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Entropy production and Onsager symmetry in neoclassical transport processes of magnetically
confined plasmas are studied in detail for general toroidal systems, including nonaxisymmetric
configurations. It is found that the flux surface average of the entropy production defined from the
linearized collision operator and the gyroangle-averaged distribution function coincides with the
sum of the inner products of the thermodynamic forces and the conjugate fluxes consisting of the
Pfirsch—Schluter, banana-plateau, nonaxisymmetric parts of the neoclassical radial fluxes and the
parallel current. It is proved from the self-adjointness of the linearized collision operator that the
Onsager symmetry is robustly valid for the neoclassical transport equations in the cases of general
toroidal plasmas consisting of electrons and multi-species ions with arbitrary collision frequencies.
It is shown that the Onsager symmetry holds whether or not the ambipolarity condition is used to
reduce the number of the conjugate pairs of the transport fluxes and the thermodynamic forces. The
full transport coefficients for the banana-plateau and nonaxisymmetric parts are separately derived,
and their symmetry properties are investigated. The nonaxisymmetric transport equations are
obtained for arbitrary collision frequencies in the Pfirsch—Schluter and plateau regimes, and it is
directly confirmed that the total banana-plateau and nonaxisymmetric transport equations satisfy the

Onsager symmetry. © 1996 American Institute of Physics. [S1070-664X(96)02001-3]

l. INTRODUCTION

Transport processes caused by binary Coulomb colli-
sions between charged particles in toroidal magnetic con-
figurations are described by the neoclassical transport
theory.! Particle and heat transport fluxes observed in most
fusion devices exceed the predictions of the neoclassical
transport theory, and thus are called anomalous transport.*
The anomalous transport is considered to result from the
turbulent fluctuations driven by various plasma instabilities,
which are not taken into account by the neoclassical theory.
However, the neoclassical theory is regarded as a standard
model with a well-established framework, which gives lower
limits of the transport fluxes in quiescent plasmas close to
thermal equilibria, and it also has practical use for predicting
the parallel transport such as a bootstrap current with more
accuracy than the predictions for the radial transport. The
characteristics of the neoclassical theory lie in the inclusion
of the effects of the global magnetic field geometry due to
the long mean free path of the hot particles. In less colli-
sional regimes such as plateau and banana regimes, the pro-
cesses in deriving the neoclassical transport equations, which
relate the neoclassical transport fluxes to the thermodynamic
forces, are more complicated than the derivation of the clas-
sical transport equations in more collisional regimes. Since
the neoclassical transport coefficients contain the parameters
relating to both the collisionality and the magnetic geometry,
it is less trivial than in the case of the classical transport to
show the validity of the Onsager symmetry> for the neoclas-
sical transport. In the cases of axisymmetric systems, the
analytical expressions of the full neoclassical transport coef-
ficients for all collisionality regimes have been obtained, and
it is well-known that the Onsager symmetry holds for the
axisymmetric neoclassical transport matrix.
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The neoclassical transport equations for nonaxisymmet-
ric systems®~!! are more complicated due to the geometrical
complexities, and they involve the nonambipolar parts. The
absence of symmetry may also cause the breakup of mag-
netic surfaces into islands and ergordic regions,' although
such problems are beyond the scope of this work. Here we
assume the existence of toroidal nested magnetic surfaces as
in other previous works.°~!! Balescu and Fantechi derive the
full neoclassical transport coefficients for the nonaxisymmet-
ric plasma in the plateau regime, and claim that the Onsager
symmetry partly breaks down in that case.!! Contrary to Ref.
11, we show in the present work that the Onsager symmetry
is robustly valid for the neoclassical transport equations in
the cases of general toroidal plasmas consisting of electrons
and multi-species ions with arbitrary collision frequencies.

Concerning the Onsager relation, it is important to dis-
cuss the entropy production resulting from the transport pro-
cesses since the Onsager relation, if it holds, is satisfied only
by the transport matrix connecting the conjugate pairs of
transport fluxes and thermodynamic forces, which should be
specified through the entropy production.’ According to the
terminology in Ref. 3, we expect that the kinetic form of the
entropy production defined from the collision operator
should coincide with its thermodynamic form, in which the
entropy production is expressed as the sum of the products of
the conjugate pairs of the fluxes and forces. In Chap. 17 of
Ref. 3, Balescu presented detailed analyses on the kinetic
and thermodynamic forms of the entropy production in the
classical and neoclassical transport processes for the axisym-
metric case. Using the Hermitian moment representation, he
confirmed that the kinetic form of the entropy production
includes the thermodynamic form given by the products of
the thermodynamic forces and their conjugate classical and
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neoclassical Pfirsch—Schluter fluxes, although he did not
identify the thermodynamic form corresponding to the neo-
classical banana-plateau transport. In this work, before the
proof of the Onsager symmetry, we show for general toroidal
geometry the complete coincidence between the kinetic form
of the entropy production and its full thermodynamic form,
including all contributions from the classical and neoclassi-
cal (Pfirsch—Schluter, banana-plateau, nonaxisymmetric)
fluxes. The main difference between our treatment and that
in Ref. 3 is that we use directly the distribution function and
the drift kinetic equations instead of the Hermitian moment
expansion.

The proof of the Onsager symmetry for the neoclassical
transport equations in general toroidal configurations is given
in the similar manner to that in the Appendix of Ref. 2. The
proof uses the self-adjointness of the linearized collision op-
erator and the formal solution of the linearized drift kinetic
equation, although neither axisymmetry of the magnetic con-
figuration nor any condition for collisionality is required. We
also derive the full neoclassical transport coefficients in the
nonaxisymmetric system for collision frequencies in the
Pfirsch—Schluter and plateau regimes, from which the On-
sager symmetry of the full neoclassical transport matrix is
directly confirmed.

In the axisymmetric configurations, the ambipolarity is
automatically satisfied by the neoclassical transport and the
radial electric field does not affect the transport fluxes. On
the other hand, in the nonaxisymmetric configurations, the
radial electric field is determined through the particle trans-
port equations if the ambipolarity condition is imposed. In
both cases with and without the ambipolarity condition, we
give the neoclassical transport equations and check their On-
sager symmetry.

This work is organized as follows. In Sec. II, the entropy
production defined from the collision operator is divided into
the two parts, which are derived from the gyroangle-
averaged and gyroangle-dependent parts of the distribution
function. The entropy production from the gyroangle-
dependent distribution function is given by the sum of the
inner products of the classical radial particle and heat fluxes
and the radial gradient thermodynamic forces. The transport
matrix relating these classical fluxes and forces is shown to
satisfy the Onsager symmetry. We find that the entropy pro-
duction from the gyroangle-averaged distribution function is
written as the sum of the inner products of the thermody-
namic forces and the corresponding conjugate fluxes which
consist of the Pfirsch—Schluter, banana-plateau, nonaxisym-
metric parts of the neoclassical radial fluxes and the parallel
current. In Sec. III, using the formal solution of the linear-
ized drift kinetic equation and the self-adjointness of the lin-
earized collision operator, we prove that the Onsager sym-
metry is satisfied by the neoclassical transport equations for
arbitrary collision frequencies in general toroidal systems,
including nonaxisymmetric cases. The effects of the ambipo-
larity on the neoclassical transport coefficients are examined
for both axisymmetric and nonaxisymmetric cases to show
the robust validity of the Onsager symmetry independent of
the use of the ambipolarity condition. In Sec. IV, the full
transport coefficients are derived for the banana-plateau and
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nonaxisymmetric parts, separately, and their symmetry prop-
erties are investigated. We derive the nonaxisymmetric trans-
port coefficients for arbitrary collision frequencies in the
Pfirsch—Schluter and plateau regimes, and directly confirm
that the total banana-plateau and nonaxisymmetric transport
equations satisfy the Onsager symmetry. Finally, conclusions
and discussions are given in Sec. V. There, we discuss the
reason why our two main results, i.e., the complete corre-
spondence between the kinetic and thermodynamic forms of
the entropy production, and the Onsager symmetry in the
nonaxisymmetric case, were not confirmed in Ref. 3 and in
Ref. 11, respectively.

Il. ENTROPY PRODUCTION IN CLASSICAL AND
NEOCLASSICAL TRANSPORT PROCESSES

Here, we show that the thermodynamic form of the en-
tropy production is equivalent to its kinetic form defined
from the collision operator for the classical and neoclassical
transport in the general case of magnetically confined plasma
with arbitrary toroidal geometry. For that purpose, we first
describe several properties of the collision operator which is
denoted for species a by

ca=§ Car(fasfs)s (1)

where f, (f},) is the distribution function of the species a (b)
and C,;, represents the contribution from the collision be-
tween the particles a and b.

The collision operator conserves the particles’ number,
momentum, and Kinetic energy, which is written as

E d*vC,,=0,
E d3vmavCab+Ed3vmvaba=0, )
E 3 1 2 E 5 1 2

dv-mu Chthd vy MmpY Cp.=0.

2

Furthermore, the collision operator is invariant under arbi-
trary translational and rotational transform of the velocity
variable v of distribution functions, which is expressed by

.,?Cab(fa ’fb) = Cab("d/‘fa ’ﬂ‘b) ’
%Cah(fu ’fb) = Cab('%) a ’%fb)’ (3)

where .7 f and .72f denote functions f with arbitrary transla-
tional and rotational transform of the velocity variable v,
respectively.

The entropy production for the species a is defined from
the collision operator by

SF; S'ubz—; Ed%(lnfa)cab(fa b)) )

The second law of the thermodynamics or the positive defi-
niteness of the entropy production is given by

Sab—'_sbaZO’ E SaZO’ (5)
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where the total entropy production XS, vanishes if and only
if the distribution functions for all species are the Maxwell-
ian with the same temperature and the same mean velocity.
However, even if two particle species with much different
masses (such as for electrons and ions) have the Maxwellian
distributions with different temperatures, the collisional heat
exchange between the two species are negligibly slow and
the entropy production due to their collisions is so small that
we hereafter neglect it based on the small mass ratio order-
ing.

For magnetically confined plasmas, the lowest-order dis-
tribution function for the species a with respect to the drift
ordering is given by the Maxwellian with no mean velocity
as

fao=m""n, v;fexp(—xz)zfaM , (6)

where v7,=2T,/m, and x,=v/vy, are defined from the
temperature 7', . The dlStI‘lbuthH functions and the collision
operator are perturbatively expanded in the drift ordering pa-
rameter 0=p/L (p: the thermal gyroradius, L: the equilib-
rium scale length) as

fa:fa0+fal +@3(52)’
Cup=Coup(fa0 f50) + Cop(far of 1)+ (87,

where the linearized collision operator C%, is defined by

Chy(far of51)=Cap(Far f50) + Cap(fao f 1) ()

The linearized collision operator also has the conserva-
tion and symmetry properties, which are expressed by Eqs.
(2) and (3) with C,;, replaced by C%, . The self-adjointness
of the linearized collision operator ~ is written as

()

8al E 8h1
T, Ed3 f Cly(hay )+ T, d3vmcéa(hb1’ha1)
hai
:TaE d3v Cib(gal,gbl)
+TbE d3 Cba(gbl 8al)» )

" To

which is exactly valid for 7,=T, and is approximately sat-
isfied for T, # T, when m,/m,<<1 or m;,/m,<<1. For ex-
ample, in the case of collisions between ions (a=i) and
electrons (b=¢) with T; # T,, CiLe contains a part which
breaks the complete self-adjointness although it is neglected
to the lowest order in (m,/m;)"? (see Sec. IV of Ref. 13).
Concerning the positive definiteness of the entropy produc-
tion described in Eq. (5), we find the positive definiteness of
the quadratic form associated with the linearized collision
operator as

=T, E d3Uf_C (8a1,8h1)
a0

8h1
_TbE d3v_clb‘a(gbl’gal)>0’ (10)
fb()

which is valid for T, # T, to the lowest order of the small
mass ratio m,/m,<<1 (or m,/m,<1) as Eq. (9).
Using in Eq. (4)
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ful
fao

the entropy production S, up to 7( 8 2) is given by

In f,=In f,o+=>—+(5%),

fal
o —2 Oup=" E EdSU_C (farfp1)- (11)
Instead of Eq. (5), we have from Eq. (10)

To0 o+ Tpope=0, >, T,0,20. (12)

Now, let us divide the first-order distribution function
fa1 into the gyroangle-averaged part f,; and the gyroangle-
dependent part f,,; as

falzfal_’_f‘al' (13)

Due to the rotational symmetry of the collision operator in
the velocity space shown in Eq. (3), the entropy production
o, separates into the corresponding parts as

o, =0,+0,, (14)
where

_g Ed3v%csb(fal7jbl)v (15)

--2 Ecﬁ f“l CEy(Far of1)- (16)

First, we consider the entropy production ¢, due to the
gyroangle-dependent part of the distribution function. The
gyroangle-dependent part f,; is given from the lowest-order
distribution function f,, by

all

2

vxn-VV
faOW
2 mas 5

= T_aV' llJ_a+ g p_

~ vXn

falz ) fXa1+Xa2sx121_

'Vfaoz -

a

- ;ﬂﬂqu’ (17)

where n=B/B is the unit vector along the magnetic field B
and ,=e, B/m,c is the gyrofrequency of the particle with
the mass m, and the charge e, . In Eq. (17), f,o is regarded
as a function of (V,E,u) (V: the volume inside the flux
surface, E=1m,v2+e,P: the particle’s energy, and
,U,Emavi/ZB: the magnetic moment), and we have used

Jd1n fuo
A%

= 1|:X+xs25ﬂ“ 18
_T_aal a2xa5’ ()

where the thermodynamic forces X,; and X,, are defined
from the radial gradients of the pressure p,, , the electrostatic
potential @, and the temperature T, as

’
p J
XalE__u_e (I)’7 XaZE_TI; s,_

n, ayh (19)

in terms of which the perpendicular components of the fluid
velocity and the heat flow are
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= _E d vfaIVL
Qo _ E s 5] 5 eXa (20)
Pa d Ufalvl 2 ea VV Xn.
Substituting Eq. (17) into Eq. (16), we obtain
T,6,=J X7 X 0, (21)
where
J&=r.vy, J;g: 790 c.yy (22)

are the radial components of the classical particle and heat
fluxes defined by

Cc

c 1
FZIZ BFaIXn, T—q21=e—BFa2xn. (23)

Here the friction forces F,; and F,, are given by

Falzg E dSUmaVCzeb(ful 7fb1)7

s 5“ (24)
Fa2:§ EdSUmaV )CZ_E CSb(fal’fbl)'

It should be noted that, from the rotational symmetry of the
collision operator, that f,; does not contribute to the perpen-
dicular friction forces F, ,; while fal does not contribute to
the parallel friction forces Fj,; . Equation (21) shows that the
entropy production ¢, defined from the gyroangle-dependent
part of the distribution function is caused by the classical
particle and heat transport, and that the classical fluxes JCl
and JC2 are conjugate to the thermodynamic forces X,; and
X o, respectively. The momentum conservation due to the
collision operator gives

2 Falzo’ (25)

which in turn causes the classical particle fluxes to satisfy the
ambipolarity as

> e ro=0. (26)

We have the relations between the perpendicular friction
forces and flows from Eqgs. (17) and (24) as

fFL“‘ﬂ Efla,, labﬁl:_i G @7)
S5p

where the coefficients l;'kb
and are given by

are the same ones defined in Ref. 2

2 E dPovi LY (x2)C o[ v

lab

ab T
XLE(x2)fa0 f a VY
X L2 Copl fao v L“’” (X)) f 0l (28)
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Here, L§?(x*)=1, L{*®(x?)=3—x2, -+, are the Laguerre
polynomials of order 3. In Egs. (27) and (28), the rotational
symmetry of the linearized collision operator is used. From
the self-adjointness of the linearized collision operator
shown in Eq. (9), the coefficients l?,f’ have the following
symmetry :

19 =179. (29)

The momentum conservation property described in Eq. (25)
imposes another constraint on the coefficients l;-‘,f :

> 1§7=0. (30)
From Eq. (21) and the ambipolarity condition 3 ,e,J< =0
given by Eq. (26), we obtain

> Ta&a—E [T X a1 +I5X 5]

—E T X% +E X2, 31)

where X (a # I) is defined by

X*

alZXal_e_IXIIZ__+__ (a#1). (32)
Here we have chosen a certain particle species denoted by 1.
We hereafter regard I as the ion species with the smallest
particle number density. If a plasma consists of electrons and
a single ion species i, we take I=1i.

Equation (31) shows that the number of the conjugated
pairs of the classical fluxes and thermodynamic forces is re-
duced by employing the new pairs (J,1,X*)axz7>(Ja2,X42)
instead of (J,1,X,1),(J42.X4). We also find that the radial
electric field does not appear in the new set of the thermo-
dynamic forces. The transport equations which relate the
classical fluxes (J,;,/,2) to the thermodynamic forces
(X,1.X42) are obtained from Egs. (20), (22), (23), and (27)

Hl:x'”“ (33)

where the classical transport coefficients (LCl)j,f

fjcl ﬁ f LLl)ab Ld)
JZIZ Lcl)ab (Lcl)
are given by

cAvvI?

1)itk 32

(L7 =(— 50 (k=12). (34

From Eq. (29), we have the Onsager symmetry for the clas-
sical transport as

(LYT=(LDY  (jk=12). (35)
Equation (30) yields

> eq(Lhh

a

(k=12). (36)

We easily find from Egs. (32), (33), (35), and (36) that the
classical transport equations for the pairs

(Va1 XD aw1:(Jg2 X o) are given by
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(LCI)?{;XZH*'; (LN5X

al a#l) =
37)
Jeh= 2 (LN§XE + 2 (L)5X,,5
b#1 b
which shows that the transport coefficients (LCI);?,f are the

same as in Eq. (33), except for the limitation (a,j),(b,k)
# (I,1), and that the Onsager symmetry is valid for both of
the conjugate pairs. We should note that the ambipolarity
condition (36) reduces the number of the thermodynamic
forces required for determining the classical fluxes by one,
and that the radial electric field does not enter the reduced set
of the thermodynamic forces (le( az1) +Xa2)-

Next, let us consider the entropy production ¢, due to
the first-order gyroangle-averaged distribution function £, ,

which satisfies the linearized drift kinetic
equation:1—3,7—ll,14,15
vin- Vfal+vdu VfaO U EIfaO C (ful) (38)

where v,, is the sum of the EXB, VB and curvature drift
velocities, and Cl‘(fal) >,Ch b(fal Jf»1). Here, it should be
noted that the electric drift term vz-Vf,; is sometimes re-
tained in the linearized drift kinetic equation'® which causes
the nonlinear radial electric field dependence of the neoclas-
sical transport coefficients and of the ambipolarity condition
for a nonaxisymmetric system. There are two main reasons
why the electric drift term vz-Vf,, is not included in Eq.
(38). One is due to the drift ordering v,, /v~ &, from which
Vya*Vfa including vg-Vf,, should be neglected compared
with vin-Vf,, in the linearized drift kinetic equation. Equa-
tion (38) is the standard linearized drift kinetic equation
widely accepted in literatures (see Refs. 1-3 and Refs.
7—-11). (However, if the radial electric field much larger than

. vV
<f d3vfalvd,,~VV> =<

m )

'nx(Vpa1+V~wa)>

c
e, B?

B,
En'(vpal+v'ﬂa)

¢ (BY
e,B? (B?)

<E||(
< j d3vfal(xi— %) vda.w> =< VVa

m £}

(B-V- 17,,>+

2
B( <B{> <Bz>

Jncl

mJn
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|

9Bg<B Vem,) -

@5

/\

-l

assumed by the drift ordering is generated by some tech-
niques such as neutral beam injections, the electric drift term
vi-Vf,; should be retained in the drift kinetic equation as
treated in Ref. 16.) Another important reason is as follows.
The radial electric field is regarded as one of the thermody-
namic forces as seen from Eq. (19). (When the ambipolarity
condition is imposed for nonaxisymmetric systems, the ra-
dial electric field is regarded as a function of the other ther-
modynamic forces as shown later.) If the electric drift term is
added in the left-hand side of the linearized drift kinetic
equation, the radial electric field dependence appears in the
neoclassical transport coefficients as mentioned before, and
accordingly we obtain the nonlinear transport equations of
the form J=L(X)-X in which the transport fluxes J are non-
linear functions of the thermodynamic forces X. On the other
hand, as shown in detail in Ref. 5, the Onsager symmetry is
relevant to linear transport equations of the form J=L-X
with the transport matrix L independent of the thermody-
namic forces X. Since, in this work, we are concerned with
the Onsager symmetry for the transport matrix in the linear
neoclassical transport equations, the electric drift term caus-
ing the nonlinear dependence on the thermodynamic forces
should be neglected.
We obtain from Egs. (15) and (38),
1
—nge i Ei, (39)

(J_Cal)

= Ed3 fa]CL(fal =—Vf Edzvvi 2fa0

d In faO
2%

- E d3vfalvda'vv

+
T,
where the parallel flow velocity wj, is defined by
ngui,=[d*vf, vi.Here, the flux surface average of the first
term in the right-hand side vanishes. In taking the flux sur-

face average of the second term, we use the following two
equations for the radial particle and heat fluxes:

c
+— (B, .V-m
aBﬂB{< t a)

2
(B

)

1
< n-(Vp,, +V'7Ta)(3g_<B{>

(Fla1+nqeqEy)

(40)
.nx(vaal+v-®a)>
—£>(B vV-0,)+ _OB£<B -V-0,)
32
— n-(V6, +V- ®a)(Bg <B£><?>-)>=13°2‘,
FﬂaZ (41)
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where the Hamada coordinates (V,6,{) are employed to rep-
resent the poloidal and toroidal components of the magnetic
fields(see Appendix A) and Eq. (A2) is used. Here, we have
used the definitions p, =fd’vimu*f,, 0,=[d’v3
X mavz(xi_ %)]_Cal s T, =(Pig—PLa)(MN— _I) fd%vma(v,
—3v)fa(mm=3l), 0,=(0;,-0, ,)(mn—3h=[dvm,
X(viz— %vi)(xi— %)J_‘al(nn— il). The neoclassical particle
and heat fluxes are given by

Ji=(T, - VV) =g+ o8 4 yma |
(42)

1
Ti= V) =S I

which con51st of the Pfirsch—Schluter (JPS) the banana-
plateau (J ) and nonaxisymmetric (J“d) parts defined by

K mlng <B§>(BZ)|]|'

15?E<Fa'VV>PSE -

e B’
(By)
bp — . bhp—=_ 1’ /B.YV.
Jal <Fa VV> eaBH <B2> <B V ﬁa>’
na_ l_‘ V na_ ¢ V
< V> BQB{<BT' 'ﬁa>’ (43)
FlaZs ﬂl
5§E_<qa VV>PS BQK { <B{> <B2>
(By)
gg=_<qa vv an) m<B'V'®a>’

1 c
na _— na—
a? Ta<qa VV> aBHB§<Bt \Y ®a>'
Here the Pfirsch—Schluter fluxes are written as parts of the
neoclassical fluxes as in Refs. 1-3 where the term ‘“neoclas-
sical” is used for the transport due to guiding center motions
in a toroidal magnetic configuration affected by collisions,
which is a contrast to the “classical” transport caused by
particle gyro-motions with collisions. (However, the term
“neoclassical” is sometimes used in a narrower sense for
referring to the transport fluxes due to particles with long
mean free paths such as the banana-plateau fluxes, which
exclude the Pfirsch—Schluter fluxes.)

Then, we find that the flux surface average of the second
term in the right-hand side of Eq. (39) is given by the prod-
ucts of the neoclassical radial fluxes and the thermodynamic
forces as

dInf,
KEdealvda vv “/fol

:1_|: nel_ K SB( <Bg)<3j>|]lu

T,
1

XXq1t _JZCZIXaZ' (44)
T,

The flux surface average of the third term in the right-hand
side of Eq. (39) is given by
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ea<”iaEi> _ naea<Buia><BEi>
T, T.(B%)

T,BY

XK%SB;%BQ%M&I, (45)

where Eq. (A7) is used. Then, we finally obtain from Egs.
(39), (44), and (45) the thermodynamic form of the flux-
surface-averaged entropy production (7 ,) as

TGy =T X+ XarHJxXas (46)
where the parallel flux J,; and the parallel force X,; are
defined by

_nelBug) o (BE) )

=Ry X3 (BH"

Taking the species summation of Eq. (46), we have

Ju3

2 T(0) =2 (X + 15X ) + 1K (48)

where J; and X are defined from the total parallel current
Ji and the parallel electric field E; as

(BJ;)

(BEj)
JE <BZ>I/2

2 ez, Xg= <Bz>1/2 (49)

Thus the flux surface average of the entropy production due
to the gyroangle-averaged distribution functions is given in
the thermodynamic form, in which the neoclassical radial
fluxes J', J¢ and the parallel current Jj are conjugate to
the radial gradlent forces X,;, X,, and the parallel electric
field X, respectively. It should be noted that the neoclassi-
cal thermodynamic form of the entropy production can be
obtained only through the magnetic surface average as in Eq.
(48), which is a remarkable contrast to the classical thermo-
dynamic form (21) defined locally in the configuration space.

Now, let us consider the ambipolarity condition for the
neoclassical particle fluxes. Using the momentum conserva-
tion (25) by collisions and the charge neutrality condition
2.n.e,=0, we obtain the flux surface average of the total
parallel momentum balance equation as = ,(B-V-a,)=0.
Then, we find from the definitions in Eq. (43) that the intrin-
sic ambipolarity holds for both of the Pfirsch—Schluter and
banana-plateau particle fluxes in the same way as for the
classical particle fluxes, which implies that the ambipolar
conditions,

Eeﬂ’s E

are valid for arbitrary values of the thermodynamic forces
(X41:X42,.XE). On the other hand, the nonaxisymmetric par-
ticle fluxes J3] and accordingly the total neoclassical particle
fluxes J™' are not ambipolar generally. If the ambipolarity
condition for the total neoclassical particle fluxes,

2 edii=2 e i =0, 1)

a a

=0, (50)

is imposed, we find in the similar way as in Eq. (31) that Eq.
(48) is rewritten as
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2 T <0' > E JnClX*f"E chzlxaz"‘JEXE (52)

In axisymmetric toroidal systems, the nonaxisymmetric
fluxes J52 ;U= l ,2) vanish and therefore the neoclassical par-
ticle ﬂuxes J5S are intrinsically ambipolar. As discussed in
the next sectlon in nonaxisymmetric systems, the ambipolar-
ity condition (51) combined with the neoclassical transport
equations gives a constraint on the thermodynamic forces
(X1 ,X,7,XE) from which the radial electric field — P’ is
expressed by a linear form in the pressure and temperature
gradients and the parallel electric field. Then, independent
thermodynamic forces for nonaxisymmetric systems are
given not by the set (X,;.X,,,Xg) but by the reduced one
(XZ‘I( a=1) +Xa2-Xp). In the present work, we show the neo-
classical transport equations for both cases with
(X41.X402,Xg) and with (X} ./ .Xs0.Xg) used as the
forces, in order to elucidate the relation of the ambipolarity
to the axisymmetry and to the Onsager symmetry.

. ONSAGER SYMMETRY OF NEOCLASSICAL
TRANSPORT EQUATIONS FOR GENERAL TOROIDAL
SYSTEMS

In this section, it is proved that the Onsager symmetry is
satisfied by the neoclassical transport equations for general
toroidal systems, including nonaxisymmetric cases. For that,
it is convenient to define the distribution function g, by

e, Ezdzf B>
ga_fal_T_afaO E BEI_@<BEI> 5 (53)

where ['dl denotes the integral along the magnetic field line.
Then, Eq. (38) is rewritten as

~ _ 1
Uin'Vga_Cg(ga): T_fa(](SalXal+Sa2Xa2+Sa3Xa3)s
(54)
where the functions S, i U= 1,2,3) are defined by
Sa/ (x - _)j lvda vv (]_1 2)
(55)

S.3=viB/(B*)'2.

Here, it is worthwhile making some remarks on the case
where, just as in Ref. 16, the electric drift term
A8, =Vg-Vg, is added in the left-hand side of Eq. (54).
Here, in v;-Vg,, the spatial derivative V is taken with
(x,v,a) as independent phase space variables defined in Ref.
16, and the electric drift velocity is given by
vp=cEXB/ (Bz> to satisfy an important phase space conser-
vative property (see Ref. 16). In that case, nonlinear neoclas-
sical transport equations are derived due to the nonlinear
dependence on the radial electric field as mentioned after Eq.
(38). Here, let us artificially regard the radial electric field
Ey=—0®/JV added in the left-hand side of Eq. (54) as an
independent parameter, although Ey, is already contained as a
part of the thermodynamic forces in the right-hand side of
Eq. (54). By doing this, the resulting transport equations are
written in the apparently linear form J=L(Ey)-X with E, as
a parameter in the transport matrix L. Then, it is shown that
the proof of the Onsager symmetry for L(Ey) in this section
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is still valid even if . Z5g, is retained. This follows from the
fact that the operator . has the same properties as vin-V
which are given by . Z;f,0=0 and {[d*v.ZzF)=0 for an
arbitrary function F' on the phase space.

The neoclassical radial fluxes J 251 (j=1,2) and the par-
allel flux J,3 are expressed in terms of g, and S,;
(j=123) as

Jralj'IEKEd3vgaSajl (]:1»2)
K (56)
JaSE E dSUgaSaB ’

where we have used the following formula for an arbitrary
function F(x):

57!
KFE dBUs)CZ_ _ﬂ (vda'VV)faOl

2

__ CpaK—nVFl, (j=12). (57)

Noting in Eq. (54) that the left-hand side is linear with re-
spect to g, and that X,; (j=1,2,3) occur in the right-hand
side as parameters, we find that the solution g, of Eq. (54) is
given by

g :; (Gap1Xp1+GapaXpr+ Gup3Xyp3)s (58)

where G;; (j=1,2,3) are defined as the solutions of

vin-VGabj—Z Cja'(Gabj ’Ga’bj)

fh()sb_] (]: 1’2’3) (59)

th

Then, using Egs. (56) and (58), we obtain the transport equa-
tions relating Ji (j=12) and J,; to X,; (j=123) as

e T 0%

7o Ly Ly L] x|l (60)

b b b
Lg] La Lg3 Xb3

where the transport coefficients Lj,f’ are given by

Lja'lcb:KEd3vSajGabk[ (j.k=123). (61)

Equation (60) is rewritten as the transport equations relating
T35 (j=12) and Jg to X,; (j=12) and X

IE=3 3 LXutLipXs (j=12),

(62)

JE:; k:le Ly Xyt LeeXg

where the coefficients Li;, Lg; (j=1,2) and Lgg are given
by
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Lig=2 ey, Lg=2 eplsf (=12,
(63)

— b
Leg=2, ese,Ls.
a,b
In order to show the Onsager symmetry of the transport co-

efficients, it is useful to separate Eq. (59) into even and odd
parts with respect to v; as

1 +
vin-VG,, abT—bfboSbj,
(64)

bT_bbeS;jv

2 Chror(Gayy Gy )=

vin-VG,, 2 Choor (GG oy )=
where the superscripts + and — denote the even and odd

parts, respectively. Noting that S,; are even for j=1,2 and
odd for j=3, and using Egs. (61) and (64), we obtain

> TAK E d3vL
A

fA(J G:{bkv in- V(;Aajl

GkaCle( Gjﬁraj ’G;aj) l

I |
A,B A fAO

:(5j1+5j2)L;‘lkb,

1
s | B
A fao

|, (65)
G ypvin- VG;aj

- - - — ab
GAbkalB(GAaj ’GBaj)l - 5]3ij ’

I |
A.B A fAO

from which we have
(81 + ;) L0+ S5 Ly

1
= _z TAK E dBU_
A.B

fAO[G:bkCQBm:@ .Gga;)

+ GXuijxB(Gka ’Gt;bk)]l . (66)

We find from the self-adjointness of the linearized collision
operator given by Eq. (9) that the right-hand side of Eq. (66)
is invariant under the permutation of the subscripts
(a,j)<(b,k) and that

(8j1+ 8p) LI+ 83 L7 = (8 + Si) LS+ 8;3L% .
Thus, we obtain
(6j1+6,— ]3)L71f (01 + 6k — 51(3)ij ,
which is rewritten as the well-known Onsager relations :
ab _ yba CN A
ij_ij (J’k_laz)»
Ly=-LY (j=12), 67)
Ly=L3.
We see from Egs. (63) and (67) that
Lig=—Lg; (j=12). (68)
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Equations (67) and (68) show that the Onsager symmetry is
satisfied by the transport matrix which combines the conju-
gate pairs of the fluxes (J,J".Jz) and the forces
(X 41.X43,Xg) for general toroidal systems.

Here, let us discuss the relation between the transport
equations and the ambipolarity condition. In axisymmetric
systems, intrinsic ambipolarity holds for the neoclassical par-
ticle fluxes and is expressed in terms of the relation between

the transport coefficients as
b_ - P
E eaL‘IJj_z eaL(]lE_O (.]_
a a

Then, the number of the conjugate pairs of fluxes and forces
is reduced by one as shown in Eq. (52) using X}, in-
stead of X,, . We find from Egs. (67), (68), and (69) that the
transport equations relating the fluxes (J25\ ;) J53 Jp) to

(X (a+1)-Xa2-Xg) in the axisymmetric case are given by

123). (69)

chll(a#l E LT{)Xbl—'_E LEXy+LipXg,
12621:;1 L‘z’leZ‘ﬁEb: LYX o+ LS p X, (70)

Jp=20 L3y X5+ 2 LyyX o+ LpgXp .
b1 b
In the transport equations (70), the transport coefficients
Lf,f are the same as in Eq. (62) except for the limitation
(a.j),(b,k) # (I,1), and the Onsager symmetry is still valid.
In nonaxisymmetric systems, the ambipolarity condition
(51) gives a relation between the thermodynamic forces
which is used to express one thermodynamic force X; in

terms of the other thermodynamic forces
(X7 aen Xa2 - Xp) as
-1
b
Xllz_elsz eaebLtlllH E €,
a,b a
ngz L??X:H'; LLlngbZ_'—L(llEXEﬂ' (71)

Equation (71) determines the radial electric field
~®'=X,; /e;+p;/(ne;) as a linear combination of the
pressure and temperature gradients and the parallel electric
field.

Then, in the nonaxisymmetric case with the ambipolarity
condition  (71), the transport equations relating
(I anry TS T ) t0 (XE (ysp) Xan X ) are given by

ncl b >
Jatazn= Z /?1Xb1+2 BXpt+ 2 (X,

o 2 /lebl+§ LK+ L X (72)

> b o b 0
JE:bgl z E1X2<1+§ L Xt LeeXe

where the transport coefficients % j’,f s
LpE are

<z j“E , L ;» and
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T D |
—1
X0 eAeBL?lBﬂ ,
A,B

wa _gya _ aAﬂs A ﬂ
=LY s; esL’; ; el

-1

st eAeBL?fﬂ ,
W
(73)

V%,:L“Ej—sz eALélﬂsE eAL?;'ﬂ
A A

-1

AB
st eAeBLllﬂ ,
A,B
*AEE_LEE s; eALElﬂs; eALlE

-1

AB
st eqepLi; ﬂ
A.B

We see from Egs. (67) and (68) that the Onsager symmetry
still holds for the transport coefficients given by Eq. (73):

IR=L0, Lop=— L. (74)

Thus, we have established for nonaxisymmetric systems with
no net radial current that the radial electric field is deter-
mined by the pressure, temperature gradients, and the paral-
lel electric field, and that transport satisfies the Onsager sym-
metry.

IV. BANANA-PLATEAU AND NONAXISYMMETRIC
TRANSPORT COEFFICIENTS

In the previous section, we have shown the Onsager
symmetry for the transport coefficients relating the neoclas-
sical radial fluxes and the parallel current (J25,J25 ,Jz) to
the radial gradient forces and the parallel electric field
(X 41X 42 ,.XE) in general toroidal systems. The neoclassical
radial particle and heat fluxes (J27,J%) consist of the
Pfirsch—Schluter, banana-plateau, and nonaxisymmetric parts
while, as shown in Appendix B, it is well known that the
transport equations for the Pfirsch—Schluter fluxes
(Ja1 , g) and the radial gradient forces (X,;,X,,) satisfy
the Onsager symmetry. Thus, it is clear that the sum of the
banana-plateau and nonaxisymmetric radial fluxes, and the
parallel current (J2+J™ JP54+ ™ J.) are related to the
forces (X,;,X,,,Xg) by the transport coefficients with the
Onsager symmetry. In this section, using the 13 moment
(13M) approximation,” we derive the transport equations for
the banana-plateau fluxes and those for the nonaxisymmetric
fluxes separately, in the case of general toroidal plasma con-
sisting of electrons and one ion species. Then, the symmetry
properties are investigated for each of the transport equa-
tions, and the Onsager symmetry for the total transport is

directly confirmed.
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The parallel momentum balance equations combined
with the friction-flow relations are given in the 13M approxi-
mation by

f(B Vem,)+n,e{E; B)G
(B-V-0,)

(BFi.))} nemef i

e (B(ui,—ui;))
. 2 ,
5pa

<BFie2> Tee _161‘2 152 Qie>
(75)
<B V ®> <BFI12> 225p <Bq|l> (76)
where the dimensionless friction coefﬁcients
iij—(TM/nama)l?j“ are given by [¢,=2,, 15,=3Z,,

=\2+%Z;, and I5,=+2 with the ion charge number
Z;. The species summation of the parallel momentum bal-
ances reduces to

(B:V-7r,)+(B-V-71,)=0, (77)

where the momentum conservation (25) in collisions and the
charge neutrality condition X e, n,=0 are used.

Solving the linearized drift kinetic equation gives the
equations for the parallel viscosities, which have the follow-
ing form for all collision frequencies in the Pfirsch—Schluter,

plateau, and banana regimes:
f(B-V-ﬂa>E ngm, f,ual ﬂazu
]
a> €, XaZ ’
(78)

<Bv®a Taa Ma2  Ma3
s |: (uisB)
< IaB >

where ¢, and [, ; (j=1,2,3) are the dimensionless param-
eters for the viscosity coefficients, and (G,) represents the
geometrical factor which measures the deviation from the
axisymmetric configuration. These parameters c,, fi,;
(j=123) and (G,) are given in Appendix C and all of them
are generally dependent on the collision frequencies al-
though, in the axisymmetric case, the geometrical factor is
given by (G,)=(B,)/B? for both species and for all the
collision frequencies.

Using Egs. (76)—(78), the ion parallel flows and viscos-
ity are written as

A
¢ Mo "
<B”ii>:<Gi>Z Xj+ "X
1

My
, (79)
uu“zl nim;

2 cil iy fuiz— (Mzz))
5, (Bai)= (G >—
Pi Iu’ll(c Mi 3+l

A

2 BV, (30)

Hjyly Ml
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n;m; Ciigz(ﬂill&ﬁ_(ﬁiz)z) c
<B'V'®[>:_ ;_Hl ~r ~ ~ <Gi>zxi2
ii Hir(ciftizt ) i
M 2
’ 7T, (81)
lu’tl
where we  have  defined ,u,l— ,u,l vy, and

fiy= fiin— Yiviz with y=c ;v /(c;fuis+15,) . Equations re-
lating the electron parallel viscosities (B-V-ar,) and
(B-V-0,) to the thermodynamic forces
(X,.1.X.0.X;1.X;5,Xg) are obtained from Egs. (75), (78),
and (79) as

-1 A A -1
F - 1 flu’el Me2
e 1. >

Ce Mer  Me3
1 nemeTiifl O“ (B-V-m,)
* Ci/l',l nm;7,, 0 0" (B-V-0,)
B fn e<32>1/2X E

u
e Xel+<c> S +x|l

e Mt

Je e
112 122

ee

G CX
< e>e e2

(82)

We also find from Eq. (75) that the parallel current is divided
into the classical part J CEI and the neoclassical part sz due to
the electron parallel viscosities as

Te=(BINBY =T+ 7%

Jg=oXg, (83)

A

o l
bp— =S /p2 1/2s v. _,_ﬁ . ﬂ
A= B A BT ) w0,

where o,=(n,e27,,/m,)5/[1$,15—(
Spitzer conductivity.
Finally, we obtain from Egs. (77) and (81)—(83) the

[¢,)%] is the classical

banana- plateau transport  equations  which  relate
(IR TB TR TETE) 10 (X1 Xer Xiy Xi Xp) as
A T @™t @mis @i @M @i
JS (L™)55 (L35 (L3 (L) (L™P)3g
mll=l e amis ani @ @
TR L) (L) (L) (L) (L)
TP (LM (LM (L™ (LP)p (L)
X1
Xea
<1 Xl (84)
Xip
X
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where the banana-plateau transport coefficients are given by

@i @il w2 ByGo M M

_fefe € “ 85
@ el . 2 BB vy, w8

—1 N ~ -1
f 1 fln - lfﬂm Meo
Je +— 7 7
2

Ce Med  Me3

""””l: “ (86)
0 0

cl&’l nm;7,,

+

o

(pr)el
f(pr)i 1 i (G s “
L'~z pr (G (st

f(pr)iEH_ n,c (B) M, Mzﬂl:lgzﬂ
)

(pr)gE - lflgz)z] B0<BZ>1/2 M

1(6) (pr)‘ffﬁ
(G (L5

(87)

(15,05~
(88)

[(LP)35 (L) (L)Y} (L) 15 J(LP) ] 5]

1 . .
= S LML) (L)1 (L)1 (L)), (89)

[(pr)21 9 pr)22 9(pr)éi] 9(pr)éi2 9(pr)éE]

Iu“12
pynl|

(pr)] 1 7(pr)]2 ’(pr) 11 ’(pr) 12 ’(pr)eiE]
Iu’l]Zl

) (B)(G))

" n;m; c? Cillzz(ﬂilﬂw_(ﬂiz)z

Ti e iy (cifin+15) B(B%)
x[0,0,0,1,0], (90)
B%G,) b
L1 (L)) = = = LM (L] OD)
‘ . BY%G,) N bo)
[(L*®) ) (LP)pp]=— (B) (L)} 5 . (LP)5,], (92)
(L) p=— : |:M1 MZH: G
H Agz[zflzgz (Ziz)] otz M, M;

(93)

The banana-plateau transport coefficients given in Egs.
(85)-(93) satisfy the following symmetry properties:

(pr) (pr)IZ’ (pr)%:(pr)liiz,

(L) = EG; (L*)g5 (j.k=12), (94)
. BYG) . -

(M= =gy EMie (a=eisj=12).

Thus, we confirm that the banana-plateau transport equations
have the complete Onsager symmetry in the axisymmetric
case where (G,)=(G,;)=(B;)/B’. The intrinsic ambipolar-
ity of the banana-plateau particle fluxes is expressed by
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(L)j=— (Lb”) “a=e.izj=12),
(95)
bpyi _— ! bpye
(L )lE_Z(L )iE s
which are rewritten by Eq. (94) as
(G
bp bp =e.ii=
(L ) Z< >(L )jl (a e’lv.] 192)5
(96)
; _ (G
(LM =5 Gy LM
Using the above relations, the fluxes

[P (=ZJ%) Je2 J®% J ] are related to the new reduced set
of forces (X **.X . .Xi2,Xg) by the transport equations

IR0 [ beyss (@beyss (@ (L),
JEN fams wmg (Lmg (LM,
IR (L (L) (L), (L)),
¥ (L) (L), (L), (L)
X5
XeZ
¥ (97)
i2
XE
Here, the force X** is defined by
xrrex, + 00y
el el Zi<Ge> il
E—Lsp’—i-< '>p-'ﬂ—e<D (98)
n(" ¢ G€> !

When (G,)=(G,;), X}|* coincides with X, which is pro-
portional to the total pressure gradient —p’'=—(p.+p/),
and the radial electric field —®' never affects the banana-
plateau transport. However, if the electrons and the ions be-
long to different collisionality regimes in the nonaxisymmet-
ric case, the banana-plateau radial particle and heat fluxes,
and the bootstrap current depend on the radial electric field
—®’ through X ** since (G,) # (G;).

Next, let us derive the nonaxisymmetric transport equa-
tions. For the derivation, it is essential to note that the toroi-
dal viscosities are given in the following form for both of the
Pfirsch—Schluter and plateau regimes:
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F(B V. 17) I’l aMy fla'al la’uZH
——Cyal
<B V- ®a> Taa ! Moz Ma3

8|: (u1,B)
< IaB>

where ¢,, and (G,,) are given in Appendix C and i,;
(j=12,3) are the same as in Eq. (78). Here and hereafter,
we consider the toroidal viscosities and the nonaxisymmetric
fluxes only for the Pfirsch—Schluter and plateau regimes
since the expressions similar to Eq. (99) have not been ob-
tained yet for the banana regime.

Appendix C shows that the ratio between the toroidal
and parallel viscosities c,,/c, is related to the geometrical
factor (G,) in Eq. (78) by the following equation:

ookl
a> €, Xa2 '

(99)

_u (B _B%G.)
Cq Bg<B§> <B{>

(100)

which is an essential relation for showing the Onsager sym-
metry of the total neoclassical transport.

Using Egs. (78) and (99), the toroidal viscosities are
written in terms of the parallel viscosities and the thermody-
namic forces as

(B;-V-m,) _ Cia (B-V-m)l  n,m,
F(B v.0,) f(BVG)) +?Cm(<Ga>

(G~ f““ ?ﬂ“izﬁ (101)

a2 a3

Then, from Egs. (43), (84), and (101), we obtain the nonaxi-
symmetric transport equations relating (J3] /55 .Ji1 .J75) 10
(Xel 9X62 »th ’X12 ’XE)

Al @™ @™ (@i (L™ (L™
off [@™s (LM% (L5 (L5 (L™
e bams @ @l anh
Jpo LMY (LM (LM (LM (L)

Xe1

Xer

x| Xa|l, (102)
X
Xp

where the nonaxisymmetric transport coefficients are given
by
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f(Lna)el'i (Lna)?s (Lna)ﬂ (Lna)ei (Lna)?E“_ Cro <Bz> (LbP)Ee (pr)tis (LbP)ei (pr)?lz (LbP)el'E“
(L™)55 (L™ (L™)5 (L)% (™5 ¢ BBy (L™)55 (L35 (L5 (L™)5h (L5,
nemei (<Ge>_<Gte>)fluel Iu‘€2 0 0 OH (103)
Tee eZCle BoBg Me2 Iu‘€3 0 0 0 ’
(Lna)“ (Lna)ilez (Lna)l1 (Lna)ili2 (Lna)ilEG__c_t <B2> (pr)"lffl (pr)iﬂ)z (pr)ilil (pr)ili2 (pr)ilEﬁ
WG (L (L (L (L, o BABY (WM (L (LME (LD (L),
mmi (G (GO O OE o
Tii ?Cti BB* 0 0 fp Az 0
It is found that (L™= (L™)}{ is always valid although (L"a)j,iz (L“a)ffj is satisfied only when ¢,,/c,=c,;/c; . We see from

Eq. (100) that the condition c,,/c,
same collisionality regime.

=c,;/c; is equivalent to (G,) =

(G;), which holds if the electrons and the ions belong to the

Finally, combining the banana-plateau transport equations (84) with the nonaxisymmetric transport equations (102), and

using the relation (100),

the transport equations for the total of the banana-plateau and nonaxisymmetric fluxes

(O S L ,pr) are obtained as
T @@ wms wmf|fx,
1 +J:3 (LM (LM5 (M5 (E™Mg (EMf BX,,
H +J?f (L™ (L (@M @h @] Xal. (103)
an +J"a (Lbn)ze (Lbn)zzez (Lbn)zztl (Lbn)tzzz (Lbn)lZE Xi2
¥ J%P (L™ (L5 (L™ (L™ (L™ Xe
where the total transport coefficients are given by
it @i @i @i @ pRe)femin T i @
(LP5F (L™M)55 (L™)5 (LM% (LM (B (L™)5) (L™)55 (L™)5) (L™)5 (L™)5,
nem, CZ (<Ge>_<Gle>) f/lel /:LeZ 0 0 0“ (106)
Tee eZCte BHB§ lan la“e3 0 0 0V
f(Lb“)’ii (L (L @, <Lb“>15ﬁ BYGH L™ @i L @ <pr>iEﬁ
(L5 (@™ @5 @™ @™ (B (LM (LM (LM (LD (L),
nm, @ (G)) <G,,>>f0 0y i O]
2Cqi HB§ A A 5 (107)
Tii €} iz iz O
[
(LM, (L™, (L)%, (L)%, (L") k] (85)—(93) and Eqgs. (106)—(108), the ion—ion coefficients
. . o o . (Lb“)}’k are @ [(m;/m,)"*] larger than the other coefficients.
=[(L™)g (L5 (LPg (LP)g  (L™®)gel When the ambipolarity condition is imposed in the non-
(108) axisymmetric case, we obtain, in the similar way as in Eqs.

Thus, from the above definitions and the symmetry proper-
ties given by Eq. (94), we can directly confirm that the total
banana-plateau and nonaxisymmetric transport coefficients
satisfy the following Onsager symmetry:

(LG = (L . (L™=

(a,b=e,i;j,k=12).

(L
(109)

Here, we should note that these transport coefficients contain
terms of different orders in (m,/m;)">. As seen from Egs.
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(71)—(73), the radial electric field:

_gr i Xa

ne; e;

P

’ s > eqen (LMY ﬂ 2 e (LMiix
ab=e, a=e,i

+(Lb“)‘f§Xez+(Lb“)‘féx,ﬁ(Lb“)‘fEXE] (110)

and the reduced set of the transport equations:
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Ll it M (oM (M
s Ferms (g (o (2,
T B N N A O A A EA
R (M (P (P

X3

X,

? (111)

X

XE

where the transport coefficients are defined by
<(%b“>j:=<Lb“>;£—sAE | eA<Lb“>?f‘ﬂsAE ]
=e,l =e,l

-1
bnyAB
XSAE 'eAeB(Ln)llﬂ )

B=e,i
(%*’“);ff(Lb“);fE—s > eA<L"“>;ff*[|s > eA(L"“>?E||
A=e,i A=e,i
-1
x| X2 eaesL™F]
A.B=e,i
n112)
(L%bn)%j:(Lbn)an_s z ) eA(Lbn)/glﬂs 2 ) eA(Lbn)?f
A=e,i A=e,i
-1
P 2 eaenL™MF]
AB=ec.i
(~%bn)EE:(Lbn)EE_sA2 , eA(Lbn)glﬂsAE A €A(Lbn)?gﬂ
=e,i =e,i

-1
AB
Xs E ,€A€B(Lbn)11" .
AB=e,i

The Onsager symmetry still holds for the above coefficients:

(L= (2, (Pe=— (2. (113)
As mentioned earlier, terms of different orders in

(m,/m;)'"” are included in the transport coefficients
(Lb“)?,f . Therefore, the coefficients (,%b")f,f for the reduced
transport equations also contain different order terms. To the
lowest order of (m,/m;)"?, Eq. (110) is approximated by

pi (L™ Xp

“ne (LT e

!

(114)

which is the same one given in Ref. 8 and in Ref. 11. In Ref.
11, Balescu and Fantechi used this approximate expression
for the radial electric field instead of Eq. (110) to derive the
reduced set of the transport equations. Then, their resultant
transport coefficients are different from ours in Eq. (112) and
do not satisfy the Onsager symmetry, since part of
Ol (m,/m;)"*] terms in Eq. (112) are inconsistently ne-
glected.
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V. CONCLUSIONS AND DISCUSSION

In this work, we have investigated the entropy produc-
tion, the full transport equations, and their Onsager symme-
try for the neoclassical transport processes in magnetically
confined plasmas with general toroidal configurations. It was
clearly shown that, for both the classical and neoclassical
transport processes, the kinetic form of the entropy produc-
tion defined from the linearized collision operator is equiva-
lent to its thermodynamic form written as the inner product
of the thermodynamic forces and their conjugate transport
fluxes. The entropy production from the gyroangle-
dependent distribution function corresponds to the sum of
the products of the classical radial particle and heat fluxes
and the radial gradient thermodynamic forces, while the
magnetic surface average of the entropy production from the
gyroangle-averaged distribution function is given by the sum
of the products of the thermodynamic forces and their con-
jugate fluxes which consist of the Pfirsch—Schluter, banana-
plateau, nonaxisymmetric parts of the neoclassical radial
fluxes and the parallel current. This equivalence between the
kinetic and thermodynamic forms of the entropy production
for the full neoclassical transport fluxes were not confirmed
by Balescu in Chap. 17 of Ref. 3. The reason is now dis-
cussed.

In deriving the thermodynamic form of the entropy pro-
duction, we used the linearized drift kinetic equation without
employing the Hermitian moment expansion of the distribu-
tion function. Balescu expressed the kinetic form of the en-
tropy production as the quadratic form of only the vector
Hermitian moment part of the distribution function which
corresponds to the /=1 part of the Legendre polynomial
expansion. However, since the neoclassical banana-plateau
and nonaxisymmetric fluxes are caused by the parallel and
toroidal viscosities, the tensor Hermitian moment part (or the
[=2 part of the Legendre polynomial expansion) needs to be
included for deriving the neoclassical thermodynamic form
of the entropy production. Furthermore, as shown in Appen-
dix D, we find that it is necessary to include all the tensor
moments including higher order parts with /=34.5,..., in
the kinetic form of the entropy production to derive the neo-
classical thermodynamic form in the banana and plateau re-
gimes. This is intuitively understandable by considering the
resonant particles responsible for the neoclassical fluxes in
the plateau regime. The resonant particle distribution is
highly anisotropic in velocity space and is approximated by a
delta function in pitch angle so that the all Hermitian mo-
ments (or all /th-order Legendre polynomials) are required.
As shown in Appendix D, the operator vin-V in the drift
kinetic equation (38) introduces the anisotropic distribution
in the velocity space and it connects the /th-order moment
with (/= 1)th-order moments in contrast with the linearized
collision operator which is isotropic in the velocity space and
connects the /th-order moment with the same /th-order mo-
ment alone. In the Pfirsch—Schluter regime, the collision op-
erator dominates vin-V and the distribution function has
small contributions from higher-order moments representing
the anisotropy. Then, in the Pfirsch—Schluter regime, the
[=1 vector moment is enough to express the entropy pro-
duction as in Ref. 3, while the negligibly small viscosity-
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induced neoclassical fluxes are included in the /=2 tensor
moment part. On the other hand, as the collision frequency
decreases, the operator vin-V is comparable to, and then
dominates, the collision operator and all /-order moments are
required in the kinetic entropy production functional to ob-
tain its neoclassical thermodynamic form in the banana and
plateau regimes.

We also proved from the formal solution of the linear-
ized drift kinetic equation with the self-adjoint linearized
collision operator that the Onsager symmetry is robustly
valid for the neoclassical transport equations for general to-
roidal plasmas consisting of electrons and multi-species ions
with arbitrary collision frequencies. Furthermore, we derived
in Sec. IV, in the case of a single ion species, the full banana-
plateau transport coefficients for all collisionality regimes
and the full nonaxisymmetric transport coefficients for the
Pfirsch—Schluter and plateau regimes. The symmetry proper-
ties of these transport matrices were separately examined and
the Onsager symmetry for their total transport equations was
confirmed. We discussed the effects of the ambipolarity con-
dition on the transport equations in detail for both axisym-
metric and nonaxisymmetric configurations. The ambipolar-
ity condition reduces by one the number of the conjugate
pairs of the transport fluxes and the thermodynamic forces.
In the axisymmetric case, the intrinsic ambipolarity holds
and the radial electric field does not affect the transport. On
the other hand, for broken toroidal symmetry, a radial current
is a function of the thermodynamic forces (X,; ,Xy) in which
the radial electric field is included. When the ambipolarity
condition is imposed in the nonaxisymmetric case, the radial
electric field is given by a linear combination of the other
thermodynamic forces. We showed that the Onsager symme-
try is satisfied whether the conjugate pairs of the fluxes and
forces are reduced by the ambipolarity condition or not.

Balescu and Fantechi derived the full neoclassical trans-
port coefficients for the plateau regime in the nonaxisymmet-
ric configuration and claimed that the Onsager symmetry is
slightly broken by the nonaxisymmetry. They showed the
transport equations only for the reduced pairs of the fluxes
and forces, in which the radial electric field is eliminated by
the ambipolar condition. There, terms of [ (m,/m;)"?]
were neglected in expressing the radial electric field in terms
of the other forces as in Eq. (114). Then, the resultant trans-
port coefficients in Ref. 11 deviate from those in Eq. (112)
and the Onsager symmetry is broken in them since part of
O[(m,/m;)"] terms necessary for the symmetry are
dropped.

The banana-plateau and nonaxisymmetric transport
equations obtained here are valid whether electrons and ions
belong to the same collisionality regime or not. When both
species are in the same collisionality regime, we find that the
geometrical factors for electrons and ions coincide with each
other (G,)=(G;) and that, as far as the radial fluxes and the
radial forces are concerned, the Onsager symmetry is sepa-
rately valid for the banana-plateau transport matrix (pr);f,f’
and for the nonaxisymmetric transport matrix (L“a)?kb . When
electron and ion collisionality regimes are different, (G,)
# (G;) and the mixed electron-ion coefficients in each ma-
trix are not symmetric, although the total matrix L°" are sym-
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metric. In the latter case, the radial electric field appears in
the thermodynamic forces for the banana-plateau radial par-
ticle and heat fluxes and the bootstrap current in the nonaxi-
symmetric systems.

Since we proved the robust validity of the Onsager sym-
metry for the neoclassical transport equations, even in the
nonaxisymmetric cases, this symmetry property can be uti-
lized for the calculation of the nonaxisymmetric transport
coefficients in the banana regime which were not given in
Sec. IV. For example, from the banana-plateau transport co-
efficients (pr)fE and (pr)§j (a=e,i;j=1,2) for the banana
regime given in Sec. IV, we can immediately obtain part of
the nonaxisymmetric transport coefficients for the banana re-
gime as (L™)§,=— (L), — (L")f; (a=e.i3j=12).

In the previous work, we investigated the neoclassical
and anomalous transport in weakly turbulent plasma and de-
scribed the entropy production and the Onsager symmetry in
electrostatic turbulence.!” We are also investigating a unified
description of the transport equations, the entropy produc-
tion, and the Onsager symmetry for neoclassical and turbu-
lent processes with both electrostatic and electromagnetic
fluctuations, which we will report on in a future work.
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APPENDIX A: HAMADA COORDINATES AND
INCOMPRESSIBLE FLOWS

In general toroidal configurations, the magnetic field is
written in the contravariant form :

B=B"§+34§ (A1)
a0 a’

where 6 and { are the poloidal and toroidal angle variables,
respectively, and corresponding basis vectors for the contra-
variant representation are given by Jdx/d€ and Jx/d¢.
Throughout this paper, we employ the Hamada coordinates
(V,6,0), where the flux label V represents the volume en-
closed by the flux surface, and the periods of the angle vari-
ables are normalized as rd @=rd{=1. The Jacobian is unity
VV.VOxV{=1, so that the flux surface average is simply
written as (-)=rd@#rd{-. The poloidal and toroidal fields
are given by B,=B 99x/90=BOV{xVV and
B,=B%9x/9{=B*VVXV@. The contravariant poloidal and
toroidal components are the surface flux quantities
B’=B-VO=x'(V) and B*=B-V{='(V), where x and ¢
are the poloidal and toroidal fluxes, respectively, and
"=9/9V. The vector product of B and VV is given by the
linear combination of B and dx/d{ as

B? ox

B
N 2 S
BXVV= 5B 5 (A2)

H. Sugama and W. Horton 317



where B,=B-9x/d{.

When a solenoidal vector field U (V-U=0) is tangential
to magnetic surfaces U-VV=0 and satisfies UXB=VK(V)
with some flux quantity K(V), it is written in the Hamada
coordinates as

U—U&+Uax A3
=UTe U g (A3)

where the both contravariant components U?=U-V@ and
Uf=U-V{ are flux surface quantities. Since both of the flow
velocity u, and the heat flow q, are incompressible
u,=V-q,=0 [see Eq. (D12)] and satisfies the above con-
ditions [see Eq. (20)] to the lowest order in &, all of their
contravariant ~ components  u‘=u,-V6, =u,-V¢,
=q, V0, q§=qa-V§ are flux surface quantities. Also, u,
and q, are separated into the parallel and perpendicular com-
ponents as
u,=ujntu,, q,=qintq ., (A4)
where the perpendicular components u, , and q | , are given
by the thermodynamic forces X,, and X,, as in Eq. (20).
Then, the contravariant poloidal and toroidal flow compo-
nents are given by the linear combinations of the parallel
flow components and the thermodynamic forces as

4
H_B B{ CXal
Ug=F Uig— BZ e ’
a

¢ B

B¢ Bchal
B 82 e,
(AS5)

24, BY2q,

5pa B 5p.

Bg CXaZ

n2
B* e,

where By=B-Jx/d0. We find from Eq. (A5) that

(B*)ug=B"ui,B)—(B

(B*)ug=Bu;,B)+(B

(A6)
2qa 02 (9iaB)
(B > -5 Pa e,

|
—~
(o]

e~
~

a5 2(qi.B) Xar.

2
nZda_pi=
(B3, =83

+(By)

a

The following formulas are obtained from Egs. (A5) and
(A6):
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ﬂ <uIaB> sB{ <B{> lCXal
B (B% B> (B%) e,
RO LS@_ (B X
(B*) B'B* (B%)" e, ’
2 & 2 <QIaB> ng <B§> ‘CXaZ

5p, (B?%) + B?

i<f1iaB> 1sBa <Be> CXaZ.

5p. (B®)  Bf

5p, B B? (132) e,

B (B’ e,

(A7)

APPENDIX B: PFIRSCH-SCHLUTER TRANSPORT
EQUATIONS

The relations between the parallel friction forces and the
parallel flows are given by the 13M approximation in the
same form as in Eq. (27), and are written as

l: '”1“ EF;Z lab“f “ (B1)

—F; ia2
where the coefficients l“k are defined in Eq. (28). Then, the
Pfirsch—Schluter partlcle and heat fluxes (JZ? JE §) defined
in Eq. (43) are rewritten as

T
S

PS
‘I 21 122

K%SB;—(B@%I”.
2oty 1

Substituting Eq. (A7) into Eq. (B2), we obtain the Pfirsch—
Schliter transport equations:
al
Hf E (B3)

A gho o

(LPS ab (LPS) a

X (B2)

where the Pfirsch—Schluter transport coefficients (LPS) Gk are

given by
PSRRI 1 e
(j,k=12). (B4)

From Egs. (29) and (B4), we have the Onsager symmetry for
the Pfirsch—Schluter transport as

(LP)R=(LP)8 (j.k=12). (B5)

The momentum conservation property described by Eq. (30)
reduces to

D e (LP){=0

a

(k=12), (B6)

which implies the intrinsic ambipolarity of the Pfirsch—
Schliiter particle fluxes. We easily find from Egs. (32), (B3),
(B5), and (B6) that the Pfirsch—Schliter transport equations
for the pairs (Ja1 , l)m,(Jan ,X,0) are given by
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Schluter, plateau, and banana regimes are given in the fol-

al (a#D) =, (LPS) Xb1+2 (LPS 12Xb2’ lowing form :
(B7) B-V-m) nm l:ﬂ o
PS PS\a PS\ab a4 ¢ “
Ja2= 2 (L™)3) Xb1+2 (L™)% X2, <B'V'®a> Taa Loy s
which shows that the transport coefficients (LPS)jf are the <”|aB )
same as in Eq. (B3), except for the limitation (a,j),(b,k) f al
# (I,1) and that the Onsager symmetry is valid for both of < iaB >

the conjugate pairs.
(C1)

APPENDIX C: PARALLEL AND TOROIDAL where ¢, and f,; (j=1.2.3) are the dimensionless param-

VISCOSITIES eters for the viscosity coefficients and (G,) represents the

It is shown from the solution of the linearized drift ki- geometrical factor. The collision frequency 7,, is defined in
netic equation that the parallel viscosities in general toroidal Ref. 2. The dimensionless viscosity parameters fi,;
configurations for all collision frequencies in the Pfirsch— (j=1,2,3) are written as

{x2(x2— 3" "(v%7,,) "'} (for the Pfirsch—Schliiter regime),
faj=|| 81+ 3052+ 56,3 (for the plateau regime), (C2)
{(x2— 3" Y(v%7,,)} (for the banana regime),

2
where the frequencies v% and 1% are given in Ref. 2, and the velocity-space average { - } = (8/3m) 5 dx xpe *a - isused. The
dimensionless coefficient c, is given by

2(V74Taa){((B-VInB)?)/(B?) (for the Pfirsch—Schliiter regime),
c = \/;v 2 —1/22 2 0 _ B¢ i
a TaTaa{B") 27l(InB),, 1 tmB°—nB*l  (for the plateau regime), (C3)

f,/f., (for the banana regime),

where f. and f,=1—f, denote the fractions of circulating and trapped particles defined in Ref. 2 (or in Ref. 7), respectively,
and (InB),,, are the coefficients in the Fourier expansion of InB :

InB= E (InB),exp[2mi(mO—n{)].
The geometrical factor (G ) is written as

' ) ﬂF Kr?lnB . l_ Kr?lnB . lﬁ ~ . )
((B-VInB)*) " [(B)—— (B-VInB)L —(Bpl\——(B-VInB) (for the Pfirsch—Schliter regime),

0_ Bt (C4)
(for the plateau regime).

(G
|:2 I(InB),, 17 IlmBe—ntllﬂ Z I(InB),,, 1 2(m<35>+”<30>)um§0m

The geometrical factor (G,) for the banana regime is given in Ref. 7 (or in Ref. 9) as G, . When we put (InB),,,=0 for all
n # 0 in Egs. (C3) and (C4), the expressions for axisymmetric systems are reproduced. In the axisymmetric case, (G,) is
independent of the collision frequency and is given by (G,)=(B,)/B* for all particle species.

It is shown that the toroidal viscosities are given in the following form for both of the Pfirsch—Schluter and plateau
regimes:

ui,B
<BI'V'1Ta> n,m, lu‘al /LaZE f < I > C fXaIH"
= Tog Cta A ta>a X, s (CS)

<B1'V'®a> < IaB>

where f,; (j=1.2.3) are the same as given by Eq. (C2) and

2(V7aTaa)*((B,-VInB)(B-VInB))/(B?) (for the Pfirsch—Schliiter regime),

Cra= mB?—nB*¢ (C6)
' \/;vTaTaa<Bz>_l/22 27TII(1nB)m,,II2(—nt)m (for the plateau regime),
m.,n
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((B,-V InB)(B-VInB)) ! f{B >|(

g (B VlnB)|. <Be>|(

(B ~VlnB)|,ﬁ (for the Pfirsch—Schliter regime),

<Gla>= fE . 2(_nB§)(mB0_nB§“ E B 5 BNt n(B (_an) ; N | )
> I(InB),, 1 B —nBa | & I(In B),,, 0" (m(B )+ n 0>)u B0 (for the plateau regime).
(C7)
|
The expressions similar to Eq. (C5) have not been obtained
yet for the banana regime. We find from Egs. (C3), (C4), and EP (&)= 2141 57 UP () +(I+1)P1 (8],
(C6) that the ratio between the toroidal and parallel viscosi- (D4)
ties ¢,,/c, is related to the geometrical factor (G,) by the L, dP(&)  1(1+1)
following equation: (1-¢9) dE 20+1 S LPi-1(8) = Pr1(8)].

¢ (B?) _B%G,)
e BBy (B )

which is an essential relation for showing the Onsager sym-
metry of the total neoclassical transport. We find from Eqs.
(C1) and (C5) that the toroidal viscosities are written in
terms of the parallel viscosities and the thermodynamic
forces as

<B Vﬂ'> Cta <BV1T> n,m,
f(B V.0,) c. f(B v.0,) i Cta(<Ga>

/}’aZ“qulﬂ (C9)
la’aS XaZ .

APPENDIX D: DRIFT KINETIC EQUATION AND
LEGENDRE POLYNOMIAL EXPANSION

(G~ f“ !

Ma2

The linearized drift kinetic equation is written as

- e, -
Uin'Vfa1+Vda'Vfa0_T_UiEifaO:Ci‘(fal)7 (Dl)

where f,; and f, are regarded as functions of the phase
space variables (x,E,u) (E=5 mv*+e,®: the particle’s
energy; m= mavi/ZB: the magnetic moment). Using

(x,0,€) (é=v;/v) as the phase space variables instead of
(x,E,u), we consider the expansion by the Legendre poly-

nomials P/(§) [Po(§)=1,P (§)=§&Py(§)=36—1,+] for
an arbitrary function F(x,v,£) as

F(x,v,§)=1220 FO(x,v,8),

20+1 El (D2)
FOxv.§)=P(§) —5—L dnP(n)F(xv.7).

The /th Lengendre component corresponds to the /-order ten-
sor Hermitian moment part in the Hermitian moment repre-
sentation employed by Balescu in Ref. 3. The first term in
the left-hand side of Eq. (D1) is rewritten in the new phase
space variables as

1-& 9f,

- 5.
2 ag /fal

vsgn-Vfal—(mVlnB) (D3)

We have the following formulas for the Legendre polynomi-
als:
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We find from Egs. (D3) and (D4) that the operator .Z
[=vin-V with (x,E,u) as the phase space variables] in the
drift kinetic equation (D1) transforms the /th Legendre com-
ponent to the linear combination of the (/% 1)th compo-
nents:

AFD=(_zF)= D4 (_z2F)U+D), (D5)

Contrastively, from the velocity space isotropy of the colli-
sion operator described in Eq. (3), the operator Cs trans-
forms the /th component to only the /th one. The second and
third terms in the right-hand side of Eq. (D1) are rewritten
from Egs. (18) and (20) as

aks
(D6)

|:2+1P ﬂzfv sZ >
g g 2(5) Xa .ula X_E 5

and

eaE i

- T % gf a0 » (D7)
respectively. The former is proportional to the divergence of
the diamagnetic flows and contains only the zeroth and sec-
ond Legendre polynomial components while the latter is pro-
portional to the parallel electric field and contains only the
first Legendre component.

Now, let us write the drift kinetic equation (D1) by each
Legendre component, separately. The zeroth Legendre com-
ponent (or the scalar moment part) of Eq. (D1) is given by

U Py
(2f ITHi=04 gxi Veu, ,+ xﬁ—g gv"ha f a0

=Co(far ™)

Here, the /=1 Legendre component f” D of the distribu-
tion function is expanded by the Laguerre polynomials
L;3/2)(x2) (L(()m)(xi): 1,L(13/2)(x2)=§— 2 ) as

0 S S X PRI
)

(D8)

~(l=1)_
frh=

where ffllfl*j =2) denotes the sum of the jth Laguerre poly-
nomial components with j=2, which is neglected in the 13M
approximation. The first term of Eq. (D8) is rewritten as

H. Sugama and W. Horton



_ 2 5
(ﬁf;l;‘>><’-0>:§x§fv-<uian>+Sxi— §||

¢ (gl
ng'(l]ian) fa0
+ (AT HEDYE=0) (D10)

Then, Eq. (D8) reduces to

5
—x fv u +$x -3 Efm( A 7Y

27 5p

=Co(far ™).

Integrating Eq. (D11) multiplied by 1 and x2 over the veloc-
ity space, we obtain the incompressibility of u, and q, :

V-u,=V-q,=0, (D12)

(D11)

where we used the particle number and energy conservation
by the collision operator described in Eq. (2). [Exactly
speaking, V-q,=0 is valid to the lowest order of the small
mass ratio as in Eq. (9).] Thus, we have

(AFUTIEI =0 = cL(pI=0)) (D13)

from which the contribution from the scalar moment part
f” 9 of the distribution function to the kinetic form of the
entropy production is given by

—(1 0__Ed3 f; O)CL(f(l 0))

f(l 0)
=— E d*v 7{/f(l 1y=2) (D14)

In the 13M approximation, a'(l 9 vanishes.
Taking the first Legendre component (or the vector mo-

ment part) of Eq. (D1), we have

eaEia

CLfT).
(D15)

We obtain the following parallel momentum balance equa-
tions from velocity integration of Eq. (D15) multiplied by
m,vé and mavf(xi— 3):

[AFa O+ i1 = = vé =

n'(vpal+V'7Ta)_naeaEi:Fial P
n-(V0,,+V-0,)=F,». (D16)
Using Egs. (D9) and (D15), the contribution from the vector
moment part f(l D to the kinetic form of the entropy pro-
duction is given by

F(1=1)
—(1 1 __Ed3 f CL(f(l 1))
fao _(1 1)

—nge uiEi— Ed3 //(fl 0 —I—f(l 2))
1

1
=7 M€ tigEi— fulan (Vp, +V-m,)

a

2 qiq
+——n -(V,,+V-0,)

f(l 1j=2)
_Ed3 %(f(l 0)_|_f(l 2))

fa() (D : 7)
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where the last integral vanishes in the 13M approximation.
The second Legendre component (or the tensor moment
part) of Eq. (D1) is given by

[AFUSD+ fU=30)10=2 4 Lp,(g)x2

2
5p

5
va'uLa sxz__ Hfao

2

=CL(fir™),
which is rewritten by Egs. (D9) and (D12) as

(D18)

5 2 [=1,j=2
2P, (&)x2 u,+ ) x2- 5, - “(VInB)f o+ [ AT 172

2 S5p

+J;5111:3))](1:2): Cs(fyl:z)).

The contribution from the tensor moment part f(l 2 to the
kinetic form of the entropy production is given by

(D19)

__Ed3 f(l Z)CLf(l 2)

2
- T_af(pia_pia)ua+(®Ia_®La):qa
(l 2)

-VInB — Ed3 A(fUS1ED 4 f1=3)) - (D20)

a0

Similarly, for higher-order tensor moment parts with /=3,
we have

L2 D+ O=CL(F)  (for 1=3), (D21)
from which we obtain
E (l)
ay'=— d3 7 Cu
=—Ed3vf— A(FUTD 4 DY (for 123).
(D22)

Taking the magnetic surface average of each order mo-
ment part of the entropy production in Egs. (D14), (D17),
(D20), and (D22) gives

#(1=0)
<0_(l 0)>_ KEd3 f %f(l 1J22)l

(=1 1 1 K
< >__I’l e <uIaE> ujn (Vpa1+v'77a)

(29 e +Y.0 )|.
5p al a

f(l 1,j=2)
Ed3 //(];211:0)"']?5;[1:2)) »

(D23)
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- g
<U(al 2)>:_T_K (pia_pLa)ua—’_(@ia

2
_®La)5_qa“'VlnBl
f(l 2)
Ed3 ]?/(f(l_ld>2 + (l 3))

(3,))=- KEdsv—%(f;’l‘Hf’“)l. (for 1=3),

which are summed up to

(6,)= 2 (6)= —naea<u.aE> Kumn (VP

Qia 1 Kf
+V. Wa)+_p_ln (Vala_'—V ®a)[_T_a (pia

2
_pia)ua+(®ia_®La)§qa“'V1nBl~ (D24)

Here, we have used the following cancellation formula for
arbitrary functions x and ¢ of (x,v,§) :

K E d%%%y;', +K E d%}%%xl =0,

which is derived from the following properties of .7 :

(D25)

AXY)=x Ayt b A, K E d3v,///F(x,v,§)|- =0,

D2
G(V.0)=0, (D26)
where F' and G are arbitrary functions of (x,v,§) and (V,v),
respectively. After some calculations, Eq. (D24) is rewritten
in the same thermodynamic form as in Eq. (46):

a<0’ > ‘IHCIX al +JHC1X02+Ja3XaS > (D27)
of which the species sum is given by
2 T(02)= 2 (JiiXa T /i5Xa) HeXp. (D28)

It should be noted that the above neoclassical thermody-
namic forms of the entropy production are derived from the
kinetic form only through the magnetic surface average and
sum of all the /-th tensor moment contributions of the distri-
bution function. In Chap. 17 of Ref. 3, Balescu used only the
vector Hermitian moments of the distribution function to cal-
culate the kinetic form of the entropy production, which is
written in our notation as

> T (G )+, (D29)

Here, as is understandable from the form of f,; shown in Eq.
(17), the contribution of the vector Hermitian moments con-
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tains ¢, which is defined by Eq. (16) and written in the
classical thermodynamic form of Eq. (21). In the Pfirsch—
Schluter regime, the higher-order moments representing
higher anisotropy become small so that the /=2 tensor mo-
ments corresponding to the viscosities (and therefore to the
banana-plateau and nonaxisymmetric transport fluxes) are
smaller than the /=1 vector moment corresponding to the
classical and Pfirsch—Schluter fluxes by a small factor
U7aTaa!L (L: the scale length of the magnetic configuration).
In this case, the /=3 moments are further smaller and the
total entropy production is approximated in the lowest order
of vy,74./L with the 13M approximation by Eq. (D29) as

; T(G,) () . ; T,((G,)+(a™"))

: ; (IS +HIEDX a1+ ((Th)

+IP)X ) HISX g
(for the Pfirsch—Schluter regime),

(D30)

which takes the thermodynamic form consisting of the prod-
ucts of the thermodynamic forces and their conjugate classi-
cal and Pfirsch—Schliter fluxes. [Here, it is noted that the
classical fluxes JLl (j=1,2) is defined not by the magnetic
surface average but by the local quantity in Eq. (22).] How-
ever, for small collision frequencies as in the plateau and
banana regimes, contributions from higher-order tensor mo-
ments with /=2 are comparable to the /=1 vector moment
and are indispensable in order to derive the complete neo-
classical thermodynamic form including the banana-plateau
and nonaxisymmetric transport fluxes.
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