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A theory for describing collisionless long-time behavior of zonal flows in helical systems is presented
and its validity is verified by gyrokinetic-Vlasov simulation. It is shown that, under the influence of
particles trapped in helical ripples, the response of zonal flows to a given source becomes weaker for lower
radial wave numbers and deeper helical ripples while a high-level zonal-flow response, which is not
affected by helical-ripple-trapped particles, can be maintained for a longer time by reducing their bounce-
averaged radial drift velocity. This implies a possibility that helical configurations optimized for reducing
neoclassical ripple transport can simultaneously enhance zonal flows which lower anomalous transport.
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Zonal flows are observed in numerous natural systems
such as atmospheric currents, while in fusion science they
are intensively investigated as an attractive mechanism for
realizing a good plasma confinement [1]. Rosenbluth and
Hinton [2] showed that initial E X B rotation in tokamaks
is not fully damped by collisionless processes, but it ap-
proaches a finite value. Collisional decay of zonal flows
occurs in the long course of time [3] although the residual
zonal flows in a collisionless time scale still influence the
turbulent transport. Since zonal flows are a key issue for
improved confinement in helical systems as well [4,5], it is
necessary to examine how helical geometries affect zonal-
flow damping. In the present work, collisionless zonal-flow
dynamics in helical systems is investigated. In the same
manner as in Rosenbluth and Hinton [2], we here treat the
ion-temperature-gradient (ITG) turbulence [6] as a known
source and analytically derive the response kernel which
relates the zonal-flow potential to the source and also
represents dependence on an initially given zonal flow.
We also verify the validity of the derived response kernel
by a recently developed gyrokinetic-Vlasov-simulation
code [7].

In helical configurations, the radial drift motion of par-
ticles trapped in helical ripples yields neoclassical ripple
transport in the weak collisionality regime [8,9]. We show
that this radial drift also causes a significant difference
between long-time zonal-flow behavior in helical systems
and that in tokamaks. It is observed in the large helical
device (LHD) [10] that not only neoclassical but also
anomalous transport is reduced by the inward shift of the
magnetic axis which decreases the radial drift of helical-
ripple-trapped particles but increases the unfavorable mag-
netic curvature to destabilize pressure-gradient-driven in-
stabilities such as the ITG mode [11-13]. Our study
suggests that helical configurations optimized for reduc-
tion of the neoclassical ripple transport may simulta-
neously lower the anomalous transport through enhanc-
ing the zonal-flow level.

We use the toroidal coordinates (r, 0, ), where r, 6, and
{ denote the flux-surface label, the poloidal angle, and the
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toroidal angle, respectively. The magnetic field is written
as B = Vii(r) X V(0 — £/q(r)), where 27i)(r) is equal to
the toroidal flux within the flux surface labeled r and ¢(r)
represents the safety factor. Following Shaing and Hokin
[9], we here consider helical systems with the magnetic
field strength written by a function of poloidal and toroidal
angles (its r dependence is not shown here for simplicity)
as B = By[1 — €;ycosf — €, cos(LO) — ano,il,_._eﬁl") X
cos{(L +n)f — MZ}] = Bo[1 — €7(0) — €y(0) cos{LO —
M{ 4 xy(0)}], where €7(0) = €;9cosf + €, cos(LB),
€y(0) =/C*(0) + D*(0), xu(0) = arctan[D(0)/C(0)],
C(0) = Zn=0,:1,...€§1n) cos(nb),  D() = zn=t1,...6§1n) X
sin(n@), and M (L) is the toroidal (main poloidal) period
number of the helical field. For the LHD, L = 2 and M =
10. Here, we assume that [/(¢gM) < 1. Multiple-helicity
effects can be included in the function e (6).

The gyrokinetic equation [14] for the zonal-flow com-
ponent with the perpendicular wave number vector k| =
k,Vris given by

d by
atl + SkJ_FO’
(D

where Jy(k | p) is the zeroth-order Bessel function, p =
v, /Q is the gyroradius, and () = eB/(mc) is the gyro-
frequency. Here, subscripts to represent particle species
are dropped for simplicity. The equilibrium distribution
function F, is assumed to be given by the local
Maxwellian and the perturbed particle distribution func-
tion 6f = f — F, is written in terms of the electrostatic
potential ¢ and the solution g of Eq. (1) as 6f =
—(ep/T)Fy + gexp(—ik, - p), where p=Db X v/Q.
The drift frequency wp is defined by wp =k, - v, =
k, vy, where vy, =v,;-Vr is the radial component
of the guiding-center drift velocity. The source term
Sk, Fo on the right-hand side of Eq. (1) represents the
E X B nonlinearity and is written as Sy Fyp =

(C/B)Zk’lJrk’i:kl[b (k' X k/J/_)]JO(k/J_p)(ﬁk’Lgki-

d .
(——i— yb-V+ z(uD>gkl =—FyJolk| p)

at
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The trapping parameter « is defined by &> =
[1 = ABo{l — €r(6) — €x(0)}]/[2ABoey(0)] with A =
u/w, where w=1mv? and u = mv3 /(2B) represent
the kinetic energy and the magnetic moment, respectively.
Then, particles trapped in helical ripples are characterized
by x> < 1. Using [/(gM) < 1, we approximate the field
line element dI by Ryd{, where R, denotes the major
radius of the toroid. Then, the orbital average within a
helical ripple is defined by A = [(Ryd(/|vyDA/7),
where 7, = [(Rod{/|vy]); for k* <1, the integral [d{
goes over a closed orbit while, for x> > 1, it goes a
\

whole helical ripple. Using the longitudinal adiabatic in-
variant J [9] given by J = 16(Ry/M)(uByey/m)'/? X
[E(k) — (1 — k¥*)K(k)] for k> <1 and J = 8(Ry/M) X
(uByey/m)'/*kE(k™") for k2 > 1 with the complete el-
liptic integrals K(«) and E(k), the orbital average of the
radial drift velocity within a helical ripple is given by
v, = (mc/ed't,)(0J/00), where ' = dif/dr and 7), =
m(8J/dw). The drift frequency w, is expressed as wp =
k(04 + vy b - Vé,), where 6§, = fl(dl/‘l}”)(vdr - Uy
represents the radial displacement of the guiding center
from the helical-ripple-averaged radial position. Then,
Eq. (1) is rewritten as

8 o . e . a¢k .
(E + U”b -V + lkr‘Ud,)(gklelkrar) = TFOe’krérJOTL + elk’B’SkLFo. (2)

We here consider the long-time behavior of zonal flows. Then, in Eq. (2), the time-derivative terms, the radial guiding-
center drift term, and the source term are smaller than the parallel streaming term such that they are regarded as of the
higher order. The parallel derivative is rewritten as b - V = R 1/a¢ + q~'9/36). Here, we treat the poloidal field as a
higher-order quantity than the toroidal field. Based on these orderings, we expand gy €% as g e'*o = hy + hy +
and obtain the lowest-order equation (v)/Ry)(dhy/d¢) = 0 from Eq. (2). Thus, we can write hy = ho(t, 1, 6, w, u, o),

where the dependence on o = v} /|v| disappears for k* < 1. The first-order equation is written as
v Ghl J U” 0 d)k
===+ + ik gy Jho + = Foelkedrfy S2KL 4 gikidrs, 3
Ry o¢ <az Roq 96 d ) o770 ot koo )

For particles trapped in a helical ripple («*> < 1), the orbital average of Eq. (3) and its time integral yield

i, (7)
ot

o t o , . ———
ho() = hg(0)e~Tut + f dt’e"kr”r"("”Fo[;<e’kr5rJ ) + (e’kr‘erkl(t’))} )
0
When «? > 1, using the periodic condition i,({ + 27/M) = h({) and taking the orbital average of Eq. (3) within a
helical ripple give

. d ———
<;t + wy 80>(elk A’h ) — ezk,A,F |:T( 1k,6,]0 q:;ﬂ.) + (ezk,S,Skl)i|’ (5)
where wy = 27a/(gMT},) is the helical-ripple-averaged poloidal angular velocity and A, = a(gM /2m)(mc/ed’)J — J,)
with J, defined later represents the radial displacement of the helical-ripple-averaged guiding-center position. For x> > 1,
particles are classified into two types, particles trapped by the toroidicity and passing particles. For these particles, we
regard wyd(e*2rhy)/ 360 as a dominant term in Eq. (5) based on the long-time ordering and expand e**2rh as e*r2rhy =
19 + M + - -+, where 7, is independent of 6 because it satisfies the lowest-order equation wyd17,/96 = 0. The solubility

condition for 7; is derived from Eq. (5) and integrated in time to give

o) = 1o0) = £ AT T O + o e [ 5[0, S0 o] ) ©
po

where Ry (1) = f 0dt'Sy () and the p0101dal orbit
average (Apo 1s defined by (A, =13 ,-4; X
f 0 (dQ/IwQI)A/f 9,(d0/|wyl) for toroidally trapped
particles and (A)po = f%”(dﬁ/lwgl)A/ [57(d6/|wgl) for
passing particles with 6, given by the condition k(6 =
0,) = 1 which is equivalent to wy4(8 = 6,) = 0. Now, J,
is defined by J, = J(6 = 6,) for toroidally trapped parti-
cles and by J, = J(§ = m) for passing particles.

The electrostatic potential ¢y is determined by the
quasineutrality condition, —ngedy /T; + [d*viogn, =
noey, /T, + [d*vg.x, ., where the small electron gyro-
radius limit k; p, — O is considered. In the lowest or-

\
der of the long-time ordering, we substitute Eq. (4) into
gk, = ¢ *%hy for k* <1 and Eq. (6) into gy, =
e kidrg=ikiArpy for k2 > 1 in order to evaluate the non-
adiabatic parts of the density perturbations. We find from
Eq. (4) that effects of v, on the density of helical-
ripple-trapped particles strongly depend on time ¢. Let us
define a characteristic transition time 7, by 7, ~ 1/1k, 7,1,
where vy, is evaluated by considering helical-ripple-
trapped thermal particles with wBy~ T, k~ 1, and
0~ /2.

When t < 7, effects of v, are weak and the quasineu-
trality condition is written as
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where o - is given by the initial values ¢y (0), 14(0), and
1(0) as well as the time integral of the E X B nonlinear
source terms Ry (1) = [(dt'Sy (¢'). Here, the radial dis-
placement of the electron guiding center is neglected be-
cause of the small electron mass. Representing Eq. (7) by
L¢i, = o and defining the Hermitian inner product by
(u, v) = (u*v), where () denotes the flux-surface average,
we find that the operator L is self-adjoint, (u, Lv) =
(Lu, v), and that (z, Lu) = 0. Then, the variational prin-
ciple for Ly, = o~ is given by 6V =0, where V =

(d’kl’ £¢kl)/|(¢ky 0'<¢kl)|2~
Now, we assume k| p and k,A, to be small and use them
as expansion parameters. We neglect &, 8, because gener-
ally 8, is much smaller than p. The source o~ is consid-
ered to be of order k3 p?. Then, from the lowest-order
equation (¢x , Lodk,) = 0, we can show that ¢y isa
|

12
G= BORZ 2<

IVyl?

The geometrical factor G measures the ratio of the neo-
classical polarization due to toroidally trapped particles to
the classical polarization. Here B,; denotes the maximum
field strength over the flux surface and BJ, represents the
minimum value of local maximum field strengths within
each helical ripple.

Next, when ¢ >> 7, the density of nonadiabatic helical-
ripple-trapped particles is strongly damped because of
phase mixing caused by the bounce-averaged radial drift
motion [see Eq. (4)]. Then, the quasineutrality condition is
given by Eq. (7) with the velocity-space integrals over the
k? <1 region dropped. Employing the same procedures
used in deriving Egs. (8)—(10), ¢y, is shown to be again a

flux-surface function to the lowest order in k3 p* and 6}1/2,

and we obtain e¢y /T; =(o>)/D-, where D. =
D+ 2/m)( = (K a7) + T;/T)(2€)"?) and (o-) =
(o<) = 2/m){Q2en)' ? XNk adlngedy, (0)/T;].  Finally,
the long-time behavior of the zonal-flow potential for # >
T. 1s given by

flux-surface function, d¢y, /9 = d¢y /90 = 0. The
next-order equation (¢ , Li¢py,) = (di,, o) gives
ed’kL/Ti =(o<)/D-, where D_ = <fd3vF,'0[%kip2 +
k%{<A%>po - <Ar>l%o}H(K2 - 1)]) and H(x) =1 (fOI'x > 0)’
0 (for x <O0). Here, the second group of terms in the
integrand represent the neoclassical polarization effect
due to toroidally trapped particles with x> > 1.

To the lowest order in kipz, electron contributions to
o are neglected. The initial values h;(0) and 7,y in
Eq. (7) are given by /;y(0) = ™% g, (0) and 7,(0) =
(ks (e*ror gy (0)))po. We assume the initial perturbed
ion gyrocenter distribution function to take the
Maxwellian form, & f(gy ©(0) = —Jo(edy L0)/T)F; +

g, (0) = (Bn(gym)(O)/ no)F,o. The quasineutrality condi-
tion gives Bn(gym)( 0) = ng(k3 a?)(egpi, (0)/T;) with a? =
T;/(m;Q?). Then, we obtain (o) =
no(ki a?yedy (0)/T; + ([ d*vFoRy (1)) and the long-
time behavior of the zonal-flow potential for t <K 7,

ey, (1) _ jQ[ednq(o) L JodrdS d3vFi0Sikl(t/)>i|
T; T; n0<kia%) '
®)
where the response kernel for t < 7. is represented by
KX=1/0+0) ()]
and

gdo K(K_I)E(K 1/Bl, de 12 N en(0,)
 FLQAByey) i ]K(K ')} fl/BM f2<9)>12 (ABes) Tk ){( ) < ) }} 1o

€n

e t e 0
R [0
Jod!'([e= d3UFiOSikl ()
no(k2 @)1 — (2/w><<zeH>l/2>}} (b
and
K = (a1 — @/m)(2en) )]

X (k3 ap)l1 = (2/m){(2en)'"?) + G]
+ /M + Ti/T)2en) ) (12)

Here, terms proportional to ((2€)'/?) are derived from
suppressing the density perturbations of the nonadiabatic
helical-ripple-trapped particles. A term with T;/T, appears
in the response kernel K- for > 7. because not only
ions but also electrons influence the quasineutrality condi-
tion through their helical-ripple-bounce-averaged radial
drift motion. The dependence on electrons and on the
radial wave number shown in Eq. (12) is not seen in the
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FIG. 1. Time evolution of the zonal-flow potential obtained by
the gyrokinetic-Vlasov simulation for a helical system with L =
2,M =10,q = 1.5, ¢, = €, = 0.1, and k.a; = 0.131. A dashed
horizontal line corresponds to K- given by Eq. (12) for > 7.

tokamak case. In the axisymmetric limit €5 — +0 with
€r = €,cosf, we obtain G — 1.6¢2/€!/?, which reduces
both Egs. (9) and (12) to the Rosenbluth-Hinton formula
Ky = 1/(1+ 1.64*/€/%) [21.

In order to examine the analytical results shown above, a
linearized ion gyrokinetic equation combined with the
quasineutrality condition is numerically solved by a toroi-
dal flux-tube gyrokinetic-Vlasov code [7]. Since the per-
turbed electron density is simply calculated by using
ne, = (noe/T,)(¢x, — (¢x,)) in our simulations, the
term proportional to T;/T, in Eq. (12) should be dropped
when comparing that formula with the simulation results.
Here, we consider the L = 2/M = 10 single-helicity case,
in which 6;:#0) = 0 and therefore ey = 620) = ¢, is inde-
pendent of . We also put €, = €;¢ and €;(7 = 0 so that
€r = €;cosf. The initial perturbed ion gyrocenter distri-
bution function is given by the Maxwellian form. We
define the radial coordinate r by @ = Byr?/2 and use
vy, = —(cu/eRy)sing, (kia?)=kia?, and 7. =
(k,cT;/eBoRo) ™" = (Ro/vy)/(ka;), where a; = v/,
Q9 = eBy/(m;c), and v,; = (Ti/mi)l/z'

Time evolution of the zonal-flow potential obtained by
the simulation is plotted by a solid curve in Fig. 1, where
€, =01, €,=0.1, g=15, and k.a; = 0.131 are used.
Here, a dashed horizontal line represents the response
kernel K- given by Eq. (12) for t > 7.(= 7.6Ryv,). It
is seen that, after oscillations of the geodesic acoustic
mode (GAM) [15] are damped, the zonal-flow amplitude
approaches the predicted value K. = 0.038, which is
smaller than K_ = 0.39 and K-y = 0.081 for the used
parameters. Under the conditions used in our simulation,
the GAM oscillations dominate the zonal-flow evolution
for t < 7, so that we cannot identify K _ given by Eq. (8)
which describes the long-time behavior for ¢ <« 7, with
rapid phenomena such as the GAM neglected. It is con-
firmed from other simulations for k,.a; = 0.0654, 0.131,
0.196 and €;, = 0.05, 0.1, 0.2 that Eq. (12) agrees with the

long-time limit of (¢ (1))/{¢k, (0)) obtained by the
simulations within an error of about 15% at most. A better
agreement between the simulation and theoretical results is
verified for lower k.a; and smaller €, because these pa-
rameters are assumed to be small in deriving the analytical
results.

In conclusion, we have shown how the collisionless
long-time behavior of zonal flows in helical systems is
influenced by the bounce-averaged radial drift motion of
helical-ripple-trapped particles. It is predicted that, under
the influence of helical-ripple-trapped particles, for the
lower radial wave numbers, the long-time limit of the
zonal-flow potential amplitude becomes smaller although
simultaneously the characteristic transition time
7.(~1/k,|v 1) becomes longer. In some optimized helical
configurations such as quasipoloidally symmetric systems
[16,17],which significantly reduce neoclassical transport
by suppressing both |v,,| and G, we expect the response
kernels K-, K_, and 7, to increase such that large zonal
flows can be maintained for a long-time period, which
contribute to a reduction of anomalous transport as well.

The authors thank Dr. M. Yokoyama and Dr. Y. [domura
for helpful discussions. This work is supported in part by
the Japanese Ministry of Education, Culture, Sports,
Science, and Technology, Grants No. 16560727 and
No. 14780387.

[1] P.H. Diamond et al., in Proceedings of the 20th TAEA
Fusion Energy Conference, Vilamoura, Portugal, 2004,
OV/2-1 (to be published).

[2] M.N. Rosenbluth and F.L. Hinton, Phys. Rev. Lett. 80,
724 (1998).

[3] F.L. Hinton and M.N. Rosenbluth, Plasma Phys.
Controlled Fusion 41, A653 (1999).

[4] A. Fujisawa et al., Phys. Rev. Lett. 93, 165002 (2004).

[5] A. Hasegawa and M. Wakatani, Phys. Rev. Lett. 59, 1581
(1987); H. Sugama, M. Wakatani, and A. Hasegawa, Phys.
Fluids 31, 1601 (1988).

[6] W. Horton, Rev. Mod. Phys. 71, 735 (1999).

[7] T.-H. Watanabe and H. Sugama, in 20th IAEA Fusion
Energy Conference, Vilamoura, Portugal, 2004, TH/8-3Rb
(Ref. [1]).

[8] M. Wakatani, Stellarator and Heliotron Devices (Oxford
University Press, Oxford, 1998), Chap. 7.

[9] K.C. Shaing and S.A. Hokin, Phys. Fluids 26, 2136
(1983).

[10] O. Motojima et al., Nucl. Fusion 43, 1674 (2003).

[11] H. Yamada et al., Plasma Phys. Controlled Fusion 43, AS5
(2001).

[12] T. Kuroda and H. Sugama, J. Phys. Soc. Jpn. 70, 2235
(2001).

[13] G. Rewoldt et al., Nucl. Fusion 42, 1047 (2002).

[14] E. A. Frieman and L. Chen, Phys. Fluids 25, 502 (1982).

[15] N. Winsor, J.L. Johnson, and J.J. Dawson, Phys. Fluids
11, 2448 (1968).

[16] D.A. Spong et al., Nucl. Fusion 41, 711 (2001).

[17] M. Yokoyama, J. Plasma Fusion Res. 78, 205 (2002).

115001-4



