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Abstract

The time evolution of magnetic island in the nonlinear phase of the resistive interchange mode is examined in the

cylindrical geometry. The effects of self-consistent uniform poloidal flow is taken into account. In this case, the recon-

nection of the magnetic field line occurs both at the saturation of the dominant unstable mode and at the saturation of

the n = 0 mode, where 7 is the toroidal mode number, through the curvature change of perturbed poloidal flux surface.
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1. Introduction
The interchange mode is a dangerous magnetohydrody-

namic (MHD) instability in zero-current stellarators. In the
linear analysis, the eigenfunction for the poloidal magnetic
flux corresponding to the maximum growth rate is an odd
function in the radial coordinate. Therefore, the flux is close
to zero at the resonant surface even with finite resistivity.
This means that magnetic islands are hardly generated spon-
taneously in the linear phase, not like the tearing mode. On
the other hand, the numerical study for the Large Helical
Device (LHD) plasma in the toroidal geometry showed that
the magnetic islands can be generated in the nonlinear satura-
tion phase of the interchange mode evolution [1]. The num-
ber of the island on a poloidal cross section is twice of the
poloidal mode number of the driving interchange mode.
Similar islands were obtained in the nonlinear calculations
for Heliotron E plasmas [2,3]. Thus, we consider the mecha-
nism of the island generation in the nonlinear saturation of
the interchange mode. In the present study, we also take the
effect of the self-consistent poloidal uniform flow into
account by including both parity of sine and cosine in the
Fourier expansion for each perturbation.

2. Basic equations and configurations

We study the island generation by using the NORM
code [1]. This code solves the nonlinear reduced MHD equa-
tions for poloidal magnetic flux v, stream function @ and
plasma pressure P. In order to examine the generation mech-
anism of the magnetic island precisely, we study the nonlin-
ear saturation of the interchange mode in the cylindrical
geometry (r, 6, 7). In this case, the reduced equations are

W __p 17 dU _ _p. B,
expressed as =~ =—B-V@+ ¢ J, % =-BVJ. + 75 VQ X

VPe. + vVW3iU, and % = k,ViP. The convective time deriva-

tive is given by% = % +v,- V where v, = V@ x e.. The

magnetic field B is given by B = Bye, + e, X Vy, where e,
means the unit vector in z direction. The subscripts of *0’ and
’1’ mean the value at the magnetic axis and the vector com-
ponent perpendicular to z direction, respectively. The factor
of €= alR, is the ratio of the minor and the major radii of the
corresponding torus, and f3, denotes the beta value at the
axis. The time is normalized by the poloidal Alfvén time, 7.
The vorticity U and the toroidal current density J, are given
by U = V3i® and J, = V3y, respectively. The vector of VQ
denotes the average curvature of the field line which drives
the interchange mode with the pressure. The perturbation
)~((r, 6, 7) are expanded in the Fourier series in the way of
X = %,,X,,(r) cos (m0 — nl) + %,,X,,,(r) sin (m6 — n{),
where X denotes v, @ or P and { = z/R,. The component of
580 corresponds to the poloidal uniform flow.

In the present study, we employ a straight equilibrium
corresponding to the LHD configuration with the vacuum
magnetic axis located at R, = 3.6m [1]. The equilibrium is
calculated with no net current and the pressure profile of P =
Py(1 — r*)? with B, = 2%. In this equilibrium, the rational sur-
face with * = 1/2 is included in the plasma column. Thus, we
consider the single helicity perturbation with m/n = 2/1. The
modes of 0 < n <7 and 768 radial grids are used in the
numerical calculation. In the nonlinear calculation, we
employ a fairly large magnetic Reynolds number, S = 10, so
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as to make the feature of the magnetic island prominent. We
also choose the fluid viscosity of v = 103 and perpendicular
heat conductivity k, = 10 so that the (m, n) = (2, 1) compo-
nent should have the largest linear growth rate.

3. Time evolution of island structure
Figure 1 shows the time evolution of the kinetic energy

of the perturbation, which is defined by E, =3, E}, E}, =% )

(IV.2,®,, cos(mb — n{)P] + |V, 3, @,, sin(mé — n&)P|dV.
The dominant mode is (m, n) = (2, 1) mode in the whole time
evolution. All of the components with n > 1 saturate at ¢ =
3,5001,, while the n = 0 mode grows quite slowly and satu-
rates around ¢ = 17,0007,.

Figure 2 shows the flow pattern on the poloidal cross
section at z = 0. We also plot the position of the resonant sur-
face where the total rotational transform t; equals to 1/2,

WmmmdﬁmﬂwﬁmQ@=%%Wwﬁ+ﬁnQM§%

as well as the position of t,, = 1/2. Here the tilde and the sub-
script of ‘eq” mean the perturbed and the equilibrium quanti-
ties, respectively. In Fig. 2(a), four vortices are seen around
the resonant surface. This pattern corresponds to the typical
linear eigenfunction of the interchange mode with m = 2. The
surface with t; = 1/2 is deformed mainly by the radial com-
ponent of the flow at the dominant mode saturation. This
flow pattern is almost kept until the n = 0 components
becomes comparable with the dominant mode. As the n = 0
component grows, the flow pattern varies. At ¢ = 18,0007,
the uniform poloidal shear flow is seen particularly inside the
resonant surface in Fig. 2(b).

Since we treat the single helicity perturbation, the struc-
ture of the magnetic island can be observed by plotting the
helical magnetic flux v, which is defined by y,(r, 6, z) =
V(. 0.2 + W) = Your), W) = 577 7. Figure 3
shows the contour of the helical flux on the poloidal cross
section at r = 3,0007,, 9,6007, and t = 18,0007,. At t =
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Fig. 1 Time Evolution of the kinetic energy.
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Fig. 2 Flow pattern at (a) t=9,60017, and (b) t= 18,0007, for r
< 0.8. Dotted and dashed lines show the position of
the surfaces with t; = 1/2 and t,, = 1/2, respectively.

3,0007, in the linear phase, two thin islands are observed, as
shown in Fig. 3(a). The island structure is consistent with the
linear eigenfunction of the resistive interchange mode for the
large resistivity. Therefore, these islands are considered to be
generated spontaneously. The X-points of the spontaneous
islands are maintained through the whole time evolution. We
call them major X-points here.

At the saturation of the dominant mode, the reconnec-
tion of the field line occurs and new X-points are generated
at the positions of the O-points of the spontaneous islands, as
shown in Fig. 3(b). These X-points are called minor X-
points. The number of the island is increased to four. As
shown in Fig. 3(c), the minor X-points are annihilated when
the n = 0 mode is saturated. The number of the island is
reduced to two. The shape of the resultant island is asymme-
try with respect to the O-point and the whole island structure
is rotated in the poloidal direction.

4. Mechanism of reconnection

The generation and the annihilation of the minor X-
points are related to the radial component of the perturbed
magnetic field, B,. Figure 4 shows the profile of B, along the
resonant surface in the poloidal cross section. The zero points
at 8 = 0.137 and 1.137 correspond to the O-points at ¢ =
3,0007,, while they correspond to the minor X-points at ¢ =
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Fig. 3 Contour of y, at (a) t=3,0001,, (b) t=9,6007, and (c) t
= 18,0007, for r < 0.8. Dotted and dashed lines show
the position of the surfaces with +;=1/2 and z,, = 1/2,
respectively.

9,60074. At 6= 0.2z and 1.2x in the vicinity of the minor X-
points, B, is negative at t = 3,0007, while it is positive at 7 =
9,6007,. At t = 18,0007,, B, becomes negative again at 6 =
0.66 and 6 = 1.667 in the vicinity of the positions of 8 =
0.5z and 6 = 1.5 where the minor X-points are annihilated.
Therefore, the direction of B, reverses in the generation and
the annihilation of the minor X-points.

The change of the sign of B, can be explained with the
geometrical structure of the perturbed poloidal flux surface
because the perturbed magnetic field is tangential to the ¥
contour. Figure 5 shows the schematic picture of the contour
of v in the poloidal cross section. The horizontal direction
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Fig. 4 Plots of B, along the resonant surface.

corresponds to 8 = 0.137 in Fig. 5(a) and (b) and to 6 =0.57
in Fig. 5(c). The surfaces of ¥ = const., r = const. and t; =
1/2 are plotted which cross at 8 = 0.27 for ¢ = 3,0007, and ¢ =
9,6007, and at 8= 0.667 for ¢ = 18,0007,. At ¢ = 3,0007,, the
radial curvature of the ¥ = const. surface is smaller than 1/7 .
This means that B, is negative at 8 = 0.27w. At t = 9,6007,, as
shown in Fig. 5(b), the radial curvature of the l/~/ = const. sur-
face is larger than 1/r at the same position. This means that B,
is positive. The enhancement of the curvature is attributed to
the outward flow of the vortex which is shown in Fig. 2(a).

When the n = 0 mode becomes comparable to the n = 1
mode, the position of the maximum outward velocity devi-
ates from the minor X-point in the poloidal direction. At ¢ =
18,0007,, the maximum outward velocity position is located
at 0 = 0.66x as shown in Fig. 2(b), while the position of the
original minor X-points corresponds to 8 = 0.5x. Therefore,
the ¥ = const. surface around 6 = 0.667 is pushed out by the
flow. On the other hand, the effect of the outward flow is
small around 6 = 0.337. As a result, the structure of the W =
const. surface becomes asymmetry with respect to the minor
X-point as shown in Fig. 5(c). The curvature of the y =
const. surface is decreased only for 6 > 0.57 to the value less
than 1/r. Then, the direction of B, reverses and the island dis-
appears at only one side of the minor X-point. The resultant
island has asymmetric structure with respect to the O-point as
shown in Fig. 3(c).

5. Conclusions

The magnetic islands can be generated and annihilated
in the nonlinear saturation of the interchange mode.

In the saturation of the dominant unstable mode, the
radial flow due to the vortex can change the O-point to the
minor X-point. Then, the original island is divided into two
islands. In this case, the curvature enhancement of the per-
turbed flux surface is essential in the minor X-point genera-
tion. This mechanism is different from the standard driven
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Fig.5 Schematic pictures of ¥ at (a) t = 3,0007,, (b) t =
9,6007, and (c) t=18,0007,.
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(b) ¥ = conslt. .

Y = const.
I = const.

reconnection because the current concentration at the X-point
does not occur.

The poloidal flow generated self-consistently in the sat-
uration of n = 0 mode has shear structure. This flow annihi-
lates the minor X-points and generates asymmetric islands.
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