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The temporal evolution of linear toroidal ion temperature gradient~ITG! modes is studied based on
a kinetic integral equation including an initial condition. It is shown how to evaluate the analytic
continuation of the integral kernel as a function of a complex-valued frequency, which is useful for
investigating the asymptotic damping behavior of the ITG mode. In the presence of the toroidal
magnetic drift, the potential perturbation consists of normal modes and a continuum mode, which
correspond to contributions from poles and from an integral along a branch cut, respectively, of the
Laplace-transformed potential function of the frequency. The normal modes have exponential time
dependence while the continuum mode, which has a ballooning structure, shows a power law decay
}t22, where t is the time variable. Therefore, the continuum mode dominantly describes the
long-time asymptotic behavior of the perturbation for the stable system. By performing proper
analytic continuation for the dispersion relation, the normal modes’ growth rate, real frequency, and
eigenfunction are numerically obtained for both stable and unstable cases. ©1999 American
Institute of Physics.@S1070-664X~99!02009-1#
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I. INTRODUCTION

So far, many theoretical studies have been done on
croinstabilities such as ion temperature gradient~ITG!
modes1 as a cause of anomalous transport in high temp
ture plasmas. Most linear analyses of the
microinstabilities2–6 have shown the dispersion relation on
for the case of positive growth rates, mainly because
anomalous transport is driven by unstable modes and p
because calculation of negative growth rates is someti
more complicated due to treatment of analytic continuat
in the complex-frequency plane. However, since sta
modes with negative growth rates play the role of an ene
sink for turbulence in order to realize a steady state, t
would seem to affect the saturation amplitude of the tur
lence and the resultant anomalous transport. For exam
gyrofluid simulations7 produce steady-state turbulence ev
in the collisionless limit by successfully modeling kinet
stabilizing mechanisms such as Landau damping and fi
Larmor radius~FLR! effects. Thus, in order to consider th
balance of fluctuation energy, it is useful to obtain the co
plete dispersion relation including both stable and unsta
modes. Also, if we can calculate both positive and nega
growth rates, the critical condition for the marginal stabil
can be determined more accurately by interpolation.

In the case of parallel transit resonance, which occ
between waves and particles moving along field lines, i
well-known how to draw a Landau contour for analytic co
tinuation of the plasma dispersion function.8 For toroidal sys-
tems, the magnetic¹B-curvature drift modifies wave
particle resonance and therefore complicates how
analytically continue the dispersion function. Under the lo
approximation, where the inhomogeneity in the directi
parallel to the field line is neglected to enable us to spe
the parallel wave numberki as an independent paramete
several studies have been done of the analytic continua
3521070-664X/99/6(9)/3527/9/$15.00
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of the dispersion function for the ITG mode driven by the
magnetic drifts, in order to evaluate damping rates of sta
normal modes.9–11 An interesting aspect of the toroidal mag
netic resonance, which is absent from the parallel tra
resonance, is that the analytic continuation for the toroi
mode requires a branch cut to be taken in the lower-h
complex-frequency plane. Kurodaet al.11 investigated an
initial value problem for the toroidal ITG mode in the loc
approximation and found that components with complex f
quencies along the branch cut yield a continuum mode wh
shows power-law decay oscillation.

The present work is an extension of that by Kurodaet al.
to the nonlocal case where the mode structure along the
line remains to be solved for by taking account of the para
inhomogeneity. Here analytical continuation for the nonlo
problem is properly treated to calculate the growth rate, r
frequency, and eigenfunction for stable modes. We will fi
for the nonlocal case that a branch cut also appears and
a general solution of an initial value problem of the toroid
ITG mode for the nonlocal case consists of normal mo
and a continuum mode which shows a different power-l
decay from that for the local case.

The rest of this work is organized as follows. In Sec.
a linear electrostatic ion gyrokinetic equation and its Lapla
transform are presented. The ballooning representatio
used to treat the nonlocal structure of perturbations in a
oidal system. The temporal behavior of the ballistic respo
in the presence of the toroidal magnetic drift is elucidated
Sec. III, an initial value problem for the toroidal ITG mode
formulated as a Laplace-transformed integral equation
the electrostatic potential perturbation. It is shown how
analytically continue the integral equation into the lower-h
complex-frequency plane. The temporal evolution of the p
tential perturbation is written as the sum of the norm
modes and the continuum mode, for which the long-tim
asymptotic behavior is determined. In Sec. IV, following t
7 © 1999 American Institute of Physics
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3528 Phys. Plasmas, Vol. 6, No. 9, September 1999 H. Sugama
prescription for analytic continuation given in Sec. III, th
integral equation is numerically solved to obtain the dep
dencies of the normal modes’ growth rate, real frequen
and eigenfunction onh i ~the ratio of the ion temperatur
gradient to the density gradient!, ku ~the poloidal wave num-
ber!, ŝ ~the magnetic shear parameter!, anduk ~the balloon-
ing angle corresponding to the minimum radial wave nu
ber! for both stable and unstable cases. Finally, conclusi
are given in Sec. V.

II. ION GYROKINETIC EQUATION

In this section, we first consider the Laplace transform
the ion gyrokinetic equation in order to include the initi
condition of the perturbation. Using it, the ballistic respon
of the ions in the presence of toroidal magnetic drifts
described.

A. Laplace transform of the gyrokinetic equation

The ion distribution function in the (x,v) phase space is
divided into the equilibrium and perturbation parts asf i

5n0FM1d f i where n0 is the equilibrium density,FM

[p23/2vTi
23 exp(2v2/vTi

2 ) is the Maxwellian distribution
function, andvTi[(2Ti /mi)

1/2 is the thermal velocity for the
ions with massmi , temperatureTi , and electric chargee. In
the magnetic fieldB, the perturbation partd f i with the per-
pendicular wave number vectork' is written as

d f i52
ef

Ti
n0FM1he2 ik'•r, ~1!

where f represents the electrostatic potential,r[b3v/V i

(b5B/B) denotes the ion gyroradius vector, andV i

[eB/(mic) is the ion gyrofrequency. Here, the first and se
ond terms in the right-hand side of Eq.~1! represent the
adiabatic and nonadiabatic parts, respectively. The velo
vectorv is written asv5v ib1v'(e1 cosj1e2 sinj), where
j is the gyrophase and (e1 ,e2 ,b) are unit vectors which form
a right-handed orthogonal system at each point. The
nonadiabatic distribution functionh is independent of the
gyrophase and is described in the linear, collisionless, e
trostatic case by the gyrokinetic equation12,13

S ]

]t
1

v i

Rq

]

]u
1 ivDDh5S ]

]t
1 iv* TD ef

Ti

3J0~k'r!n0FM , ~2!

with

vD[v̂D@cosu1 ŝ~u2uk!sinu#vTi
22S v'

2

2
1v i

2D ~3!

and

v* T5v* iF11h i H S v
vTi

D 2

2
3

2J G , ~4!

whereJ0 is the Bessel function of order zero,q is the safety
factor, ŝ5(r /q)(dq/dr) is the magnetic shear parameterr
and R are the minor and major radii, respectively,h i
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[d ln Ti /d ln n0 is the ratio of the ion temperature gradient
the density gradient,v̂D[2env* i is the characteristic ion
¹B-curvature drift frequency,v* i[2te

21v* e is the ion
diamagnetic drift frequency,en[Ln /R is the ratio of the
equilibrium density gradient scale length Ln

[2(d ln n0 /dr)21 to the major radiusR, te[Te /Ti is the
ratio between the electron and ion temperatures,v* e

[ckuTe /(eBLn) is the electron diamagnetic drift frequenc
ku5nq/r is the poloidal wave number, andn is the toroidal
mode number. In Eqs.~2! and~3!, we have assumed a large
aspect-ratio axisymmetric toroidal system with circular, co
centric magnetic surfaces, and used the ballooning repre
tation to regard the poloidal angleu as a coordinate along th
magnetic field line which forms a so-calledcovering space
(2`,u,`).14,15

Using the Laplace transform

h~v!5E
0

`

dt h~ t !eivt, ~5!

Eq. ~2! is rewritten as

F v i

Rq

]

]u
2 i ~v2vD!Gh~v!

52 i ~v2v* T!
ef

Ti
J0~k'r!n0FM1^d f i~ t50!eik'•r&,

~6!

where^•••& denotes the gyrophase average.
Throughout this work, following Donget al.2 and

Romanelli,3 the toroidal effect is considered only through th
poloidal-angle-dependent magnetic drift given by Eq.~3!
which causes the ballooning structure of the ITG mode. T
trapped ions and the poloidal-angle dependence of the p
lel velocity v i are neglected here since mainly the pass
ions drive the ITG mode.

B. Ballistic response

Here we consider the ballistic response to the initial p
turbation in the presence of the toroidal resonance, whic
determined by the propagator on the left-hand side of
gyrokinetic equation~2!. A similar problem was treated al
ready by Kimet al.10 and Kurodaet al.11 for the case of the
local approximation which specifies the parallel wave nu
berki . They showed that, under the local approximation,
asymptotic temporal dependence of the ballistic respons
characterized byt23/2exp(2ivbrt) where vbr52ki

2vTi
2 /

(4v̂D). In the problem considered in this work, the fluctu
tions’ structure along the field line is not generally repr
sented by a sinusoidal wave corresponding to a single pa
lel wave number, which cannot be a linear eigenfunction d
to the toroidicity of the magnetic drift.

Let us consider the case in whichf50 in order to ne-
glect the right-hand side of the gyrokinetic equation~2!.
Then, the solution of Eq.~2! is given by
 license or copyright; see http://pop.aip.org/pop/copyright.jsp



co

rm

f
en
ial
n

d

-

he
te-

e
to

o-

a-

in

n

q.
s
-
ro-

an

aw

3529Phys. Plasmas, Vol. 6, No. 9, September 1999 Damping of toroidal ion temperature gradient modes
h~u,v!

55 E
2`

u

du8~Rq/uv iu!eib(u,u8)h~u8,t50! for v i.0

E
u

`

du8~Rq/uv iu!e2 ib(u,u8)h~u8,t50! for v i,0,

~7!

with

b~u,u8!5E
u8

u

du9~Rq/uv iu!@v2vD~u9!#. ~8!

Here, as noted before, only the passing ions have been
sidered in deriving Eq.~7!. Then, using Eq.~2!, the Laplace
transform of the ion density perturbation is written as

dni~v!5E d3v J0~k'r!h~v!

52pE
0

`

v'dv'E
0

`

dv i E
2`

`

du8~Rq/v i!

3eib(u,u8)sgn(u2u8)h~u8,t50!. ~9!

Here, we assume the initial distribution to have the fo

h~u,t50!5ChJ0~k'r!FMdn~u,t50!, ~10!

where Ch is a constant. From the condition thatdn(t50)
5*d3vJ0(k'r)h(t50), we haveCh51/G0(bi) where bi

5k'
2 rTi

2 /2, rTi
2 5vTi

2 /V i
252c2miTi /(e2B2), G0(bi)

5I 0(bi)exp(2bi), and I 0 is the modified Bessel function o
order zero. The above form of the initial distribution is tak
in order to simplify comparison to the case of the init
value problem including self-consistent potential fluctuatio
considered in the next section. Substituting Eq.~10! into Eq.
~9!, we obtain

dn~v!5
Ch

Ap
E

0

1`

dteivtE
2`

1`

dk8
e2(k2k8)2/4l

Aal~11a!

3G0~k' ,k'8 !dn~k8,t50!. ~11!

Here, following Donget al.,2 we have used variables define
by

t5Rquu2u8u/uv iu, ~12!

l5
t2

tea
S ŝ

q
enD 2

v
* e
2 , ~13!

a511 i
t

~u2u8!
E

u8

u

du9vD~u9!, ~14!

k5 ŝku~u2uk!, k85 ŝku~u82uk!, ~15!

G0~k' ,k'8 !5I 0S k'k'8

te~11a!
DexpS 2

k'
2 1k'8

2

2te~11a!
D , ~16!

k'
2 5ku

21k2, k'8
25ku

21k82, ~17!

where the wave numbersku , k' , andk are normalized by
rs

21 with rs[A2Te /mi /V i . In the ballooning representa
Downloaded 11 Jun 2009 to 133.75.139.172. Redistribution subject to AIP
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s

tion, the radial wave numberk is directly related to the po-
loidal angleu as the covering-space coordinate by Eq.~15!,
which implies that the radial mode structure is given by t
Fourier transform of the poloidal mode structure. The in
gral parametert in Eqs.~11! and ~14! has the opposite sign
to that in Ref. 2.

The form of Eq.~11! directly shows its inverse Laplac
transform for the density perturbation as a function of time
be given by

dn~ t !5
Ch

Ap
E

2`

1`

dk8
e2(k2k8)2/4l

Aal~11a!

3G0~k' ,k'8 !dn~k8,t50!. ~18!

Here,l and a are regarded as functions oft which are ob-
tained by replacingt with t in Eqs. ~13! and ~14!, respec-
tively. By using Eq.~18! with a specified initial density pro-
file dn(k,t50), we can completely determine the spati
temporal behavior of the density perturbationdn(k,t). If we
neglect the magnetic shear (ŝ50) and theu ~or k) depen-
dence ofvD in Eq. ~3! and assume that the initial perturb
tion has the sinusoidal form}exp(ikiRqu) with a parallel
wave numberki ,

dn~ t !5
2Ch

Aa~11a!
G0S ku

2

te~11a!
D

3expS 2
ki

2vTi
2 t2

4a D dn~ t50!, ~19!

which is the same result as given by the local analysis
Refs. 10 and 11. Here,a511 i v̂Dt. Then, we find from Eq.
~19! that, in the presence of the¹B-curvature drift, the bal-
listic mode shows the power-law decay oscillatio
}t23/2exp(2ivbrt) @vbr[2ki

2vTi
2 /(4v̂D)# in the asymptotic

limit.
However, the sinusoidal form assumed in deriving E

~19! does not satisfy the boundary condition
limu˜6`dn(u)50 which is required by the ballooning rep
resentation. Thus, we consider a more appropriate initial p
file for a toroidal system, which is given in the Gaussi
form

dn~ t50!5dn~u50, t50!exp@2~Rqu/L !2#. ~20!

Then, substituting Eq.~20! into Eq. ~18! gives

dn~ t !5dn~u50, t50!
2Ch

11a
~~vTit/L !21a!21/2

3G0S ku
2

te~11a!
DexpS 2

a~Rqu/L !2

~vTit/L !21a
D . ~21!

We find from Eq.~21! with a511 i v̂Dt that the asymptotic
behavior of the ballistic mode is governed by the power-l
decay

dn~ t50!5dn~u50, t50!
2ChL

i v̂DvTi

t22 for t˜`.

~22!
 license or copyright; see http://pop.aip.org/pop/copyright.jsp
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Comparing this expression with the asymptotic form of E
~19!, the oscillation part exp(2ivbrt) is replaced byt21/2.
This is considered to be valid for general perturbations
isfying the ballooning boundary conditions limu˜6`dn(u)
50. Since such perturbations are expressed as a contin
spectrum consisting of sinusoidal waves}exp(ikiRqu), the
initial density perturbation is written asdn(t50)
5*dkiF(ki)exp(ikiRqu), where F(ki) is the amplitude of
the Fourier component with the parallel wave numberki
@F(ki) has a Gaussian form for the case of Eqs.~20!–~22!#.
Recalling that the time evolution of the sinusoidal waves
Eq. ~19! shows the power-law decay oscillation}t23/2exp
(2ivbrt) with vbr52ki

2vTi
2 /(4v̂D), the asymptotic behavio

of the density perturbationdn(t) is obtained as

dn~ t !}E dkiF~ki!t
23/2exp~2 ivbrt !}t22 for t˜`.

~23!

III. TIME EVOLUTION OF THE TOROIDAL ITG MODE

The ballistic mode behavior considered in the previo
section does not take account of a self-consistent electros
field. Here, in addition to the ion gyrokinetic equation, w
use an adiabatic electron response and the quasineut
condition to self-consistently solve an initial value proble
for the toroidal ITG mode.

A. Formulation of the toroidal ITG mode as an initial
value problem

In the presence of the electrostatic perturbationf, the
Laplace-transformed gyrokinetic equation~6! is solved under
the same approximation as in the previous subsection to
the ion density perturbationdni , and we assume the electro
density perturbationdne to satisfy the Boltzmann relation
dne /n05ef/Te . Then, using the quasineutrality conditio
dne5dni , we obtain an integral equation

~11te!f̂~k!2E
2`

1` dk8

A2p
K~k,k8!f̂~k8!5I ~k!, ~24!

where f̂5ef/Te is the normalized electrostatic potenti
and the integral kernelK is defined by

K~k,k8!52 i E
0

1`

v* e dt
A2eivt

Aal~11a!
e2(k2k8)2/4l

3G0~k' ,k'8 !F v

v* e
te112

3

2
h i1

h i~k2k8!2

4al

1
2h i

~11a!
S 12

k'
2 1k'8

2

2~11a!te
1

k'k'8

~11a!te

I 1

I 0
D G .

~25!

Here, the initial condition

^d f i~u,t50!eik'•r&5CfJ0~k'r!FMdn~u,t50! ~26!

with Cf52te1(11te)/G0(bi), is used to write the right-
hand side of Eq.~24! as
Downloaded 11 Jun 2009 to 133.75.139.172. Redistribution subject to AIP
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I ~k!5
Cf

Ap
E

0

1`

dteivtE
2`

1`

dk8
e2(k2k8)2/4l

Aal~11a!

3G0~k' ,k'8 !dn~k8,t50! ~27!

which has the same right-hand side as Eq.~11!.
Equation~24! is in the form of a Fredholm integral equa

tion of the second kind16 and its solution can be formally
written in terms of the resolvent kernelM (k,k8) @see Eq.
~62! in Ref. 16 for the resolvent kernel# as

f̂~k!5~11te!
21F I ~k!1E

2`

1`

dk8M ~k,k8!I ~k8!G
[~LI !~k!, ~28!

whereL denotes the inversion operator.
Then, the time evolution of the electrostatic potential

given by the inverse Laplace transform off(k,v) in Eq.
~28! as

f̂~k,t !5E
L

dv

2p
f̂~k,v!e2 ivt, ~29!

where L is a contour which lies above all of the singul
points off(v) in the complexv-plane. In order to elucidate
the asymptotic behavior of the perturbation in the limitt
˜`, we need to know how to choose a contourL and how
to analytically continue the functions ofv in Eqs. ~25! and
~27!, which is considered next.

B. Analytic continuation in the complex-frequency
plane

We see that thet-integral in Eq.~25! does not converge
for v i[g[Im(v),0. Here, we find how to evaluate th
analytic continuation of the kernelK into the regionv i,0.
We regard the integral valuablet as complex-valued and w
change the integral path from the positive realt-axis to those
in the complext-plane as shown in Fig. 1. In Fig. 1, th
curvesC1 and C2 both start from the origint50 and are
tangential to the realt-axis at t50. The curveC1 ap-

FIG. 1. CurvesC1 , C2 , andC6 in the complext-plane. The curveC1

(C2) is used as thet-integral path in Eq.~25! to obtain the analytical
continuation of the kernelK1 (K2) into the lower right-hand~left-hand!
complex v-plane defined byv i,0 and v r.0 (v r,0). The curveC6

gives thet-integral path to obtain the jumpDK[K12K2 on the branch cut
Cbr ~see Fig. 2!.
 license or copyright; see http://pop.aip.org/pop/copyright.jsp
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proachest5c1 i` (c: a positive real constant!, satisfying
Re(t).0 and Im(t).0, while the curveC2 approachest
5c2 i`, satisfying Re(t).0 and Im(t),0. Let us define a
new kernelK1 by Eq. ~25!, using the curveC1 for the path
of the t-integral. We should note that, when continuous
changing the original path along the positive realt-axis to
the curveC1 , any singular points of the integrand in th
complext-plane are crossed. We also note that, if we c
sider the integral along a curve connecting the end point
these two pathst5c1 i` and t51`, it contributes noth-
ing. Thus, we find that, as functions ofv, K andK1 have the
same value on the quarter plane defined by thev r[Re(v)
.0 andv i.0. By noting that the new kernelK1 is a well-
defined analytic function ofv in the right-hand half-plane
v r.0, we conclude thatK1 gives the analytic continuation
of K into the lower right-hand quarter-plane defined by t
v r.0 andv i,0. In a similar way, we can use the curveC2

to define a kernelK2 which gives the analytic continuatio
of K into the lower left-hand quarter-plane defined by t
v r,0 andv i,0.

Now, we observe thatK1 and K2 defined in this way
approach different values asv approaches a branch cutCbr

which is defined as a straight line fromv50 to v52 i`
~see Fig. 2!. The jump on the branch cut is written as

K12K25DK, ~30!

whereDK is given by Eq.~25! with thet-integral performed
along the pathC6 connectingt5c1 i` andt5c2 i` ~see
Fig. 1!. In a similar way toK1 , K2 , andDK, we can define
I 1 , I 2 , andDI by usingC1 , C2 , andC6 as thet-integral
paths in Eq.~27!, respectively.

The complex-valued eigenvaluesvn (n51,2,•••) are
defined as thev’s, which allow nontrivial solutionsf(v) of
the homogeneous version of the integral equation~24! ob-
tained by putting the right-hand side to zero. It is well know
that the real and imaginary parts of these eigenvalues
scribe the real frequencies and growth rates of so-called
mal modes, respectively. The same homogeneous inte
equation was numerically solved by Donget al. for the cases
of positive growth rates.2 As shown later by numerical ex
amples, we can calculate these eigenvalues not only for p
tive growth rates but also for negative ones with proper a

FIG. 2. The integration contourL in the complexv-plane for evaluating the
inverse Laplace transform Eq.~29!. The dominant contributions to the inte
gral are made by polesvn and a branch cutCbr .
Downloaded 11 Jun 2009 to 133.75.139.172. Redistribution subject to AIP
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lytic continuation usingK1 andK2 . Then, we observe that
as a function ofv, the inversion operatorL(v) in Eq. ~28!
has these eigenvalues as singular points or poles and thaCbr

can also be regarded as a branch cut for the analytic con
ation ofL(v) and I (v).

C. Normal modes and continuum mode

Now, we take the integration contourL for evaluating
the inverse Laplace transform in Eq.~29! as shown in Fig. 2.
Then, for t.0, f(t) is written as the sum of the contribu
tions from the poles and the branch cut

f̂~ t !5f̂p~ t !1f̂br~ t !. ~31!

Here, the pole contribution, which are from the norm
modes, is given by

f̂p~k,t !52 i(
n

e2 ivnt Res@~LI !~k,vn!#, ~32!

where Res@(LI )(k,vn)# denotes the residue of (LI )(k,v) at
a polev5vn . The eigenvalues~or complex-valued normal-
mode frequencies! vn in Eq. ~32! are numerically calculated
in the next section including the case of negative grow
rates.

The contribution from the branch cut, which is called
continuum mode, is written as

f̂br~k,t !5E
Cbr

dv

2p
e2 ivt@~L1I 1!~k,v!

2~L2I 2!~k,v!#, ~33!

where the subscripts1 (2) for L and I represent their val-
ues on the branch cut defined by the limit of the analyti
continuation in the right-hand~left-hand! lower-half plane
for v r˜10 (v r˜20). The asymptotic behavior off̂br(t)
for t˜1` is dominantly determined by the behavior of th
integrand of Eq.~33! in the limit v i˜20. Forv i˜20, the
jumpsDL[L12L2 andDI[I 12I 2 become so small tha
we have

@~L1I 1!~k,v5 iv i !2~L2I 2!~k,v5 iv i !#

.@L~v50!DI #~k,v5 iv i !

1@DL~v5 iv i !I #~k,v50! for v i˜20. ~34!

Here,DL(v5 iv i) is written as

DL~v5 iv i !.L~v50!DK~v5 iv i !L~v50!, ~35!

where the operatorDK(v5 iv i) is defined for an arbitrary
function g(k) by
 license or copyright; see http://pop.aip.org/pop/copyright.jsp
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@DK~v5 iv i !g#~k!

[E
2`

1` dk8

A2p
DK~k,k8,v5 iv i !g~k8!

.2Apuv i uS 12
3

2
h i DU Ateq

ŝenv* e
U

3E
2`

1`

dk8S i

~u2u8!
E

u8

u

du9vD~u9!D 21

g~k8!

for v i˜20. ~36!

We also have

DI ~k,v5 iv i !.2Apuv i u iC fU Ateq

ŝenv* e
U

3E
2`

1`

dk8S i

~u2u8!
E

u8

u

du9vD~u9!D 21

3
dn~k8,t50!

n0
for v i˜20. ~37!

From Eqs.~33!–~37!, we obtain

f̂br~k,t !.
t22

Ap
U Ateq

ŝenv* e
UL~v50!

3E
2`

1`

dk8S i

~u2u8!
E

u8

u

du9vD~u9!D 21

3FCf

dn~k8,t50!

n0
2 i S 12

3

2
h i D

3@L~v50!I #~k8,v50!G for t˜1`. ~38!

Noting that dni /n05dne /n05f̂ and comparing Eq.
~38! with Eq. ~22!, we see that, for the initial value problem
for the toroidal ITG mode, the potential and density pert
bations derived from the branch cut integration show
same form of asymptotic behavior}t22 as the density per
turbation for the ballistic mode without interaction with th
potential. @When L51, DL50, v̂D5const, and the initial
density perturbation profile in Eq.~20! are used, the ballistic
mode result in Eq.~22! is reproduced from Eq.~38!.# This
power-law decay is difficult to describe using the gyro-flu
model, since it approximates the dispersion function b
rational function ofv which never requires any branch c
for its analytic continuation.17

From Eqs.~31!, ~32!, and~38!, we arrive at the conclu-
sion, which is similar to the result of the local analysis,11 that
the long-time asymptotic behavior of the potential and d
sity perturbations for the toroidal ITG mode are determin
by the normal mode with the largest positive growth rate
the unstable case, while it is dominated by the continu
Downloaded 11 Jun 2009 to 133.75.139.172. Redistribution subject to AIP
-
e

a

-
d
r

mode for the stable case in which all normal modes de
faster than the continuum mode, although the power
}t22 of the decay for the continuum mode is different fro
t23/2e2 ivbrt in the local case.

It should be remarked here that we can also make dif
ent branch cuts in thev-plane from the one considered her
Different branch cuts make differences in the definitions
fp(t) and fbr(t) because of changes in the comple
frequency regions where the analytic continuation ofK(v),
I (v), andL(v) are defined. However, the total perturbatio
f(t)5fp(t)1fbr(t) and its asymptotic behavior given b
Eq. ~38! for the stable case are independent of the way
branch cut is made. In our choice of the branch cut along
negative imaginary axis ofv, the integrand in Eq.~33!
quickly decays along the integral path, so that the continu
mode part of the total perturbation is likely to be smaller th
that obtained by some other choice of the branch cut. Th
fore, for the stable case, the normal mode part defined in
case is likely to decay slower than in other cases.

Kuroda,et al.11 showed a numerical example of temp
ral evolution of the ITG mode for the local stable case,
which the continuum mode is perceived only after the n
mal modes, which are dominant in the early stage, are w
damped. So if large collisional effects are included, they m
prevent the continuum mode from being clearly seen.

IV. NUMERICAL SOLUTION FOR STABLE
AND UNSTABLE NORMAL MODES

In this section, the homogeneous version of the integ
equation~24! is numerically solved to obtain real frequen
cies, growth rates, and eigenfunctions of the normal mod
In order to treat the case of negative growth rates, we foll
the prescription shown in the previous section to evaluate
analytic continuation of the integral kernel as a function
v. For the numerical results shown here, we actually cal
late the kernel by using the integral paths in the comp
t-plane defined by

t5H ~11 i uvus!s for v r.0

~12 i uvus!s for v r,0,
~39!

wheres (0<s,`) is a real parameter. These integral pat
work for the analytic continuation as well asC1 and C2 ,
described in the previous section.

Figures 3~a! and~b! show the numerically obtained nor
malized growth rate gkurs /v* e and real frequency
v rkurs /v* e of the toroidal ITG mode, respectively, as
function of the normalized poloidal wave numberkurs for
te51, en50.2, h i52, ŝ51, uk50, andq51, 2. Here the
normalization unit frequencyv* e /(kurs)5ATe/2me/Ln is
independent ofku . We see that the growth rate and re
frequency are smoothly continued into the stable regi
where the growth rate is negative, which shows that our p
cedure for analytic continuation works properly. Stable
gions are found for both small and large poloidal wave nu
bers, which was also observed in the calculations using
local approximation. For all curves shown in Fig. 3~b!, the
real frequency is negative, which corresponds to the dir
tion of the ion diamagnetic rotation. The eigenfunctio
 license or copyright; see http://pop.aip.org/pop/copyright.jsp
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f(u) for kurs50.3, 0.8, 1.6 andq52 are shown in Fig.
3~c!, where the other parameters are the same as in Figs.~a!
and~b!. Here, the real and imaginary parts of the eigenfu
tion are shown by the solid and dotted lines, respectiv
For smaller poloidal wave numbers, the eigenfunction
comes wider and more oscillatory along the field line.

Figures 4~a! and ~b! show the normalized growth rat
g/v* e and real frequencyv r /v* e of the toroidal ITG mode,
respectively, as a function ofh i for te51, en50.2, kurs

50.75, ŝ51, uk50, andq51, 2. Since we are able to ca
culate both positive and negative growth rates, we

FIG. 3. ~a! Normalized growth rategkurs /v* e and ~b! real frequency

v rkurs /v* e as a function ofkurs for te51, en50.2, h i52, ŝ51, uk50,
and q51, 2. ~c! Eigenfunctionsf(u) for kurs50.3, 0.8, 1.6 andq52
with other parameters being the same as in~a! and~b!. The real and imagi-
nary parts of the eigenfunction are shown by the solid and dotted li
respectively.
Downloaded 11 Jun 2009 to 133.75.139.172. Redistribution subject to AIP
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n

clearly identify the critical values ofh i where the growth
rate vanishes. The eigenfunctionsf(u) for h i51.1, 3 and
q52 are shown in Fig. 4~c!, where the other parameters a
the same as in Figs. 4~a! and ~b!. For h i51.1, the growth
rate is negative~but close to marginal stability! and the
eigenfunction is slightly wider and more oscillatory than t
unstable eigenfunction forh i53.

The effects of negative magnetic shear on ITG mod
have been theoretically investigated by several authors18,19 in

s,
FIG. 4. ~a! Normalized growth rateg/v* e and ~b! real frequencyv r /v* e

as a function ofh i for te51, en50.2, kurs50.75, ŝ51, uk50, and q
51, 2. ~c! Eigenfunctionsf(u) for h i51.1, 3 andq52 with other param-
eters being the same as in~a! and ~b!. The real and imaginary parts of th
eigenfunction are shown by the solid and dotted lines, respectively.
 license or copyright; see http://pop.aip.org/pop/copyright.jsp
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relation to improvement of core plasma confinement
served in large tokamaks.20–22 However, the results in thes
works only showed the dependence of positive growth ra
on the magnetic shear. In Fig. 5~a!, the normalized growth
rateg/v* e and real frequencyv r /v* e as a function ofŝ for
te51, en50.2, h i52, kurs50.75,uk50, andq51. In this
case, the growth rate has a peak atŝ.0.4. Comparing the
growth rates at the same absolute valueuŝu, the negative
shearŝ,0 gives smaller growth rates than the positive sh
ŝ.0 within the rangeuŝu,1.7, which is the same tendenc
as found in other works.18,19 However, the critical values o
ŝ, which give g50, have almost the same absolute va
uŝu;1.7. We should note that validity of the ballooning re
resentation is lost in the limitŝ˜0 although the growth rate
and real frequency forŝ50 is plotted in Fig. 5~a!. The eigen-
functionsf(u) for ŝ560.8 are shown in Fig. 5~b! where
the other parameters are the same as in Fig. 5~a!. We see that
the imaginary parts of the eigenfunctions for the positive a
negative shear cases have different signs, which implies
the phases of these eigenfunctions change differently a
the field line.

FIG. 5. ~a! Normalized growth rateg/v* e and real frequencyv r /v* e as a

function of ŝ for te51, en50.2, h i52, kurs50.75, uk50, andq51. ~b!

Eigenfunctionsf(u) for ŝ560.8 with other parameters being the same
in ~a!. The real and imaginary parts of the eigenfunction are shown by
solid and dotted lines, respectively.
Downloaded 11 Jun 2009 to 133.75.139.172. Redistribution subject to AIP
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Up to this point, we have examined only the cases w
uk50, in which the mode structures are symmetric inu and
are localized around the outermost in the torus. However
order to treat the ballooning-type mode structures in rotat
toroidal systems,23–26 it is important to take into account ef
fects ofukÞ0. Figure 6~a! shows the normalized growth rat
g/v* e and real frequencyv r /v* e as a function ofuk for
te51, en50.2, h i52, ŝ51, kurs50.75, andq52. In this
case, the toroidal ITG mode is stabilized foruk.p/2 where
the growth rate is slightly negative and the real frequen
changes little. Results for negativeuk are not shown in Fig.
6~a! since the growth rate and real frequency are even fu
tions of uk . The eigenfunctionsf(u) for uk50, 0.45p are
shown in Fig. 6~b! where other parameters are the same a
Fig. 6~a!. The symmetry property of the eigenfunction fo
uk50 is broken foruk50.45p. Since a significant part of the
eigenfunction foruk50.45p is contained in the good curva
ture regionu.p/2 (u2uk.0.05p), the growth rate foruk

50.45p is much reduced from that foruk50. It is observed
that, asuk increases, the eigenfunction changes its sh
continuously from the symmetric function ofu for uk50 to
the antisymmetric function ofu2p for uk5p. The growth

e

FIG. 6. ~a! Normalized growth rateg/v* e and real frequencyv r /v* e as a

function of uk for te51, en50.2, h i52, ŝ51, kurs50.75, andq52. ~b!
Eigenfunctionsf(u) for uk50, 0.45p with other parameters being th
same as in~a!. The real and imaginary parts of the eigenfunction are sho
by the solid and dotted lines, respectively.
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rate for a slowly rotating system is given by theuk-average
(2p)21rduk g(uk).

23–25 For the case in Fig. 6~b!, the
uk-averaged growth rate is about 40% of the growth rate
uk50.

V. CONCLUSIONS

In this work, the temporal evolution of the toroidal ITG
mode has been studied by examining its damping beha
specifically. The kinetic integral equation including the in
tial condition is derived from Laplace transforms of the i
gyrokinetic equation, the electron Boltzmann relation, a
the quasineutrality condition, in order to investigate the i
tial value problem. We have shown how to evaluate anal
continuation of the integral kernel as a function of
complex-valued frequency, which is useful in calculati
asymptotic damping behavior of perturbations analytica
and numerically.

We have found that, in the presence of the toroi
¹B-curvature drift, the temporal dependence of the den
and potential perturbations consists of normal modes an
continuum mode. The normal modes show exponential t
dependence, with frequencies and growth rates determ
by the dispersion relation, and they correspond to poles
the Laplace-transformed potential function in the comp
frequency plane. The continuum mode is given by the in
gration of the Laplace-transformed potential function alon
branch cut, which appears due to the toroidal¹B-curvature
drift. The long-time asymptotic behavior of the continuu
mode is characterized by the power law decay}t22, which
is the same as that of the ballistic response obtained with
propagator of the gyrokinetic equation without taking a
count of interaction with the potential. In the case where
system is unstable, the normal mode with the largest gro
dominantly describes the long-time behavior. However,
the stable case where all normal modes have negative gr
rates, the continuum mode survives a longer time than
normal modes. Since the power-law decay appears o
when the stable normal modes are well damped,11 then the
amplitude of the continuum mode may be too small to aff
the saturation level of the unstable modes for the nonlin
case. Also, finite collisional effects, if included, may eas
prevent the appearance of the power-law decay. Thus,
turbulence saturation, which requires the linearly sta
modes as an energy sink, is not considered to depend o
continuum mode so much as on the normal modes, altho
the nonlinear analysis is necessary for more detailed stu

The efficacy of the analytical continuation metho
shown in this work is shown by numerically obtaining th
dependencies of the normal modes’ growth rate, real
quency, and eigenfunction on the ion-temperature-grad
parameterh i , the poloidal wave numberku , the magnetic
shear parameterŝ, and the ballooning angle parameteruk for
both stable and unstable cases. The reductions of the gr
rate due to the negative magnetic shear and due to the
zerouk are confirmed, which are consistent with the intern
transport barrier~ITB! formation observed in the large toka
Downloaded 11 Jun 2009 to 133.75.139.172. Redistribution subject to AIP
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maks with the negative magnetic shear and shea
rotation.20–22 However, more elaborate investigation of th
ITB formation is done by considering simultaneously seve
other effects, which are not included in this work, such
negative shear stabilization of the trapped-electron mode
stabilization of the ITG mode due to the Shafranov sh
resulting from the increase of the safety factor in the c
region for the negative shear case.26
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