTRODUCTION
Transport processes caused by binary Coulomb colli-

sions between charged particles in toroidal magnetic con-
figurations are described by the neoclassical transport
theory.1–3 Particle and heat transport fluxes observed in most
fusion devices exceed the predictions of the neoclassical
transport theory, and thus are called anomalous transport.4
The anomalous transport is considered to result from the
turbulent fluctuations driven by various plasma instabilities,
which are not taken into account by the neoclassical theory.
However, the neoclassical theory is regarded as a standard
model with a well-established framework, which gives lower
limits of the transport fluxes in quiescent plasmas close to
thermal equilibria, and it also has practical use for predicting
the parallel transport such as a bootstrap current with more
accuracy than the predictions for the radial transport. The
characteristics of the neoclassical theory lie in the inclusion
of the effects of the global magnetic field geometry due to
the long mean free path of the hot particles. In less colli-
sional regimes such as plateau and banana regimes, the pro-
cesses in deriving the neoclassical transport equations, which
relate the neoclassical transport fluxes to the thermodynamic
forces, are more complicated than the derivation of the clas-
sical transport equations in more collisional regimes. Since
the neoclassical transport coefficients contain the parameters
relating to both the collisionality and the magnetic geometry,
it is less trivial than in the case of the classical transport to
show the validity of the Onsager symmetry5 for the neoclas-
sical transport. In the cases of axisymmetric systems, the
analytical expressions of the full neoclassical transport coef-
ficients for all collisionality regimes have been obtained, and
it is well-known that the Onsager symmetry holds for the
axisymmetric neoclassical transport matrix.

The neoclassical transport equations for nonaxisymmet-
ric systems6–11 are more complicated due to the geometrical
complexities, and they involve the nonambipolar parts. The
absence of symmetry may also cause the breakup of mag-
netic surfaces into islands and ergordic regions,12 although
such problems are beyond the scope of this work. Here we
assume the existence of toroidal nested magnetic surfaces as
in other previous works.6–11 Balescu and Fantechi derive the
full neoclassical transport coefficients for the nonaxisymmet-
ric plasma in the plateau regime, and claim that the Onsager
symmetry partly breaks down in that case.11 Contrary to Ref.
11, we show in the present work that the Onsager symmetry
is robustly valid for the neoclassical transport equations in
the cases of general toroidal plasmas consisting of electrons
and multi-species ions with arbitrary collision frequencies.

Concerning the Onsager relation, it is important to dis-
cuss the entropy production resulting from the transport pro-
cesses since the Onsager relation, if it holds, is satisfied only
by the transport matrix connecting the conjugate pairs of
transport fluxes and thermodynamic forces, which should be
specified through the entropy production.5 According to the
terminology in Ref. 3, we expect that the kinetic form of the
entropy production defined from the collision operator
should coincide with its thermodynamic form, in which the
entropy production is expressed as the sum of the products of
the conjugate pairs of the fluxes and forces. In Chap. 17 of
Ref. 3, Balescu presented detailed analyses on the kinetic
and thermodynamic forms of the entropy production in the
classical and neoclassical transport processes for the axisym-
metric case. Using the Hermitian moment representation, he
confirmed that the kinetic form of the entropy production
includes the thermodynamic form given by the products of
the thermodynamic forces and their conjugate classical and
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neoclassical Pfirsch–Schlüter fluxes, although he did not
identify the thermodynamic form corresponding to the neo-
classical banana-plateau transport. In this work, before the
proof of the Onsager symmetry, we show for general toroidal
geometry the complete coincidence between the kinetic form
of the entropy production and its full thermodynamic form,
including all contributions from the classical and neoclassi-
cal �Pfirsch–Schlüter, banana-plateau, nonaxisymmetric�
fluxes. The main difference between our treatment and that
in Ref. 3 is that we use directly the distribution function and
the drift kinetic equations instead of the Hermitian moment
expansion.

The proof of the Onsager symmetry for the neoclassical
transport equations in general toroidal configurations is given
in the similar manner to that in the Appendix of Ref. 2. The
proof uses the self-adjointness of the linearized collision op-
erator and the formal solution of the linearized drift kinetic
equation, although neither axisymmetry of the magnetic con-
figuration nor any condition for collisionality is required. We
also derive the full neoclassical transport coefficients in the
nonaxisymmetric system for collision frequencies in the
Pfirsch–Schlüter and plateau regimes, from which the On-
sager symmetry of the full neoclassical transport matrix is
directly confirmed.

In the axisymmetric configurations, the ambipolarity is
automatically satisfied by the neoclassical transport and the
radial electric field does not affect the transport fluxes. On
the other hand, in the nonaxisymmetric configurations, the
radial electric field is determined through the particle trans-
port equations if the ambipolarity condition is imposed. In
both cases with and without the ambipolarity condition, we
give the neoclassical transport equations and check their On-
sager symmetry.

This work is organized as follows. In Sec. II, the entropy
production defined from the collision operator is divided into
the two parts, which are derived from the gyroangle-
averaged and gyroangle-dependent parts of the distribution
function. The entropy production from the gyroangle-
dependent distribution function is given by the sum of the
inner products of the classical radial particle and heat fluxes
and the radial gradient thermodynamic forces. The transport
matrix relating these classical fluxes and forces is shown to
satisfy the Onsager symmetry. We find that the entropy pro-
duction from the gyroangle-averaged distribution function is
written as the sum of the inner products of the thermody-
namic forces and the corresponding conjugate fluxes which
consist of the Pfirsch–Schlüter, banana-plateau, nonaxisym-
metric parts of the neoclassical radial fluxes and the parallel
current. In Sec. III, using the formal solution of the linear-
ized drift kinetic equation and the self-adjointness of the lin-
earized collision operator, we prove that the Onsager sym-
metry is satisfied by the neoclassical transport equations for
arbitrary collision frequencies in general toroidal systems,
including nonaxisymmetric cases. The effects of the ambipo-
larity on the neoclassical transport coefficients are examined
for both axisymmetric and nonaxisymmetric cases to show
the robust validity of the Onsager symmetry independent of
the use of the ambipolarity condition. In Sec. IV, the full
transport coefficients are derived for the banana-plateau and

nonaxisymmetric parts, separately, and their symmetry prop-
erties are investigated. We derive the nonaxisymmetric trans-
port coefficients for arbitrary collision frequencies in the
Pfirsch–Schlüter and plateau regimes, and directly confirm
that the total banana-plateau and nonaxisymmetric transport
equations satisfy the Onsager symmetry. Finally, conclusions
and discussions are given in Sec. V. There, we discuss the
reason why our two main results, i.e., the complete corre-
spondence between the kinetic and thermodynamic forms of
the entropy production, and the Onsager symmetry in the
nonaxisymmetric case, were not confirmed in Ref. 3 and in
Ref. 11, respectively.

II. ENTROPY PRODUCTION IN CLASSICAL AND
NEOCLASSICAL TRANSPORT PROCESSES

Here, we show that the thermodynamic form of the en-
tropy production is equivalent to its kinetic form defined
from the collision operator for the classical and neoclassical
transport in the general case of magnetically confined plasma
with arbitrary toroidal geometry. For that purpose, we first
describe several properties of the collision operator which is
denoted for species a by

Ca��
b
Cab� f a , f b�, �1�

where f a ( f b) is the distribution function of the species a (b)
and Cab represents the contribution from the collision be-
tween the particles a and b .

The collision operator conserves the particles’ number,
momentum, and kinetic energy, which is written as

E d3vCab�0,

E d3vmavCab� E d3vmbvCba�0, �2�

E d3v
1
2 mav2Cab� E d3v

1
2 mbv2Cba�0.

Furthermore, the collision operator is invariant under arbi-
trary translational and rotational transform of the velocity
variable v of distribution functions, which is expressed by

T Cab� f a , f b��Cab�T f a ,T f b�,
�3�

RCab� f a , f b��Cab�Rf a ,Rf b�,

where T f and Rf denote functions f with arbitrary transla-
tional and rotational transform of the velocity variable v,
respectively.

The entropy production for the species a is defined from
the collision operator by

Ṡa��
b
Ṡab���

b
E d3v� ln f a�Cab� f a , f b�. �4�

The second law of the thermodynamics or the positive defi-
niteness of the entropy production is given by

Ṡab� Ṡba�0, �
a
Ṡa�0, �5�
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where the total entropy production �aṠa vanishes if and only
if the distribution functions for all species are the Maxwell-
ian with the same temperature and the same mean velocity.
However, even if two particle species with much different
masses �such as for electrons and ions� have the Maxwellian
distributions with different temperatures, the collisional heat
exchange between the two species are negligibly slow and
the entropy production due to their collisions is so small that
we hereafter neglect it based on the small mass ratio order-
ing.

For magnetically confined plasmas, the lowest-order dis-
tribution function for the species a with respect to the drift
ordering is given by the Maxwellian with no mean velocity
as

f a0���3/2navTa
�3exp��xa

2�� f aM , �6�

where vTa
2 �2Ta /ma and xa�v/vTa are defined from the

temperature Ta . The distribution functions and the collision
operator are perturbatively expanded in the drift ordering pa-
rameter ���/L (�: the thermal gyroradius, L: the equilib-
rium scale length� as

f a� f a0� f a1�O ��2�,
�7�Cab�Cab� f a0 , f b0��Cab

L � f a1 , f b1��O ��2�,

where the linearized collision operator Cab
L is defined by

Cab
L � f a1 , f b1��Cab� f a1 , f b0��Cab� f a0 , f b1�. �8�

The linearized collision operator also has the conserva-
tion and symmetry properties, which are expressed by Eqs.
�2� and �3� with Cab replaced by Cab

L . The self-adjointness
of the linearized collision operator13 is written as

TaE d3v
ga1
f a0

Cab
L �ha1 ,hb1��TbE d3v

gb1
f b0

Cba
L �hb1 ,ha1�

�TaE d3v
ha1
f a0

Cab
L �ga1 ,gb1�

�TbE d3v
hb1
f b0

Cba
L �gb1 ,ga1�, �9�

which is exactly valid for Ta�Tb and is approximately sat-
isfied for Ta � Tb when ma /mb�1 or mb /ma�1. For ex-
ample, in the case of collisions between ions (a�i) and
electrons (b�e) with Ti � Te , Cie

L contains a part which
breaks the complete self-adjointness although it is neglected
to the lowest order in (me /mi)1/2 �see Sec. IV of Ref. 13�.
Concerning the positive definiteness of the entropy produc-
tion described in Eq. �5�, we find the positive definiteness of
the quadratic form associated with the linearized collision
operator as

�TaE d3v
ga1
f a0

Cab
L �ga1,gb1�

�TbE d3v
gb1
f b0

Cba
L �gb1,ga1��0, �10�

which is valid for Ta � Tb to the lowest order of the small
mass ratio ma /mb�1 �or mb /ma�1) as Eq. �9�.

Using in Eq. �4�

ln f a�ln f a0�
f a1
f a0

�O ��2�,

the entropy production Ṡa up to O (� 2) is given by

�a��
b

�ab���
b

E d3v
f a1
f a0

Cab
L � f a1 , f b1�. �11�

Instead of Eq. �5�, we have from Eq. �10�

Ta�ab�Tb�ba�0, �
a
Ta�a�0. �12�

Now, let us divide the first-order distribution function
f a1 into the gyroangle-averaged part f̄ a1 and the gyroangle-
dependent part f̃ a1 as

f a1� f̄ a1� f̃ a1 . �13�

Due to the rotational symmetry of the collision operator in
the velocity space shown in Eq. �3�, the entropy production
�a separates into the corresponding parts as

�a��̄a��̃a , �14�

where

�̄a���
b

E d3v
f̄ a1
f a0

Cab
L � f̄ a1 , f̄ b1�, �15�

�̃a���
b

E d3v
f̃ a1
f a0

Cab
L � f̃ a1 , f̃ b1�. �16�

First, we consider the entropy production �̃a due to the
gyroangle-dependent part of the distribution function. The
gyroangle-dependent part f̃ a1 is given from the lowest-order
distribution function f a0 by

f̃ a1�
v�n
�a

–�f a0�� f a0
v�n–�V

�aTa
FXa1�Xa2S xa2� 5

2 D G
�
ma

Ta
v–Fu�a�

2
5
q�a

pa
S xa2� 5

2 D G f a0 , �17�

where n�B/B is the unit vector along the magnetic field B
and �a�eaB/mac is the gyrofrequency of the particle with
the mass ma and the charge ea . In Eq. �17�, f a0 is regarded
as a function of (V ,E ,�) (V: the volume inside the flux
surface, E� 1

2 mav2�ea�: the particle’s energy, and
��mav�

2 /2B: the magnetic moment�, and we have used

� ln f a0
�V ��

1
Ta

FXa1�Xa2S xa2� 5
2 D G , �18�

where the thermodynamic forces Xa1 and Xa2 are defined
from the radial gradients of the pressure pa , the electrostatic
potential � , and the temperature Ta as

Xa1��
pa�
na

�ea��, Xa2��Ta� S ��
�

�V D , �19�

in terms of which the perpendicular components of the fluid
velocity and the heat flow are
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u�a�
1
na

E d3v f̃ a1v��
cXa1

eaB
�V�n,

�20�q�a

pa
�
1
na

E d3v f̃ a1v�S xa2� 5
2 D �

5
2
cXa2

eaB
�V�n.

Substituting Eq. �17� into Eq. �16�, we obtain

Ta�̃a�Ja1
cl Xa1�Ja2

cl Xa2 , �21�

where

Ja1
cl �� a

cl–�V , Ja2
cl �

1
Ta
q a
cl–�V �22�

are the radial components of the classical particle and heat
fluxes defined by

�a
cl�

c
eaB

Fa1�n,
1
Ta
qa
cl�

c
eaB

Fa2�n. �23�

Here the friction forces Fa1 and Fa2 are given by

Fa1��
b

E d3vmavCab
L � f a1 , f b1�,

�24�
Fa2��

b
E d3vmavS xa2� 5

2 DCab
L � f a1 , f b1�.

It should be noted that, from the rotational symmetry of the
collision operator, that f̄ a1 does not contribute to the perpen-
dicular friction forces F�a j while f̃ a1 does not contribute to
the parallel friction forces Fia j . Equation �21� shows that the
entropy production �̃a defined from the gyroangle-dependent
part of the distribution function is caused by the classical
particle and heat transport, and that the classical fluxes Ja1

cl

and Ja2
cl are conjugate to the thermodynamic forces Xa1 and

Xa2 , respectively. The momentum conservation due to the
collision operator gives

�
a
Fa1�0, �25�

which in turn causes the classical particle fluxes to satisfy the
ambipolarity as

�
a
ea�a

cl�0. �26�

We have the relations between the perpendicular friction
forces and flows from Eqs. �17� and �24� as

F F�a1

�F�a2
G ��

b
F l11ab l12

ab

l21
ab l22

abGF u�b

�
2
5pb

q�b
G , �27�

where the coefficients l jk
ab are the same ones defined in Ref. 2

and are given by

l jk
ab��ab

ma
2

Ta�a�
E d3vv iL j�1

�3/2��xa
2�Caa��v i

�Lk�1
�3/2��xa

2� f a0 , f a�0��
mamb

Tb
E d3vv i

�L j�1
�3/2��xa

2�Cab� f a0 ,v iLk�1
�3/2��xb

2� f b0� . �28�

Here, L0
(3/2)(x2)�1, L1

(3/2)(x2)� 5
2�x2, ••• , are the Laguerre

polynomials of order 3
2. In Eqs. �27� and �28�, the rotational

symmetry of the linearized collision operator is used. From
the self-adjointness of the linearized collision operator
shown in Eq. �9�, the coefficients l jk

ab have the following
symmetry :

l jk
ab�lk j

ba . �29�

The momentum conservation property described in Eq. �25�
imposes another constraint on the coefficients l jk

ab :

�
a
l1k
ab�0. �30�

From Eq. �21� and the ambipolarity condition �aeaJa1
cl �0

given by Eq. �26�, we obtain

�
a
Ta�̃a��

a
�Ja1
cl Xa1�Ja2

cl Xa2�

��
a�I

Ja1
cl Xa1* ��

a
Ja2
cl Xa2 , �31�

where Xa1* (a � I) is defined by

Xa1* �Xa1�
ea
eI
XI1��

pa�
na

�
ea
eI

pI�
nI

�a�I �. �32�

Here we have chosen a certain particle species denoted by I .
We hereafter regard I as the ion species with the smallest
particle number density. If a plasma consists of electrons and
a single ion species i , we take I�i .

Equation �31� shows that the number of the conjugated
pairs of the classical fluxes and thermodynamic forces is re-
duced by employing the new pairs (Ja1 ,Xa1* )a�I ,(Ja2 ,Xa2)
instead of (Ja1 ,Xa1),(Ja2 ,Xa2). We also find that the radial
electric field does not appear in the new set of the thermo-
dynamic forces. The transport equations which relate the
classical fluxes (Ja1 ,Ja2) to the thermodynamic forces
(Xa1 ,Xa2) are obtained from Eqs. �20�, �22�, �23�, and �27�
as

F Ja1clJa2cl G ��
b

F �Lcl�11
ab �Lcl�12

ab

�Lcl�21
ab �Lcl�22

abG FXb1

Xb2
G , �33�

where the classical transport coefficients (Lcl) jk
ab are given by

�Lcl� jk
ab���1 � j�k�1 c

2u�Vu2

eaebB2
l jk
ab � j ,k�1,2�. �34�

From Eq. �29�, we have the Onsager symmetry for the clas-
sical transport as

�Lcl� jk
ab��Lcl�k j

ba � j ,k�1,2�. �35�

Equation �30� yields

�
a
ea�Lcl�1k

ab�0 �k�1,2�. �36�

We easily find from Eqs. �32�, �33�, �35�, and �36� that the
classical transport equations for the pairs
(Ja1
cl ,Xa1* )a�I ,(Ja2

cl ,Xa2) are given by
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Ja1�a�I �
cl ��

b�I
�Lcl�11

abXb1* ��
b

�Lcl�12
abXb2 ,

�37�
Ja2
cl ��

b�I
�Lcl�21

abXb1* ��
b

�Lcl�22
abXb2 ,

which shows that the transport coefficients (Lcl) jk
ab are the

same as in Eq. �33�, except for the limitation (a , j),(b ,k)
� (I ,1), and that the Onsager symmetry is valid for both of
the conjugate pairs. We should note that the ambipolarity
condition �36� reduces the number of the thermodynamic
forces required for determining the classical fluxes by one,
and that the radial electric field does not enter the reduced set
of the thermodynamic forces (Xa1(a�I)* ,Xa2).

Next, let us consider the entropy production �̄a due to
the first-order gyroangle-averaged distribution function f̄ a1 ,
which satisfies the linearized drift kinetic
equation:1–3,7–11,14,15

v in•� f̄ a1�vda•� f a0�
ea
Ta

v iE i f a0�Ca
L� f̄ a1�, �38�

where vda is the sum of the E�B, �B and curvature drift
velocities, and Ca

L( f̄ a1)��bCab
L ( f̄ a1 , f̄ b1). Here, it should be

noted that the electric drift term vE–� f̄ a1 is sometimes re-
tained in the linearized drift kinetic equation16 which causes
the nonlinear radial electric field dependence of the neoclas-
sical transport coefficients and of the ambipolarity condition
for a nonaxisymmetric system. There are two main reasons
why the electric drift term vE–� f̄ a1 is not included in Eq.
�38�. One is due to the drift ordering vda /v i �� , from which
vda–� f̄ a1 including vE–� f̄ a1 should be neglected compared
with v in–� f̄ a1 in the linearized drift kinetic equation. Equa-
tion �38� is the standard linearized drift kinetic equation
widely accepted in literatures �see Refs. 1–3 and Refs.
7–11�. �However, if the radial electric field much larger than

assumed by the drift ordering is generated by some tech-
niques such as neutral beam injections, the electric drift term
vE–� f̄ a1 should be retained in the drift kinetic equation as
treated in Ref. 16.� Another important reason is as follows.
The radial electric field is regarded as one of the thermody-
namic forces as seen from Eq. �19�. �When the ambipolarity
condition is imposed for nonaxisymmetric systems, the ra-
dial electric field is regarded as a function of the other ther-
modynamic forces as shown later.� If the electric drift term is
added in the left-hand side of the linearized drift kinetic
equation, the radial electric field dependence appears in the
neoclassical transport coefficients as mentioned before, and
accordingly we obtain the nonlinear transport equations of
the form J�L(X)–X in which the transport fluxes J are non-
linear functions of the thermodynamic forces X. On the other
hand, as shown in detail in Ref. 5, the Onsager symmetry is
relevant to linear transport equations of the form J�L–X
with the transport matrix L independent of the thermody-
namic forces X. Since, in this work, we are concerned with
the Onsager symmetry for the transport matrix in the linear
neoclassical transport equations, the electric drift term caus-
ing the nonlinear dependence on the thermodynamic forces
should be neglected.

We obtain from Eqs. �15� and �38�,

�̄a�� E d3v
f̄ a1
f a0

Ca
L� f̄ a1����–FnE d3vv i

� f̄ a1�2

2 f a0
G

� E d3v f̄ a1vda–�V
� ln f a0

�V �
1
Ta
naeau iaE i , �39�

where the parallel flow velocity u ia is defined by
nau ia��d3v f̄ a1v i . Here, the flux surface average of the first
term in the right-hand side vanishes. In taking the flux sur-
face average of the second term, we use the following two
equations for the radial particle and heat fluxes:

(40)

(41)
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where the Hamada coordinates (V ,� ,�) are employed to rep-
resent the poloidal and toroidal components of the magnetic
fields�see Appendix A� and Eq. �A2� is used. Here, we have
used the definitions pa1��d3v 1

3 mav2 f̄ a1 , �a1��d3v 1
3

� mav2(xa
2� 5

2) f̄ a1 , �a�(p ia�p�a)(nn� 1
3I)��d3vma(v i

2

� 1
2 v�

2 ) f̄ a1(nn� 1
3I), �a�(� ia���a)(nn� 1

3I)��d3vma
�(v i

2� 1
2v�
2 )(xa

2� 5
2) f̄ a1(nn� 1

3I). The neoclassical particle
and heat fluxes are given by

Ja1
ncl���a–�V�ncl�Ja1

PS�Ja1
bp�Ja1

na ,
�42�

Ja2
ncl�

1
Ta

�qa–�V�ncl�Ja2
PS�Ja2

bp�Ja2
na ,

which consist of the Pfirsch–Schlüter (Ja j
PS), the banana-

plateau (Ja j
bp), and nonaxisymmetric (Ja j

na) parts defined by

Ja1
PS���a–�V�PS��

c
eaB� K F ia1

B S B���B��
B2

�B2� D L ,
Ja1
bp���a–�V�bp��

c
eaB�

�B��
�B2� �B–�–�a�,

Ja1
na���a–�V�na�

c
eaB�B� �Bt–�–�a� , �43�

Ja2
PS�

1
Ta

�qa–�V�PS��
c

eaB� K F ia2

B S B���B��
B2

�B2� D L ,
Ja2
bp�

1
Ta

�qa–�V�bp��
c

eaB�
�B��
�B2� �B–�–�a�,

Ja2
na�

1
Ta

�qa–�V�na�
c

eaB�B� �Bt–�–�a�.

Here the Pfirsch–Schlüter fluxes are written as parts of the
neoclassical fluxes as in Refs. 1–3 where the term ‘‘neoclas-
sical’’ is used for the transport due to guiding center motions
in a toroidal magnetic configuration affected by collisions,
which is a contrast to the ‘‘classical’’ transport caused by
particle gyro-motions with collisions. �However, the term
‘‘neoclassical’’ is sometimes used in a narrower sense for
referring to the transport fluxes due to particles with long
mean free paths such as the banana-plateau fluxes, which
exclude the Pfirsch–Schlüter fluxes.�

Then, we find that the flux surface average of the second
term in the right-hand side of Eq. �39� is given by the prod-
ucts of the neoclassical radial fluxes and the thermodynamic
forces as

� K E d3v f̄ a1vda–�V
� ln f a0

�V L
�
1
Ta

FJa1ncl� nac
B� K E i

B S B���B��
B2

�B2� D L G
�Xa1�

1
Ta
Ja2
nclXa2 . �44�

The flux surface average of the third term in the right-hand
side of Eq. �39� is given by

naea�u iaE i�
Ta

�
naea�Bu ia��BE i�

Ta�B2�
�

nac
TaB�

� K E i

B S B���B��
B2

�B2� D L Xa1 , �45�

where Eq. �A7� is used. Then, we finally obtain from Eqs.
�39�, �44�, and �45� the thermodynamic form of the flux-
surface-averaged entropy production ��̄a� as

Ta��̄a��Ja1
nclXa1�Ja2

nclXa2�Ja3Xa3 , �46�

where the parallel flux Ja3 and the parallel force Xa3 are
defined by

Ja3�
na�Bu ia�
�B2�1/2

, Xa3�ea
�BE i�
�B2�1/2

. �47�

Taking the species summation of Eq. �46�, we have

�
a
Ta��̄a���

a
�Ja1
nclXa1�Ja2

nclXa2��JEXE , �48�

where JE and XE are defined from the total parallel current
J i and the parallel electric field E i as

JE�
�BJ i�
�B2�1/2

��
a
eaJa3 , XE�

�BE i�
�B2�1/2

. �49�

Thus the flux surface average of the entropy production due
to the gyroangle-averaged distribution functions is given in
the thermodynamic form, in which the neoclassical radial
fluxes Ja1

ncl , Ja2
ncl and the parallel current JE are conjugate to

the radial gradient forces Xa1 , Xa2 and the parallel electric
field XE , respectively. It should be noted that the neoclassi-
cal thermodynamic form of the entropy production can be
obtained only through the magnetic surface average as in Eq.
�48�, which is a remarkable contrast to the classical thermo-
dynamic form �21� defined locally in the configuration space.

Now, let us consider the ambipolarity condition for the
neoclassical particle fluxes. Using the momentum conserva-
tion �25� by collisions and the charge neutrality condition
�anaea�0, we obtain the flux surface average of the total
parallel momentum balance equation as �a�B–�–�a��0.
Then, we find from the definitions in Eq. �43� that the intrin-
sic ambipolarity holds for both of the Pfirsch–Schlüter and
banana-plateau particle fluxes in the same way as for the
classical particle fluxes, which implies that the ambipolar
conditions,

�
a
ea Ja1

PS��
a
eaJa1

bp�0, �50�

are valid for arbitrary values of the thermodynamic forces
(Xa1 ,Xa2 ,XE). On the other hand, the nonaxisymmetric par-
ticle fluxes Ja1

na and accordingly the total neoclassical particle
fluxes Ja1

ncl are not ambipolar generally. If the ambipolarity
condition for the total neoclassical particle fluxes,

�
a
eaJa1

ncl��
a
eaJa1

na�0, �51�

is imposed, we find in the similar way as in Eq. �31� that Eq.
�48� is rewritten as
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�
a
Ta��̄a���

a�I
Ja1
nclXa1* ��

a
Ja2
nclXa2�JEXE . �52�

In axisymmetric toroidal systems, the nonaxisymmetric
fluxes Ja j

na ( j�1,2) vanish and therefore the neoclassical par-
ticle fluxes Ja1

ncl are intrinsically ambipolar. As discussed in
the next section, in nonaxisymmetric systems, the ambipolar-
ity condition �51� combined with the neoclassical transport
equations gives a constraint on the thermodynamic forces
(Xa1 ,Xa2 ,XE) from which the radial electric field ��� is
expressed by a linear form in the pressure and temperature
gradients and the parallel electric field. Then, independent
thermodynamic forces for nonaxisymmetric systems are
given not by the set (Xa1 ,Xa2 ,XE) but by the reduced one
(Xa1(a�I)* ,Xa2 ,XE). In the present work, we show the neo-
classical transport equations for both cases with
(Xa1 ,Xa2 ,XE) and with (Xa1(a�I)* ,Xa2 ,XE) used as the
forces, in order to elucidate the relation of the ambipolarity
to the axisymmetry and to the Onsager symmetry.

III. ONSAGER SYMMETRY OF NEOCLASSICAL
TRANSPORT EQUATIONS FOR GENERAL TOROIDAL
SYSTEMS

In this section, it is proved that the Onsager symmetry is
satisfied by the neoclassical transport equations for general
toroidal systems, including nonaxisymmetric cases. For that,
it is convenient to define the distribution function ḡa by

ḡa� f̄ a1�
ea
Ta

f a0E ldl
B FBE i �

B2

�B2� �BE i�G , �53�

where � ldl denotes the integral along the magnetic field line.
Then, Eq. �38� is rewritten as

v in•� ḡa�Ca
L� ḡa��

1
Ta

f a0�Sa1Xa1�Sa2Xa2�Sa3Xa3�,

�54�
where the functions Sa j ( j�1,2,3) are defined by

Sa j��xa
2� 5

2�
j�1vda–�V � j�1,2�,

�55�Sa3�v iB/�B2�1/2.

Here, it is worthwhile making some remarks on the case
where, just as in Ref. 16, the electric drift term
AEḡa�vE–�ḡa is added in the left-hand side of Eq. �54�.
Here, in vE–�ḡa , the spatial derivative � is taken with
(x,v ,�) as independent phase space variables defined in Ref.
16, and the electric drift velocity is given by
vE�cE�B/�B2� to satisfy an important phase space conser-
vative property �see Ref. 16�. In that case, nonlinear neoclas-
sical transport equations are derived due to the nonlinear
dependence on the radial electric field as mentioned after Eq.
�38�. Here, let us artificially regard the radial electric field
EV����/�V added in the left-hand side of Eq. �54� as an
independent parameter, although EV is already contained as a
part of the thermodynamic forces in the right-hand side of
Eq. �54�. By doing this, the resulting transport equations are
written in the apparently linear form J�L(EV)–X with EV as
a parameter in the transport matrix L. Then, it is shown that
the proof of the Onsager symmetry for L(EV) in this section

is still valid even if AEḡa is retained. This follows from the
fact that the operator AE has the same properties as v in–�
which are given by AE f a0�0 and ��d3vAEF��0 for an
arbitrary function F on the phase space.

The neoclassical radial fluxes Ja j
ncl ( j�1,2) and the par-

allel flux Ja3 are expressed in terms of ḡa and Sa j
( j�1,2,3) as

Ja j
ncl� K E d3v ḡaSa jL � j�1,2�,

�56�
Ja3� K E d3v ḡaSa3L ,

where we have used the following formula for an arbitrary
function F(x):

K FE d3vS xa2� 5
2 D j�1�vda–�V � f a0L

��� j1
cpa
eaB� K B�

B n–�F L � j�1,2�. �57�

Noting in Eq. �54� that the left-hand side is linear with re-
spect to ḡa and that Xaj ( j�1,2,3) occur in the right-hand
side as parameters, we find that the solution ḡa of Eq. �54� is
given by

ḡa��
b

�Gab1Xb1�Gab2Xb2�Gab3Xb3�, �58�

where Gab j ( j�1,2,3) are defined as the solutions of

v in–�Gab j��
a�

Caa�
L �Gab j ,Ga�b j�

��ab
1
Tb

f b0Sb j � j�1,2,3�. �59�

Then, using Eqs. �56� and �58�, we obtain the transport equa-
tions relating Ja j

ncl ( j�1,2) and Ja3 to Xaj ( j�1,2,3) as

F Ja1nclJa2
ncl

Ja3
G ��

b F L11ab L12
ab L13

ab

L21
ab L22

ab L32
ab

L31
ab L32

ab L33
ab

G F Xb1

Xb2

Xb3

G , �60�

where the transport coefficients L jk
ab are given by

L jk
ab� K E d3vSa jGabkL � j ,k�1,2,3�. �61�

Equation �60� is rewritten as the transport equations relating
Ja j
ncl ( j�1,2) and JE to Xaj ( j�1,2) and XE :

Ja j
ncl��

b
�
k�1,2

L jk
abXbk�L jE

a XE � j�1,2�,

�62�

JE��
b

�
k�1,2

LEk
b Xbk�LEEXE ,

where the coefficients L jE
a , LEj

a ( j�1,2) and LEE are given
by
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L jE
a ��

b
ebL j3

ab , LEj
a ��

b
ebL3 j

ba � j�1,2�,

�63�
LEE��

a ,b
eaebL33

ab .

In order to show the Onsager symmetry of the transport co-
efficients, it is useful to separate Eq. �59� into even and odd
parts with respect to v i as

v in•�Gab j
� ��

a�
Caa�
L �Gab j

� ,Ga�b j
� ���ab

1
Tb

f b0Sb j
� ,

�64�
v in•�Gab j

� ��
a�

Caa�
L �Gab j

� ,Ga�b j
� ���ab

1
Tb

f b0Sb j
� ,

where the superscripts � and � denote the even and odd
parts, respectively. Noting that Sa j are even for j�1,2 and
odd for j�3, and using Eqs. �61� and �64�, we obtain

�
A
TAK E d3v

1
f A0

GAbk
� v in–�GAaj

� L
��

A ,B
TAK E d3v

1
f A0

GAbk
� CAB

L �GAaj
� ,GBaj

� �L
��� j1�� j2�L jk

ab ,
�65�

�
A
TAK E d3v

1
f A0

GAbk
� v in–�GAaj

� L
��

A ,B
TAK E d3v

1
f A0

GAbk
� CAB

L �GAaj
� ,GBaj

� �L �� j3L jk
ab ,

from which we have

�� j1�� j2�L jk
ab��k3Lk j

ba

���
A ,B

TAK E d3v
1
f A0

�GAbk
� CAB

L �GAaj
� ,GBaj

� �

�GAaj
� CAB

L �GAbk
� ,GBbk

� ��L . �66�

We find from the self-adjointness of the linearized collision
operator given by Eq. �9� that the right-hand side of Eq. �66�
is invariant under the permutation of the subscripts
(a , j)↔(b ,k) and that

�� j1�� j2�L jk
ab��k3Lk j

ba���k1��k2�Lk j
ba�� j3L jk

ab .

Thus, we obtain

�� j1�� j2�� j3�L jk
ab���k1��k2��k3�Lk j

ba ,

which is rewritten as the well-known Onsager relations :

L jk
ab�Lk j

ba � j ,k�1,2�,

L j3
ab��L3 j

ba � j�1,2�, �67�

L33
ab�L33

ba .

We see from Eqs. �63� and �67� that

L jE
a ��LEj

a � j�1,2�. �68�

Equations �67� and �68� show that the Onsager symmetry is
satisfied by the transport matrix which combines the conju-
gate pairs of the fluxes (Ja1

ncl ,Ja2
ncl ,JE) and the forces

(Xa1 ,Xa3 ,XE) for general toroidal systems.
Here, let us discuss the relation between the transport

equations and the ambipolarity condition. In axisymmetric
systems, intrinsic ambipolarity holds for the neoclassical par-
ticle fluxes and is expressed in terms of the relation between
the transport coefficients as

�
a
eaL1 j

ab��
a
eaL1E

a �0 � j�1,2,3�. �69�

Then, the number of the conjugate pairs of fluxes and forces
is reduced by one as shown in Eq. �52� using Xa1(a�I)* in-
stead of Xa1 . We find from Eqs. �67�, �68�, and �69� that the
transport equations relating the fluxes (Ja1(a�I)

ncl ,Ja2
ncl ,JE) to

(Xa1(a�I)* ,Xa2 ,XE) in the axisymmetric case are given by

Ja1�a�I �
ncl ��

b�I
L11
abXb1* ��

b
L12
abXb2�L1E

a XE ,

Ja2
ncl��

b�I
L21
abXb1* ��

b
L22
abXb2�L2E

a XE, �70�

JE��
b�I

LE1
b Xb1* ��

b
LE2
b Xb2�LEEXE .

In the transport equations �70�, the transport coefficients
L jk
ab are the same as in Eq. �62� except for the limitation
(a , j),(b ,k) � (I ,1), and the Onsager symmetry is still valid.

In nonaxisymmetric systems, the ambipolarity condition
�51� gives a relation between the thermodynamic forces
which is used to express one thermodynamic force XI in
terms of the other thermodynamic forces
(Xa1(a�I)* ,Xa2 ,XE) as

XI1��eIS �
a ,b

eaebL11
abD �1

�
a
ea

�S �
b�I

L11
abXb1* ��

b
L12
abXb2�L1E

a XED . �71�

Equation �71� determines the radial electric field
����XI1 /eI�pI�/(nIeI) as a linear combination of the
pressure and temperature gradients and the parallel electric
field.

Then, in the nonaxisymmetric case with the ambipolarity
condition �71�, the transport equations relating
(Ja1(a�I)
ncl ,Ja2

ncl ,JE) to (Xa1(a�I)* ,Xa2 ,XE) are given by

Ja1�a�I �
ncl ��

b�I
L 11

abXb1* ��
b

L 12
abXb2�L 1E

a XE ,

Ja2
ncl��

b�I
L 21

abXb1* ��
b

L 22
abXb2�L 2E

a XE , �72�

JE��
b�I

L E1
b Xb1* ��

b
L E2

b Xb2�LEEXE ,

where the transport coefficients L jk
ab , L jE

a , L E j
a , and

LEE are
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L jk
ab�L jk

ab�S �
A
eAL j1

aAD S �
A
eAL1k

AbD
�S �

A ,B
eAeBL11

ABD �1
,

L jE
a �L jE

a �S �
A
eAL j1

aAD S �
A
eAL1E

A D
�S �

A ,B
eAeBL11

ABD �1
,

�73�
L E j

a �LEj
a �S �

A
eALE1

A D S �
A
eAL1 j

AaD
�S �

A ,B
eAeBL11

ABD �1
,

LEE�LEE�S �
A
eALE1

A D S �
A
eAL1E

A D
�S �

A ,B
eAeBL11

ABD �1
.

We see from Eqs. �67� and �68� that the Onsager symmetry
still holds for the transport coefficients given by Eq. �73�:

L jk
ab�Lk j

ba , L jE
a ��LE j

a . �74�

Thus, we have established for nonaxisymmetric systems with
no net radial current that the radial electric field is deter-
mined by the pressure, temperature gradients, and the paral-
lel electric field, and that transport satisfies the Onsager sym-
metry.

IV. BANANA-PLATEAU AND NONAXISYMMETRIC
TRANSPORT COEFFICIENTS

In the previous section, we have shown the Onsager
symmetry for the transport coefficients relating the neoclas-
sical radial fluxes and the parallel current (Ja1

ncl ,Ja2
ncl ,JE) to

the radial gradient forces and the parallel electric field
(Xa1 ,Xa2 ,XE) in general toroidal systems. The neoclassical
radial particle and heat fluxes (Ja1

ncl ,Ja2
ncl) consist of the

Pfirsch–Schlüter, banana-plateau, and nonaxisymmetric parts
while, as shown in Appendix B, it is well known that the
transport equations for the Pfirsch–Schlüter fluxes
(Ja1
PS ,Ja2

PS) and the radial gradient forces (Xa1 ,Xa2) satisfy
the Onsager symmetry. Thus, it is clear that the sum of the
banana-plateau and nonaxisymmetric radial fluxes, and the
parallel current (Ja1

bp�Ja1
na ,Ja2

bp�Ja2
na ,JE) are related to the

forces (Xa1 ,Xa2 ,XE) by the transport coefficients with the
Onsager symmetry. In this section, using the 13 moment
�13M� approximation,3 we derive the transport equations for
the banana-plateau fluxes and those for the nonaxisymmetric
fluxes separately, in the case of general toroidal plasma con-
sisting of electrons and one ion species. Then, the symmetry
properties are investigated for each of the transport equa-
tions, and the Onsager symmetry for the total transport is
directly confirmed.

The parallel momentum balance equations combined
with the friction-flow relations are given in the 13M approxi-
mation by

F �B–�–�e��nee�E iB�

�B–�–�e�
G

�F �BF i e1�

�BF i e2�
G ��

neme

�ee
F l̂11

e � l̂12
e

� l̂12
e l̂22

e GF �B�u i e�u i i��

2
5pa

�Bq i e� G ,
�75�

�B–�–�i���BF i i2���
nimi

� ii
l̂22
i 2
5pi

�Bq i i�, �76�

where the dimensionless friction coefficients
l̂ i j
a ��(�aa /nama)l i j

aa are given by l̂11
e �Zi , l̂12

e � 3
2Zi ,

l̂ 22
e ��2� 13

4Zi , and l̂22
i ��2 with the ion charge number

Zi . The species summation of the parallel momentum bal-
ances reduces to

�B–�–�e���B–�–�i��0, �77�

where the momentum conservation �25� in collisions and the
charge neutrality condition �aeana�0 are used.

Solving the linearized drift kinetic equation gives the
equations for the parallel viscosities, which have the follow-
ing form for all collision frequencies in the Pfirsch–Schlüter,
plateau, and banana regimes:

F �B–�–�a�

�B–�–�a�
G �

nama

�aa
caF �̂a1 �̂a2

�̂a2 �̂a3
G

�S F �u iaB�

2
5pa

�q iaB�G ��Ga�
c
ea

FXa1

Xa2
G D ,

�78�
where ca and �̂a j ( j�1,2,3) are the dimensionless param-
eters for the viscosity coefficients, and �Ga� represents the
geometrical factor which measures the deviation from the
axisymmetric configuration. These parameters ca , �̂a j
( j�1,2,3) and �Ga� are given in Appendix C and all of them
are generally dependent on the collision frequencies al-
though, in the axisymmetric case, the geometrical factor is
given by �Ga���B��/B� for both species and for all the
collision frequencies.

Using Eqs. �76�–�78�, the ion parallel flows and viscos-
ity are written as

�Bu i i���Gi�
c
ei S Xi1�

�̂ i2�

�̂ i1�
Xi2D

�
1

ci�̂ i1�

� ii
nimi

�B–�–�e� , �79�

2
5pi

�Bq i i��
ci��̂ i1�̂ i3���̂ i2�

2�

�̂ i1� �ci�̂ i3� l̂22
i �

�Gi�
c
ei
Xi2

�
�̂ i2�

�̂ i1� l̂22
i

� ii
nimi

�B–�–�e�, �80�
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�B–�–�i���
nimi

� ii

c il̂22
i ��̂ i1�̂ i3���̂ i2�

2�

�̂ i1� �ci�̂ i3� l̂22
i �

�Gi�
c
ei
Xi2

�
�̂ i2�

�̂ i1�
�B–�–�e�, �81�

where we have defined �̂ i1� ��̂ i1���̂ i2 and
�̂ i2� ��̂ i2���̂ i3 with ��ci�̂ i2 /(ci�̂ i3� l̂22

i ). Equations re-
lating the electron parallel viscosities �B–�–�e� and
�B–�–�e� to the thermodynamic forces
(Xe1 ,Xe2 ,Xi1 ,Xi2 ,XE) are obtained from Eqs. �75�, �78�,
and �79� as

S F l̂11
e � l̂12

e

� l̂12
e l̂22

e G �1

�
1
ce F �̂e1 �̂e2

�̂e2 �̂e3
G �1

�
1

ci�̂ i1�

neme� ii
nimi�ee

F 1 0
0 0G D F �B–�–�e�

�B–�–�e�
G

��F l̂11
e � l̂12

e

� l̂12
e l̂22

e G �1F nee�B2�1/2XE

0 G
�
neme

�ee F �Ge�
c
e Xe1��Gi�

c
ei S Xi1�

�̂ i2�

�̂ i1�
Xi2D

�Ge�
c
e Xe2

G .
�82�

We also find from Eq. �75� that the parallel current is divided
into the classical part JE

cl and the neoclassical part JE
bp due to

the electron parallel viscosities as

JE��BJ i�/�B2�1/2�JE
cl�JE

bp ,

JE
cl��sXE , �83�

JE
bp�

�s

nee
�B2��1/2S �B–�–�e��

l̂12
e

l̂22
e �B–�–�e� D ,

where �s�(nee2�ee /me) l̂22
e /� l̂11

e l̂22
e �( l̂12

e )2� is the classical
Spitzer conductivity.

Finally, we obtain from Eqs. �77� and �81�–�83� the
banana-plateau transport equations which relate
(Je1
bp ,Je2

bp ,Ji1
bp ,Ji2

bp ,JE
bp) to (Xe1 ,Xe2 ,Xi1 ,Xi2 ,XE) as

F Je1bpJe2bpJi1bpJi2bp
JE
bp

G �F �Lbp�11
ee �Lbp�12

ee �Lbp�11
ei �Lbp�12

ei �Lbp�1E
e

�Lbp�21
ee �Lbp�22

ee �Lbp�21
ei �Lbp�22

ei �Lbp�2E
e

�Lbp�11
ie �Lbp�12

ie �Lbp�11
ii �Lbp�12
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where the banana-plateau transport coefficients are given by

F �Lbp�11
ee �Lbp�12

ee

�Lbp�21
ee �Lbp�22

eeG �
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�ee
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e2
�B���Ge�
B��B2� FM 1 M 2

M 2 M 3
G , �85�
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nimi�ee
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eeG , �87�
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�88�
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B��Ge�

�B��
��Lbp�1E

e ,�Lbp�2E
e �, �91�

��Lbp�E1
i ,�Lbp�E2

i ���
B��Gi�
�B��

��Lbp�1E
i ,�Lbp�2E

i �, �92�

�Lbp�EE��
�s
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e l̂22
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e �2�
� l̂22
e l̂12

e �FM 1 M 2

M 2 M 3
G F l̂22el̂12e G .

�93�
The banana-plateau transport coefficients given in Eqs.

�85�–�93� satisfy the following symmetry properties:

�Lbp�21
ee��Lbp�12

ee , �Lbp�21
ii ��Lbp�12

ii ,

�Lbp� jk
ie�

�Ge�
�Gi�

�Lbp�k j
ei � j ,k�1,2�, �94�

�Lbp�E j
a ��

B��Ga�
�B��

�Lbp� jE
a �a�e ,i; j�1,2�.

Thus, we confirm that the banana-plateau transport equations
have the complete Onsager symmetry in the axisymmetric
case where �Ge���Gi���B��/B�. The intrinsic ambipolar-
ity of the banana-plateau particle fluxes is expressed by
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�Lbp�1 j
ia�

1
Zi

�Lbp�1 j
ea�a�e ,i; j�1,2�,

�95�

�Lbp�1E
i �

1
Zi

�Lbp�1E
e ,

which are rewritten by Eq. �94� as

�Lbp� j1
ai�

�Gi�
Zi�Ge�

�Lbp� j1
ae �a�e ,i; j�1,2�,

�96�

�Lbp�E1
i �

�Gi�
Zi�Ge�

�Lbp�E1
e .

Using the above relations, the fluxes
�Je1
bp(�ZiJi1

bp),Je2
bp ,Ji2

bp ,JE� are related to the new reduced set
of forces (Xe1** ,Xe2 ,Xi2 ,XE) by the transport equations

F Je1bpJe2bpJi2bp
JE
bp

G �F �Lbp�11
ee �Lbp�12

ee �Lbp�12
ei �Lbp�1E

e

�Lbp�21
ee �Lbp�22

ee �Lbp�22
ei �Lbp�2E

e

�Lbp�21
ie �Lbp�22

ie �Lbp�22
ii �Lbp�2E

i

�Lbp�E1
e �Lbp�E2

e �Lbp�E2
i �Lbp�EE

G
�F Xe1**

Xe2

Xi2

XE

G . �97�

Here, the force Xe1** is defined by

Xe1**�Xe1�
�Gi�
Zi�Ge�

Xi1

��
1
ne

S pe��
�Gi�
�Ge�

pi�D �e��S �Gi�
�Ge�

�1 D . �98�

When �Ge���Gi� , Xe1** coincides with Xe1* , which is pro-
portional to the total pressure gradient �p���(pe��pi�),
and the radial electric field ��� never affects the banana-
plateau transport. However, if the electrons and the ions be-
long to different collisionality regimes in the nonaxisymmet-
ric case, the banana-plateau radial particle and heat fluxes,
and the bootstrap current depend on the radial electric field
��� through Xe1** since �Ge� � �Gi�.

Next, let us derive the nonaxisymmetric transport equa-
tions. For the derivation, it is essential to note that the toroi-
dal viscosities are given in the following form for both of the
Pfirsch–Schlüter and plateau regimes:

F �Bt–�–�a�

�Bt–�–�a�
G �

nama

�aa
ctaF �̂a1 �̂a2

�̂a2 �̂a3
G

�S F �u iaB�

2
5pa

�q iaB�G ��Gta�
c
ea

FXa1

Xa2
G D ,

�99�

where cta and �Gta� are given in Appendix C and �̂a j
( j�1,2,3) are the same as in Eq. �78�. Here and hereafter,
we consider the toroidal viscosities and the nonaxisymmetric
fluxes only for the Pfirsch–Schlüter and plateau regimes
since the expressions similar to Eq. �99� have not been ob-
tained yet for the banana regime.

Appendix C shows that the ratio between the toroidal
and parallel viscosities cta /ca is related to the geometrical
factor �Ga� in Eq. �78� by the following equation:

1�
cta
ca

�B2�
B��B��

�
B��Ga�

�B��
, �100�

which is an essential relation for showing the Onsager sym-
metry of the total neoclassical transport.

Using Eqs. �78� and �99�, the toroidal viscosities are
written in terms of the parallel viscosities and the thermody-
namic forces as

F �Bt–�–�a�

�Bt–�–�a�
G �

cta
ca

F �B–�–�a�

�B–�–�a�
G �

nama

�aa
cta��Ga�

��Gta��
c
ea

F �̂a1 �̂a2

�̂a2 �̂a3
G FXa1

Xa2
G . �101�

Then, from Eqs. �43�, �84�, and �101�, we obtain the nonaxi-
symmetric transport equations relating (Je1

na ,Je2
na ,Ji1

na ,Ji2
na) to

(Xe1 ,Xe2 ,Xi1 ,Xi2 ,XE):

F Je1naJe2naJi1na
Ji2
na
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i
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ie �Lna�22

ie �Lna�21
ii �Lna�22

ii �Lna�2E
i

G
�F Xe1

Xe2

Xi1

Xi2

XE

G , �102�

where the nonaxisymmetric transport coefficients are given
by
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It is found that (Lna) jk
aa�(Lna)k j

aa is always valid although (Lna) jk
ei�(Lna)k j

ie is satisfied only when cte /ce�cti /ci . We see from
Eq. �100� that the condition cte /ce�cti /ci is equivalent to �Ge���Gi�, which holds if the electrons and the ions belong to the
same collisionality regime.

Finally, combining the banana-plateau transport equations �84� with the nonaxisymmetric transport equations �102�, and
using the relation �100�, the transport equations for the total of the banana-plateau and nonaxisymmetric fluxes
(Je1
bn ,Je2

bn ,Ji1
bn ,Ji2

bn ,JE
bp) are obtained as
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where the total transport coefficients are given by
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i �Lbp�EE� .

�108�

Thus, from the above definitions and the symmetry proper-
ties given by Eq. �94�, we can directly confirm that the total
banana-plateau and nonaxisymmetric transport coefficients
satisfy the following Onsager symmetry:

�Lbn� jk
ab��Lbn�k j

ba , �Lbn�E j
a ���Lbn� jE

a

�a ,b�e ,i; j ,k�1,2�. �109�

Here, we should note that these transport coefficients contain
terms of different orders in (me /mi)1/2. As seen from Eqs.

�85�–�93� and Eqs. �106�–�108�, the ion–ion coefficients
(Lbn) jk

ii are O �(mi /me)1/2� larger than the other coefficients.
When the ambipolarity condition is imposed in the non-

axisymmetric case, we obtain, in the similar way as in Eqs.
�71�–�73�, the radial electric field:

����
pi�
niei

�
Xi1

ei

�
pi�
nee

�S �
a ,b�e ,i

eaeb�Lbn�11
abD �1

�
a�e ,i

ea��Lbn�11
aeXe1*

��Lbn�12
aeXe2��Lbn�12

aiXi2��Lbn�1E
a XE� �110�

and the reduced set of the transport equations:
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where the transport coefficients are defined by

�L
bn� jk

ab��Lbn� jk
ab�S �
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A ,B�e ,i

eAeB�Lbn�11
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A�e ,i
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A D

�S �
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�112�
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a �S �

A�e ,i
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The Onsager symmetry still holds for the above coefficients:

�L
bn� jk

ab��L
bn�k j

ba , �L
bn� jE

a ���L
bn�E j

a . �113�

As mentioned earlier, terms of different orders in
(me /mi)1/2 are included in the transport coefficients
(Lbn) jk

ab . Therefore, the coefficients (Lbn) jk
ab for the reduced

transport equations also contain different order terms. To the
lowest order of (me /mi)1/2, Eq. �110� is approximated by

��� .
pi�
nee

�
�Lna�12

ii

�Lna�11
ii
Xi2

ei
, �114�

which is the same one given in Ref. 8 and in Ref. 11. In Ref.
11, Balescu and Fantechi used this approximate expression
for the radial electric field instead of Eq. �110� to derive the
reduced set of the transport equations. Then, their resultant
transport coefficients are different from ours in Eq. �112� and
do not satisfy the Onsager symmetry, since part of
O �(me /mi)1/2� terms in Eq. �112� are inconsistently ne-
glected.

V. CONCLUSIONS AND DISCUSSION

In this work, we have investigated the entropy produc-
tion, the full transport equations, and their Onsager symme-
try for the neoclassical transport processes in magnetically
confined plasmas with general toroidal configurations. It was
clearly shown that, for both the classical and neoclassical
transport processes, the kinetic form of the entropy produc-
tion defined from the linearized collision operator is equiva-
lent to its thermodynamic form written as the inner product
of the thermodynamic forces and their conjugate transport
fluxes. The entropy production from the gyroangle-
dependent distribution function corresponds to the sum of
the products of the classical radial particle and heat fluxes
and the radial gradient thermodynamic forces, while the
magnetic surface average of the entropy production from the
gyroangle-averaged distribution function is given by the sum
of the products of the thermodynamic forces and their con-
jugate fluxes which consist of the Pfirsch–Schlüter, banana-
plateau, nonaxisymmetric parts of the neoclassical radial
fluxes and the parallel current. This equivalence between the
kinetic and thermodynamic forms of the entropy production
for the full neoclassical transport fluxes were not confirmed
by Balescu in Chap. 17 of Ref. 3. The reason is now dis-
cussed.

In deriving the thermodynamic form of the entropy pro-
duction, we used the linearized drift kinetic equation without
employing the Hermitian moment expansion of the distribu-
tion function. Balescu expressed the kinetic form of the en-
tropy production as the quadratic form of only the vector
Hermitian moment part of the distribution function which
corresponds to the l�1 part of the Legendre polynomial
expansion. However, since the neoclassical banana-plateau
and nonaxisymmetric fluxes are caused by the parallel and
toroidal viscosities, the tensor Hermitian moment part �or the
l�2 part of the Legendre polynomial expansion� needs to be
included for deriving the neoclassical thermodynamic form
of the entropy production. Furthermore, as shown in Appen-
dix D, we find that it is necessary to include all the tensor
moments including higher order parts with l�3,4,5,.. . , in
the kinetic form of the entropy production to derive the neo-
classical thermodynamic form in the banana and plateau re-
gimes. This is intuitively understandable by considering the
resonant particles responsible for the neoclassical fluxes in
the plateau regime. The resonant particle distribution is
highly anisotropic in velocity space and is approximated by a
delta function in pitch angle so that the all Hermitian mo-
ments �or all lth-order Legendre polynomials� are required.
As shown in Appendix D, the operator v in–� in the drift
kinetic equation �38� introduces the anisotropic distribution
in the velocity space and it connects the lth-order moment
with (l�1)th-order moments in contrast with the linearized
collision operator which is isotropic in the velocity space and
connects the lth-order moment with the same lth-order mo-
ment alone. In the Pfirsch–Schlüter regime, the collision op-
erator dominates v in–� and the distribution function has
small contributions from higher-order moments representing
the anisotropy. Then, in the Pfirsch–Schlüter regime, the
l�1 vector moment is enough to express the entropy pro-
duction as in Ref. 3, while the negligibly small viscosity-
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induced neoclassical fluxes are included in the l�2 tensor
moment part. On the other hand, as the collision frequency
decreases, the operator v in–� is comparable to, and then
dominates, the collision operator and all l-order moments are
required in the kinetic entropy production functional to ob-
tain its neoclassical thermodynamic form in the banana and
plateau regimes.

We also proved from the formal solution of the linear-
ized drift kinetic equation with the self-adjoint linearized
collision operator that the Onsager symmetry is robustly
valid for the neoclassical transport equations for general to-
roidal plasmas consisting of electrons and multi-species ions
with arbitrary collision frequencies. Furthermore, we derived
in Sec. IV, in the case of a single ion species, the full banana-
plateau transport coefficients for all collisionality regimes
and the full nonaxisymmetric transport coefficients for the
Pfirsch–Schlüter and plateau regimes. The symmetry proper-
ties of these transport matrices were separately examined and
the Onsager symmetry for their total transport equations was
confirmed. We discussed the effects of the ambipolarity con-
dition on the transport equations in detail for both axisym-
metric and nonaxisymmetric configurations. The ambipolar-
ity condition reduces by one the number of the conjugate
pairs of the transport fluxes and the thermodynamic forces.
In the axisymmetric case, the intrinsic ambipolarity holds
and the radial electric field does not affect the transport. On
the other hand, for broken toroidal symmetry, a radial current
is a function of the thermodynamic forces (Xaj ,XE) in which
the radial electric field is included. When the ambipolarity
condition is imposed in the nonaxisymmetric case, the radial
electric field is given by a linear combination of the other
thermodynamic forces. We showed that the Onsager symme-
try is satisfied whether the conjugate pairs of the fluxes and
forces are reduced by the ambipolarity condition or not.

Balescu and Fantechi derived the full neoclassical trans-
port coefficients for the plateau regime in the nonaxisymmet-
ric configuration and claimed that the Onsager symmetry is
slightly broken by the nonaxisymmetry. They showed the
transport equations only for the reduced pairs of the fluxes
and forces, in which the radial electric field is eliminated by
the ambipolar condition. There, terms of O �(me /mi)1/2�
were neglected in expressing the radial electric field in terms
of the other forces as in Eq. �114�. Then, the resultant trans-
port coefficients in Ref. 11 deviate from those in Eq. �112�
and the Onsager symmetry is broken in them since part of
O �(me /mi)1/2� terms necessary for the symmetry are
dropped.

The banana-plateau and nonaxisymmetric transport
equations obtained here are valid whether electrons and ions
belong to the same collisionality regime or not. When both
species are in the same collisionality regime, we find that the
geometrical factors for electrons and ions coincide with each
other �Ge���Gi� and that, as far as the radial fluxes and the
radial forces are concerned, the Onsager symmetry is sepa-
rately valid for the banana-plateau transport matrix (Lbp) jk

ab

and for the nonaxisymmetric transport matrix (Lna) jk
ab . When

electron and ion collisionality regimes are different, �Ge�
� �Gi� and the mixed electron-ion coefficients in each ma-
trix are not symmetric, although the total matrix Lbn are sym-

metric. In the latter case, the radial electric field appears in
the thermodynamic forces for the banana-plateau radial par-
ticle and heat fluxes and the bootstrap current in the nonaxi-
symmetric systems.

Since we proved the robust validity of the Onsager sym-
metry for the neoclassical transport equations, even in the
nonaxisymmetric cases, this symmetry property can be uti-
lized for the calculation of the nonaxisymmetric transport
coefficients in the banana regime which were not given in
Sec. IV. For example, from the banana-plateau transport co-
efficients (Lbp) jE

a and (Lbp)E j
a (a�e ,i; j�1,2) for the banana

regime given in Sec. IV, we can immediately obtain part of
the nonaxisymmetric transport coefficients for the banana re-
gime as (Lna) jE

a ��(Lbp) jE
a �(Lbp)E j

a (a�e ,i; j�1,2).
In the previous work, we investigated the neoclassical

and anomalous transport in weakly turbulent plasma and de-
scribed the entropy production and the Onsager symmetry in
electrostatic turbulence.17 We are also investigating a unified
description of the transport equations, the entropy produc-
tion, and the Onsager symmetry for neoclassical and turbu-
lent processes with both electrostatic and electromagnetic
fluctuations, which we will report on in a future work.
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APPENDIX A: HAMADA COORDINATES AND
INCOMPRESSIBLE FLOWS

In general toroidal configurations, the magnetic field is
written in the contravariant form :

B�B�
�x
��

�B�
�x
��
, �A1�

where � and � are the poloidal and toroidal angle variables,
respectively, and corresponding basis vectors for the contra-
variant representation are given by �x/�� and �x/�� .
Throughout this paper, we employ the Hamada coordinates
(V ,� ,�), where the flux label V represents the volume en-
closed by the flux surface, and the periods of the angle vari-
ables are normalized as r d�� r d��1. The Jacobian is unity
�V–������1, so that the flux surface average is simply
written as �•�� r d� r d�• . The poloidal and toroidal fields
are given by Bp�B��x/���B�����V and
Bt�B��x/���B��V��� . The contravariant poloidal and
toroidal components are the surface flux quantities
B��B–�����(V) and B��B–�����(V), where � and �
are the poloidal and toroidal fluxes, respectively, and
���/�V . The vector product of B and �V is given by the
linear combination of B and �x/�� as

B��V�
B�

B� B�
B2

B�

�x
��
, �A2�
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where B��B–�x/�� .
When a solenoidal vector field U (�–U�0) is tangential

to magnetic surfaces U–�V�0 and satisfies U�B��K(V)
with some flux quantity K(V), it is written in the Hamada
coordinates as

U�U�
�x
��

�U�
�x
��
, �A3�

where the both contravariant components U��U–�� and
U��U–�� are flux surface quantities. Since both of the flow
velocity ua and the heat flow qa are incompressible
�–ua��–qa�0 �see Eq. �D12�� and satisfies the above con-
ditions �see Eq. �20�� to the lowest order in � , all of their
contravariant components ua

��ua–�� , ua
��ua–�� ,

qa
��qa–�� , qa

��qa–�� are flux surface quantities. Also, ua
and qa are separated into the parallel and perpendicular com-
ponents as

ua�u ian�u�a , qa�q ian�q �a , �A4�

where the perpendicular components u�a and q �a are given
by the thermodynamic forces Xa1 and Xa2 as in Eq. �20�.
Then, the contravariant poloidal and toroidal flow compo-
nents are given by the linear combinations of the parallel
flow components and the thermodynamic forces as

ua
��

B�

B u ia�
B�

B2
cXa1

ea
,

ua
��

B�

B u ia�
B�

B2
cXa1

ea
,

�A5�
2
5
qa

�

pa
�
B�

B
2
5
q ia

pa
�
B�

B2
cXa2

ea
,

2
5
qa

�

pa
�
B�

B
2
5
q ia

pa
�
B�

B2
cXa2

ea

where B��B–�x/�� . We find from Eq. �A5� that

�B2�ua
��B��u iaB���B��

cXa1

ea
,

�B2�ua
��B��u iaB���B��

cXa1

ea
,

�A6�

�B2�
2
5
qa

�

pa
�B�

2
5

�q iaB�
pa

��B��
cXa2

ea
,

�B2�
2
5
qa

�

pa
�B�

2
5

�q iaB�
pa

��B��
cXa2

ea
.

The following formulas are obtained from Eqs. �A5� and
�A6�:

u ia

B �
�u iaB�
�B2�

�
1
B� S B�

B2 �
�B��
�B2� D cXa1

ea

�
�u iaB�
�B2�

�
1
B� S B�

B2 �
�B��
�B2� D cXa1

ea
,

2
5pa

q ia

B �
2
5pa

�q iaB�
�B2�

�
1
B� S B�

B2 �
�B��
�B2� D cXa2

ea

�
2
5pa

�q iaB�
�B2�

�
1
B� S B�

B2 �
�B��
�B2� D cXa2

ea
. �A7�

APPENDIX B: PFIRSCH–SCHLÜTER TRANSPORT
EQUATIONS

The relations between the parallel friction forces and the
parallel flows are given by the 13M approximation in the
same form as in Eq. �27�, and are written as

F F ia1

�F ia2
G ��

b
F l11ab l12

ab

l21
ab l22

abGF u ib

�
2
5pb

q ib
G , �B1�

where the coefficients l jk
ab are defined in Eq. �28�. Then, the

Pfirsch–Schlüter particle and heat fluxes (Ja1
PS ,Ja2

PS) defined
in Eq. �43� are rewritten as

F Ja1PSJa2
PSG ��

c
eaB��

b
F l11

ab �l12
ab

�l21
ab l22

ab G
�F K u ia

B S B���B��
B2

�B2� D L
K 2
5pa

q ia

B S B���B��
B2

�B2� D L G . �B2�

Substituting Eq. �A7� into Eq. �B2�, we obtain the Pfirsch–
Schlüter transport equations:

F Ja1PSJa2
PSG ��

b
F �LPS�11

ab �LPS�12
ab

�LPS�21
ab �LPS�22

abG FXa1

Xa2
G , �B3�

where the Pfirsch–Schlüter transport coefficients (LPS) jk
ab are

given by

�LPS� jk
ab�

��1 � j�k�1

eaeb
S c
B� D 2S K B�

2

B2 L �
�B��2

�B2� D l jkab
� j ,k�1,2�. �B4�

From Eqs. �29� and �B4�, we have the Onsager symmetry for
the Pfirsch–Schlüter transport as

�LPS� jk
ab��LPS�k j

ba � j ,k�1,2�. �B5�

The momentum conservation property described by Eq. �30�
reduces to

�
a
ea�LPS�1k

ab�0 �k�1,2�, �B6�

which implies the intrinsic ambipolarity of the Pfirsch–
Schlüter particle fluxes. We easily find from Eqs. �32�, �B3�,
�B5�, and �B6� that the Pfirsch–Schlüter transport equations
for the pairs (Ja1

PS ,Xa1* )a�I ,(Ja2
PS ,Xa2) are given by
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Ja1�a�I �
PS ��

b�I
�LPS�11

abXb1* ��
b

�LPS�12
abXb2 ,

�B7�
Ja2
PS��

b�I
�LPS�21

abXb1* ��
b

�LPS�22
abXb2 ,

which shows that the transport coefficients (LPS) jk
ab are the

same as in Eq. �B3�, except for the limitation (a , j),(b ,k)
� (I ,1) and that the Onsager symmetry is valid for both of
the conjugate pairs.

APPENDIX C: PARALLEL AND TOROIDAL
VISCOSITIES

It is shown from the solution of the linearized drift ki-
netic equation that the parallel viscosities in general toroidal
configurations for all collision frequencies in the Pfirsch–

Schlüter, plateau, and banana regimes are given in the fol-
lowing form :

F �B–�–�a�

�B–�–�a�
G �

nama

�aa
caF �̂a1 �̂a2

�̂a2 �̂a3
G

�S F �u iaB�

2
5pa

�q iaB�G ��Ga�
c
ea

FXa1

Xa2
G D ,

�C1�

where ca and �̂a j ( j�1,2,3) are the dimensionless param-
eters for the viscosity coefficients and �Ga� represents the
geometrical factor. The collision frequency �aa is defined in
Ref. 2. The dimensionless viscosity parameters �̂a j
( j�1,2,3) are written as

�̂a j�H �xa
2�xa

2� 5
2�
j�1��T

a�aa�
�1� �for the Pfirsch–Schlüter regime�,

� j1�
1
2 � j2�

13
4 � j3 �for the plateau regime�,

��xa
2� 5

2�
j�1��D

a �aa�� �for the banana regime�,

�C2�

where the frequencies �T
a and �D

a are given in Ref. 2, and the velocity-space average � • � � (8/3��)�0
�dxaxa

4e�xa
2 • is used. The

dimensionless coefficient ca is given by

ca� 5
3
5 �vTa�aa�2��B–�lnB �2�/�B2� �for the Pfirsch–Schlüter regime�,

��vTa�aa�B2��1/2�
m ,n

2�u� lnB �mnu2umB��nB�u �for the plateau regime�,

f t / f c �for the banana regime�,

�C3�

where f c and f t�1� f c denote the fractions of circulating and trapped particles defined in Ref. 2 �or in Ref. 7�, respectively,
and (lnB)mn are the coefficients in the Fourier expansion of lnB :

lnB��
m ,n

� lnB �mnexp�2�i�m��n��� .

The geometrical factor �Ga� is written as

�Ga��H ��B–�lnB �2��1F �B��K �lnB
��

�B–�lnB �L ��B��K �lnB
��

�B–�lnB �L G �for the Pfirsch–Schlüter regime�,

F �
m ,n

u� lnB �mnu2umB��nB�u G �1

�
m ,n

u� lnB �mnu2�m�B���n�B���
mB��nB�

umB��nB�u
�for the plateau regime�.

�C4�

The geometrical factor �Ga� for the banana regime is given in Ref. 7 �or in Ref. 9� as G̃b . When we put (lnB)mn�0 for all
n � 0 in Eqs. �C3� and �C4�, the expressions for axisymmetric systems are reproduced. In the axisymmetric case, �Ga� is
independent of the collision frequency and is given by �Ga���B��/B� for all particle species.

It is shown that the toroidal viscosities are given in the following form for both of the Pfirsch–Schlüter and plateau
regimes:

F �Bt–�–�a�

�Bt–�–�a�
G �

nama

�aa
ctaF �̂a1 �̂a2

�̂a2 �̂a3
G S F �u iaB�

2
5pa

�q iaB�G ��Gta�
c
ea

FXa1

Xa2
G D , �C5�

where �̂a j ( j�1,2,3) are the same as given by Eq. �C2� and

cta�H 3
5 �vTa�aa�2��Bt–�lnB ��B–�lnB ��/�B2� �for the Pfirsch–Schlüter regime�,

��vTa�aa�B2��1/2�
m ,n

2�u� lnB �mnu2��nB��
mB��nB�

umB��nB�u
�for the plateau regime�,

�C6�
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�Gta��H ��Bt–� lnB ��B–�lnB ���1F �B��K �lnB
��

�Bt–�lnB �L ��B��K �lnB
��

�Bt•�lnB �L G �for the Pfirsch–Schlüter regime�,

F �
m ,n

u� lnB �mnu2
��nB���mB��nB��

umB��nB�u G �1

�
m ,n

u� ln B �mnu2�m�B���n�B�� �
��nB��

umB��nB�u
�for the plateau regime�.

�C7�

The expressions similar to Eq. �C5� have not been obtained
yet for the banana regime. We find from Eqs. �C3�, �C4�, and
�C6� that the ratio between the toroidal and parallel viscosi-
ties cta /ca is related to the geometrical factor �Ga� by the
following equation:

1�
cta
ca

�B2�
B��B��

�
B��Ga�

�B��
, �C8�

which is an essential relation for showing the Onsager sym-
metry of the total neoclassical transport. We find from Eqs.
�C1� and �C5� that the toroidal viscosities are written in
terms of the parallel viscosities and the thermodynamic
forces as

F �Bt–�–�a�

�Bt–�–�a�
G �

cta
ca

F �B–�–�a�

�B–�–�a�
G �

nama

�aa
cta��Ga�

��Gta��
c
ea

F �̂a1 �̂a2

�̂a2 �̂a3
G FXa1

Xa2
G . �C9�

APPENDIX D: DRIFT KINETIC EQUATION AND
LEGENDRE POLYNOMIAL EXPANSION

The linearized drift kinetic equation is written as

v in–� f̄ a1�vda–�f a0�
ea
Ta

v iE i f a0�Ca
L� f̄ a1�, �D1�

where f̄ a1 and f a0 are regarded as functions of the phase
space variables (x,E ,�) (E� 1

2 mav2�ea�: the particle’s
energy; ��mav�

2 /2B: the magnetic moment). Using
(x,v ,�) (��v i /v) as the phase space variables instead of
(x,E ,�), we consider the expansion by the Legendre poly-
nomials Pl(�) �P0(�)�1,P1(�)�� ,P2(�)� 3

2�
2� 1

2,•••] for
an arbitrary function F(x,v ,�) as

F�x,v ,����
l�0

�

F � l ��x,v ,��,

�D2�
F � l ��x,v ,���Pl���

2l�1
2 E

�1

1
d�Pl���F�x,v ,��.

The lth Lengendre component corresponds to the l-order ten-
sor Hermitian moment part in the Hermitian moment repre-
sentation employed by Balescu in Ref. 3. The first term in
the left-hand side of Eq. �D1� is rewritten in the new phase
space variables as

vS �n–� f̄ a1��n–�lnB �
1��2

2
� f̄ a1
�� D �A f̄ a1 . �D3�

We have the following formulas for the Legendre polynomi-
als:

�Pl����
1

2l�1 � lPl�1����� l�1 �Pl�1���� ,

�D4�
�1��2�

dPl���

d�
�
l� l�1 �

2l�1 �Pl�1����Pl�1���� .

We find from Eqs. �D3� and �D4� that the operator A

��v in–� with (x,E ,�) as the phase space variables� in the
drift kinetic equation �D1� transforms the lth Legendre com-
ponent to the linear combination of the (l�1)th compo-
nents:

AF � l ���AF �� l�1 ���AF �� l�1 �. �D5�

Contrastively, from the velocity space isotropy of the colli-
sion operator described in Eq. �3�, the operator Ca

L trans-
forms the lth component to only the lth one. The second and
third terms in the right-hand side of Eq. �D1� are rewritten
from Eqs. �18� and �20� as

F23�
1
3 P2���Gxa2F �–u�a�S xa2� 5

2 D 2
5pa

�–q�aG f a0
�D6�

and

�
eaE i

Ta
v� f a0 , �D7�

respectively. The former is proportional to the divergence of
the diamagnetic flows and contains only the zeroth and sec-
ond Legendre polynomial components while the latter is pro-
portional to the parallel electric field and contains only the
first Legendre component.

Now, let us write the drift kinetic equation �D1� by each
Legendre component, separately. The zeroth Legendre com-
ponent �or the scalar moment part� of Eq. �D1� is given by

�A f̄ a1
� l�1 ��� l�0 ��

2
3 xa

2F �–u�a�S xa2� 5
2 D 2
5pa

�–q�aG f a0
�Ca

L� f̄ a1
� l�0 ��. �D8�

Here, the l�1 Legendre component f̄ a1
(l�1) of the distribu-

tion function is expanded by the Laguerre polynomials
L j
(3/2)(xa

2) (L0
(3/2)(xa

2)�1,L1
(3/2)(xa

2)� 5
2�xa

2 ,•••) as

f̄ a1
� l�1 ��

2
vTa

�xaFu ia�S xa2� 5
2 D 25 q ia

pa
G f a0� f̄ a1

� l�1,j�2 � ,

�D9�

where f̄ a1
(l�1,j�2) denotes the sum of the j th Laguerre poly-

nomial components with j�2, which is neglected in the 13M
approximation. The first term of Eq. �D8� is rewritten as
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�A f̄ a1
� l�1 ��� l�0 ��

2
3 xa

2F �–�u ian��S xa2� 5
2 D

�
2
5pa

�–�q ian�G f a0
��A f̄ a1

� l�1,j�2 ��� l�0 �. �D10�

Then, Eq. �D8� reduces to

2
3 xa

2F �–ua�S xa2� 5
2 D 2
5pa

�–qaG f a0��A f̄ a1
� l�1,j�2 ��� l�0 �

�Ca
L� f̄ a1

� l�0 ��. �D11�

Integrating Eq. �D11� multiplied by 1 and xa
2 over the veloc-

ity space, we obtain the incompressibility of ua and qa :

�–ua��–qa�0, �D12�

where we used the particle number and energy conservation
by the collision operator described in Eq. �2�. �Exactly
speaking, �–qa�0 is valid to the lowest order of the small
mass ratio as in Eq. �9�.� Thus, we have

�A f̄ a1
� l�1,j�2 ��� l�0 ��Ca

L� f̄ a1
� l�0 ��, �D13�

from which the contribution from the scalar moment part
f̄ a1
(l�0) of the distribution function to the kinetic form of the
entropy production is given by

�̄a
� l�0 ��� E d3v

f̄ a1
� l�0 �

f a0
Ca
L� f̄ a1

� l�0 ��

�� E d3v
f̄ a1

� l�0 �

f a0
A f̄ a1

� l�1,j�2 � . �D14�

In the 13M approximation, �̄a
(l�0) vanishes.

Taking the first Legendre component �or the vector mo-
ment part� of Eq. �D1�, we have

�A� f̄ a1
� l�0 �� f̄ a1

� l�2 ���� l�1 ��
eaE ia

Ta
v� f a0�Ca

L� f̄ a1
� l�1 ��.

�D15�
We obtain the following parallel momentum balance equa-
tions from velocity integration of Eq. �D15� multiplied by
mav� and mav�(xa

2� 5
2):

n–��pa1��–�a��naeaE i �F ia1 ,
�D16�n–���a1��–�a��F ia2 .

Using Eqs. �D9� and �D15�, the contribution from the vector
moment part f̄ a1

(l�1) to the kinetic form of the entropy pro-
duction is given by

�̄a
� l�1 ��� E d3v

f̄ a1
� l�1 �

f a0
Ca
L� f̄ a1

� l�1 ��

�
1
Ta
naeau iaE i � E d3v

f̄ a1
� l�1 �

f a0
A� f̄ a1

� l�0 �� f̄ a1
� l�2 ��

�
1
Ta
naeau iaE i �

1
Ta

Fu ian–��pa1��–�a�

�
2
5
q ia

pa
n–���a1��•�a�G

� E d3v
f̄ a1

� l�1,j�2 �

f a0
A� f̄ a1

� l�0 �� f̄ a1
� l�2 ��, �D17�

where the last integral vanishes in the 13M approximation.
The second Legendre component �or the tensor moment

part� of Eq. �D1� is given by

�A� f̄ a1
� l�1 �� f̄ a1

� l�3 ���� l�2 �� 1
3 P2���xa

2

�F �–u�a�S xa2� 5
2 D 2
5pa

�–q�aG f a0
�Ca

L� f̄ a1
� l�2 ��, �D18�

which is rewritten by Eqs. �D9� and �D12� as

2P2���xa
2Fua�S xa2� 5

2 D 2
5pa

qaG–��lnB � f a0��A� f̄ a1
� l�1,j�2 �

� f̄ a1
� l�3 ���� l�2 ��Ca

L� f̄ a1
� l�2 ��. �D19�

The contribution from the tensor moment part f̄ a1
(l�2) to the

kinetic form of the entropy production is given by

�̄a
� l�2 ��� E d3v

f̄ a1
� l�2 �

f a0
Ca
L� f̄ a1

� l�2 ��

��
1
Ta

F �p ia�p�a�ua��� ia���a�
2
5pa

qaG
–�lnB� E d3v

f̄ a1
� l�2 �

f a0
A� f̄ a1

� l�1,j�2 �� f̄ a1
� l�3 ��. �D20�

Similarly, for higher-order tensor moment parts with l�3,
we have

�A� f̄ a1
� l�1 �� f̄ a1

� l�1 ���� l ��Ca
L� f̄ a1

� l �� �for l�3 �, �D21�

from which we obtain

�̄a
� l ��� E d3v

f̄ a1
� l �

f a0
Ca
L� f̄ a1

� l ��

�� E d3v
f̄ a1

� l �

f a0
A� f̄ a1

� l�1 �� f̄ a1
� l�1 �� �for l�3 �.

�D22�

Taking the magnetic surface average of each order mo-
ment part of the entropy production in Eqs. �D14�, �D17�,
�D20�, and �D22� gives

��̄a
� l�0 ���� K E d3v

f̄ a1
� l�0 �

f a0
A f̄ a1

� l�1,j�2 �L
��̄a

� l�1 ���
1
Ta
naea�u iaE i��

1
Ta

K u ian–��pa1��–�a�

�
2
5
q ia

pa
n–���a1��•�a�L

� K E d3v
f̄ a1

� l�1,j�2 �

f a0
A� f̄ a1

� l�0 �� f̄ a1
� l�2 ��L ,

�D23�
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��̄a
� l�2 ����

1
Ta

K F �p ia�p�a�ua��� ia

���a�
2
5pa

qaG–�lnBL
� K E d3v

f̄ a1
� l�2 �

f a0
A� f̄ a1

� l�1,j�2 �� f̄ a1
� l�3 ��L ,

��̄a
� l ���� K E d3v

f̄ a1
� l �

f a0
A� f̄ a1

� l�1 �� f̄ a1
� l�1 ��L �for l�3 �,

which are summed up to

��̄a���
l�0

�

��̄a
� l ���

1
Ta
naea�u iaE i��

1
Ta K u ian–��p1a

��–�a��
2
5
q ia

pa
n–���1a��–�a�L �

1
Ta K F �p ia

�p�a�ua��� ia���a�
2
5pa

qaG–�lnB L . �D24�

Here, we have used the following cancellation formula for
arbitrary functions � and � of (x,v ,�) :

K E d3v
�

f a0
A� L � K E d3v

�

f a0
A� L �0, �D25�

which is derived from the following properties of A :

A������A���A� , K E d3vAF�x,v ,��L �0,

�D26�
AG�V ,v ��0,

where F and G are arbitrary functions of (x,v ,�) and (V ,v),
respectively. After some calculations, Eq. �D24� is rewritten
in the same thermodynamic form as in Eq. �46�:

Ta��̄a��Ja1
nclXa1�Ja2

nclXa2�Ja3Xa3 , �D27�

of which the species sum is given by

�
a
Ta��̄a���

a
�Ja1
nclXa1�Ja2

nclXa2��JEXE . �D28�

It should be noted that the above neoclassical thermody-
namic forms of the entropy production are derived from the
kinetic form only through the magnetic surface average and
sum of all the l-th tensor moment contributions of the distri-
bution function. In Chap. 17 of Ref. 3, Balescu used only the
vector Hermitian moments of the distribution function to cal-
culate the kinetic form of the entropy production, which is
written in our notation as

�
a
Ta���̃a����̄a

� l�1 �� �. �D29�

Here, as is understandable from the form of f̃ a1 shown in Eq.
�17�, the contribution of the vector Hermitian moments con-

tains �̃a which is defined by Eq. �16� and written in the
classical thermodynamic form of Eq. �21�. In the Pfirsch–
Schlüter regime, the higher-order moments representing
higher anisotropy become small so that the l�2 tensor mo-
ments corresponding to the viscosities �and therefore to the
banana-plateau and nonaxisymmetric transport fluxes� are
smaller than the l�1 vector moment corresponding to the
classical and Pfirsch–Schlüter fluxes by a small factor
vTa�aa /L (L: the scale length of the magnetic configuration�.
In this case, the l�3 moments are further smaller and the
total entropy production is approximated in the lowest order
of vTa�aa /L with the 13M approximation by Eq. �D29� as

�
a
Ta���̃a����̄a�� . �

a
Ta���̃a����̄a

� l�1 �� �

. �
a

���Ja1
cl ��Ja1

PS�Xa1���Ja2
cl �

�Ja2
PS�Xa2��JE

clXE

�for the Pfirsch�Schlüter regime�,

�D30�
which takes the thermodynamic form consisting of the prod-
ucts of the thermodynamic forces and their conjugate classi-
cal and Pfirsch–Schlüter fluxes. �Here, it is noted that the
classical fluxes Ja j

cl ( j�1,2) is defined not by the magnetic
surface average but by the local quantity in Eq. �22�.� How-
ever, for small collision frequencies as in the plateau and
banana regimes, contributions from higher-order tensor mo-
ments with l�2 are comparable to the l�1 vector moment
and are indispensable in order to derive the complete neo-
classical thermodynamic form including the banana-plateau
and nonaxisymmetric transport fluxes.
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