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A theory for describing collisionless long-time behavior of zonal flows in helical systems is presented
and its validity is verified by gyrokinetic-Vlasov simulation. It is shown that, under the influence of
particles trapped in helical ripples, the response of zonal flows to a given source becomes weaker for lower
radial wave numbers and deeper helical ripples while a high-level zonal-flow response, which is not
affected by helical-ripple-trapped particles, can be maintained for a longer time by reducing their bounce-
averaged radial drift velocity. This implies a possibility that helical configurations optimized for reducing
neoclassical ripple transport can simultaneously enhance zonal flows which lower anomalous transport.
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Zonal flows are observed in numerous natural systems
such as atmospheric currents, while in fusion science they
are intensively investigated as an attractive mechanism for
realizing a good plasma confinement [1]. Rosenbluth and
Hinton [2] showed that initial E�B rotation in tokamaks
is not fully damped by collisionless processes, but it ap-
proaches a finite value. Collisional decay of zonal flows
occurs in the long course of time [3] although the residual
zonal flows in a collisionless time scale still influence the
turbulent transport. Since zonal flows are a key issue for
improved confinement in helical systems as well [4,5], it is
necessary to examine how helical geometries affect zonal-
flow damping. In the present work, collisionless zonal-flow
dynamics in helical systems is investigated. In the same
manner as in Rosenbluth and Hinton [2], we here treat the
ion-temperature-gradient (ITG) turbulence [6] as a known
source and analytically derive the response kernel which
relates the zonal-flow potential to the source and also
represents dependence on an initially given zonal flow.
We also verify the validity of the derived response kernel
by a recently developed gyrokinetic-Vlasov-simulation
code [7].

In helical configurations, the radial drift motion of par-
ticles trapped in helical ripples yields neoclassical ripple
transport in the weak collisionality regime [8,9]. We show
that this radial drift also causes a significant difference
between long-time zonal-flow behavior in helical systems
and that in tokamaks. It is observed in the large helical
device (LHD) [10] that not only neoclassical but also
anomalous transport is reduced by the inward shift of the
magnetic axis which decreases the radial drift of helical-
ripple-trapped particles but increases the unfavorable mag-
netic curvature to destabilize pressure-gradient-driven in-
stabilities such as the ITG mode [11–13]. Our study
suggests that helical configurations optimized for reduc-
tion of the neoclassical ripple transport may simulta-
neously lower the anomalous transport through enhanc-
ing the zonal-flow level.

We use the toroidal coordinates �r; �; ��, where r, �, and
� denote the flux-surface label, the poloidal angle, and the
05=94(11)=115001(4)$23.00 11500
toroidal angle, respectively. The magnetic field is written
as B � r �r� � r��� �=q�r��, where 2� �r� is equal to
the toroidal flux within the flux surface labeled r and q�r�
represents the safety factor. Following Shaing and Hokin
[9], we here consider helical systems with the magnetic
field strength written by a function of poloidal and toroidal
angles (its r dependence is not shown here for simplicity)
as B � B0�1� 
10 cos�� 
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P
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h cos�n��, D��� �
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�n�
h �

sin�n��, and M �L� is the toroidal (main poloidal) period
number of the helical field. For the LHD, L � 2 and M �
10. Here, we assume that l=�qM�  1. Multiple-helicity
effects can be included in the function 
H���.

The gyrokinetic equation [14] for the zonal-flow com-
ponent with the perpendicular wave number vector k? �
krrr is given by�
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where J0�k?�� is the zeroth-order Bessel function, � �
v?= is the gyroradius, and  � eB=�mc� is the gyro-
frequency. Here, subscripts to represent particle species
are dropped for simplicity. The equilibrium distribution
function F0 is assumed to be given by the local
Maxwellian and the perturbed particle distribution func-
tion $f � f� F0 is written in terms of the electrostatic
potential  and the solution g of Eq. (1) as $f �
��e =T�F0 
 g exp��ik? � ��, where � � b� v=.
The drift frequency !D is defined by !D � k? � vd �
krvdr, where vdr � vd � rr is the radial component
of the guiding-center drift velocity. The source term
Sk?

F0 on the right-hand side of Eq. (1) represents the
E� B nonlinearity and is written as Sk?
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The trapping parameter ' is defined by '2 �
�1� (B0f1� 
T��� � 
H���g�=�2(B0
H���� with ( �
)=w, where w � 1

2mv
2 and ) � mv2?=�2B� represent

the kinetic energy and the magnetic moment, respectively.
Then, particles trapped in helical ripples are characterized
by '2 < 1. Using l=�qM�  1, we approximate the field
line element dl by R0d� , where R0 denotes the major
radius of the toroid. Then, the orbital average within a
helical ripple is defined by A �

R
�R0d�=jvkj�A=.h,

where .h �
R
�R0d�=jvkj�; for '2 < 1, the integral

R
d�

goes over a closed orbit while, for '2 > 1, it goes a
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whole helical ripple. Using the longitudinal adiabatic in-
variant J [9] given by J � 16�R0=M��)B0
H=m�1=2 �
�E�'� � �1� '2�K�'�� for '2 < 1 and J � 8�R0=M��

�)B0
H=m�1=2'E�'�1� for '2 > 1 with the complete el-
liptic integrals K�'� and E�'�, the orbital average of the
radial drift velocity within a helical ripple is given by
vdr � �mc=e 0.h��@J=@��, where  0 � d =dr and .h �
m�@J=@w�. The drift frequency !D is expressed as !D �
kr�vdr 
 vkb � r$r�, where $r �

R
l�dl=vk��vdr � vdr�

represents the radial displacement of the guiding center
from the helical-ripple-averaged radial position. Then,
Eq. (1) is rewritten as
�
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We here consider the long-time behavior of zonal flows. Then, in Eq. (2), the time-derivative terms, the radial guiding-
center drift term, and the source term are smaller than the parallel streaming term such that they are regarded as of the
higher order. The parallel derivative is rewritten as b � r ’ R�1

0 �@=@� 
 q�1@=@��. Here, we treat the poloidal field as a
higher-order quantity than the toroidal field. Based on these orderings, we expand gk?

eikr$r as gk?
eikr$r � h0 
 h1 
 � � �

and obtain the lowest-order equation �vk=R0��@h0=@�� � 0 from Eq. (2). Thus, we can write h0 � h0�t; r; �; w;);3�,
where the dependence on 3 � vk=jvkj disappears for '2 < 1. The first-order equation is written as
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For particles trapped in a helical ripple ('2 < 1), the orbital average of Eq. (3) and its time integral yield

h0�t� � h0�0�e
�ikrvdrt 
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When '2 > 1, using the periodic condition h1�� 
 2�=M� � h1��� and taking the orbital average of Eq. (3) within a
helical ripple give �
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where!� � 2�3=�qM.h� is the helical-ripple-averaged poloidal angular velocity and �r � 3�qM=2���mc=e 0��J� Jt�
with Jt defined later represents the radial displacement of the helical-ripple-averaged guiding-center position. For '2 > 1,
particles are classified into two types, particles trapped by the toroidicity and passing particles. For these particles, we
regard !�@�e

ikr�rh0�=@� as a dominant term in Eq. (5) based on the long-time ordering and expand eikr�rh0 as eikr�rh0 �
40 
 41 
 � � � , where 40 is independent of � because it satisfies the lowest-order equation!�@40=@� � 0. The solubility
condition for 41 is derived from Eq. (5) and integrated in time to give
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where Rk?
�t� �

R
t
0 dt

0Sk?
�t0� and the poloidal-orbit

average hAipo is defined by hAipo �
1
2

P
3��1 �R�t

��t
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R�t
��t

�d�=j!�j� for toroidally trapped
particles and hAipo �

R
2�
0 �d�=j!�j�A=

R
2�
0 �d�=j!�j� for

passing particles with �t given by the condition '�� �
�t� � 1 which is equivalent to !��� � �t� � 0. Now, Jt
is defined by Jt � J�� � �t� for toroidally trapped parti-
cles and by Jt � J�� � �� for passing particles.

The electrostatic potential  k?
is determined by the

quasineutrality condition, �n0e k?
=Ti 


R
d3vJ0gik?

�

n0e k?
=Te 


R
d3vgek?

, where the small electron gyro-
radius limit k?�e ! 0 is considered. In the lowest or-
der of the long-time ordering, we substitute Eq. (4) into
gk?

� e�ikr$rh0 for '2 < 1 and Eq. (6) into gk?
�

e�ikr$re�ikr�r40 for '2 > 1 in order to evaluate the non-
adiabatic parts of the density perturbations. We find from
Eq. (4) that effects of vdr on the density of helical-
ripple-trapped particles strongly depend on time t. Let us
define a characteristic transition time .c by .c � 1=jkrvdrj,
where vdr is evaluated by considering helical-ripple-
trapped thermal particles with )B0 � T, '� 1, and
�� �=2.

When t .c, effects of vdr are weak and the quasineu-
trality condition is written as
1-2
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where 3< is given by the initial values  k?
�0�, h0�0�, and

40�0� as well as the time integral of the E� B nonlinear
source terms Rk?

�t� �
R
t
0 dt

0Sk?
�t0�. Here, the radial dis-

placement of the electron guiding center is neglected be-
cause of the small electron mass. Representing Eq. (7) by
L k?

� 3< and defining the Hermitian inner product by
�u; v� � hu�vi, where h�i denotes the flux-surface average,
we find that the operator L is self-adjoint, �u;Lv� �
�Lu; v�, and that �u;Lu� � 0. Then, the variational prin-
ciple for L k?

� 3< is given by $V � 0, where V �

� k?
;L k?

�=j� k?
; 3< k?

�j2.
Now, we assume k?� and kr�r to be small and use them

as expansion parameters. We neglect kr$r because gener-
ally $r is much smaller than �. The source 3< is consid-
ered to be of order k2?�

2. Then, from the lowest-order
equation � k?

; L0 k?
� � 0, we can show that  k?

is a
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0 (for x < 0). Here, the second group of terms in the
integrand represent the neoclassical polarization effect
due to toroidally trapped particles with '2 > 1.

To the lowest order in k2?�
2, electron contributions to

3< are neglected. The initial values hi0�0� and 4i0 in
Eq. (7) are given by hi0�0� � eikr$rgik?
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where the response kernel for t .c is represented by
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The geometrical factor G measures the ratio of the neo-
classical polarization due to toroidally trapped particles to
the classical polarization. Here BM denotes the maximum
field strength over the flux surface and B0

m represents the
minimum value of local maximum field strengths within
each helical ripple.

Next, when t� .c, the density of nonadiabatic helical-
ripple-trapped particles is strongly damped because of
phase mixing caused by the bounce-averaged radial drift
motion [see Eq. (4)]. Then, the quasineutrality condition is
given by Eq. (7) with the velocity-space integrals over the
'2 < 1 region dropped. Employing the same procedures
used in deriving Eqs. (8)–(10),  k?

is shown to be again a

flux-surface function to the lowest order in k2?�
2 and 
1=2H ,

and we obtain e k?
=Ti � h3>i=D>, where D> �

D< 
 �2=���1� hk2?a
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1=2ihk2?a

2
i i�n0e k?

�0�=Ti�. Finally,
the long-time behavior of the zonal-flow potential for t�
.c is given by
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and

K> � hk2?a
2
i i�1� �2=��h�2
H�

1=2i�

� fhk2?a
2
i i�1� �2=��h�2
H�1=2i 
G�


 �2=���1
 Ti=Te�h�2
H�
1=2ig�1: (12)

Here, terms proportional to h�2
H�
1=2i are derived from

suppressing the density perturbations of the nonadiabatic
helical-ripple-trapped particles. A term with Ti=Te appears
in the response kernel K> for t� .c because not only
ions but also electrons influence the quasineutrality condi-
tion through their helical-ripple-bounce-averaged radial
drift motion. The dependence on electrons and on the
radial wave number shown in Eq. (12) is not seen in the
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FIG. 1. Time evolution of the zonal-flow potential obtained by
the gyrokinetic-Vlasov simulation for a helical system with L �
2, M � 10, q � 1:5, 
t � 
h � 0:1, and krai � 0:131. A dashed
horizontal line corresponds to K> given by Eq. (12) for t > .c.
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tokamak case. In the axisymmetric limit 
H ! 
0 with

T � 
t cos�, we obtain G! 1:6q2=
1=2t , which reduces
both Eqs. (9) and (12) to the Rosenbluth-Hinton formula
KR-H � 1=�1
 1:6q2=
1=2t � [2].

In order to examine the analytical results shown above, a
linearized ion gyrokinetic equation combined with the
quasineutrality condition is numerically solved by a toroi-
dal flux-tube gyrokinetic-Vlasov code [7]. Since the per-
turbed electron density is simply calculated by using
nek?

� �n0e=Te�� k?
� h k?

i� in our simulations, the
term proportional to Ti=Te in Eq. (12) should be dropped
when comparing that formula with the simulation results.
Here, we consider the L � 2=M � 10 single-helicity case,
in which 
�n�0�

h � 0 and therefore 
H � 
�0�h � 
h is inde-
pendent of �. We also put 
t � 
10 and 
L0 � 0 so that

T � 
t cos�. The initial perturbed ion gyrocenter distri-
bution function is given by the Maxwellian form. We
define the radial coordinate r by  � B0r2=2 and use
vdr � ��c)=eR0� sin�, hk2?a

2
i i ’ k

2
ra

2
i , and .c ’

�krcTi=eB0R0�
�1 � �R0=vti�=�krai�, where ai ’ vti=i0,

i0 � eB0=�mic�, and vti � �Ti=mi�
1=2.

Time evolution of the zonal-flow potential obtained by
the simulation is plotted by a solid curve in Fig. 1, where

t � 0:1, 
h � 0:1, q � 1:5, and krai � 0:131 are used.
Here, a dashed horizontal line represents the response
kernel K> given by Eq. (12) for t > .c�� 7:6R0vti�. It
is seen that, after oscillations of the geodesic acoustic
mode (GAM) [15] are damped, the zonal-flow amplitude
approaches the predicted value K> � 0:038, which is
smaller than K< � 0:39 and KR-H � 0:081 for the used
parameters. Under the conditions used in our simulation,
the GAM oscillations dominate the zonal-flow evolution
for t < .c so that we cannot identify K< given by Eq. (8)
which describes the long-time behavior for t .c with
rapid phenomena such as the GAM neglected. It is con-
firmed from other simulations for krai � 0:0654, 0.131,
0.196 and 
h � 0:05, 0.1, 0.2 that Eq. (12) agrees with the
11500
long-time limit of h k?
�t�i=h k?

�0�i obtained by the
simulations within an error of about 15% at most. A better
agreement between the simulation and theoretical results is
verified for lower krai and smaller 
h because these pa-
rameters are assumed to be small in deriving the analytical
results.

In conclusion, we have shown how the collisionless
long-time behavior of zonal flows in helical systems is
influenced by the bounce-averaged radial drift motion of
helical-ripple-trapped particles. It is predicted that, under
the influence of helical-ripple-trapped particles, for the
lower radial wave numbers, the long-time limit of the
zonal-flow potential amplitude becomes smaller although
simultaneously the characteristic transition time
.c��1=krjvdrj� becomes longer. In some optimized helical
configurations such as quasipoloidally symmetric systems
[16,17],which significantly reduce neoclassical transport
by suppressing both jvdrj and G, we expect the response
kernels K>, K<, and .c to increase such that large zonal
flows can be maintained for a long-time period, which
contribute to a reduction of anomalous transport as well.
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