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The temporal evolution of linear toroidal ion temperature gradifite) modes is studied based on

a kinetic integral equation including an initial condition. It is shown how to evaluate the analytic
continuation of the integral kernel as a function of a complex-valued frequency, which is useful for
investigating the asymptotic damping behavior of the ITG mode. In the presence of the toroidal
magnetic drift, the potential perturbation consists of normal modes and a continuum mode, which
correspond to contributions from poles and from an integral along a branch cut, respectively, of the
Laplace-transformed potential function of the frequency. The normal modes have exponential time
dependence while the continuum mode, which has a ballooning structure, shows a power law decay
«t~2, wheret is the time variable. Therefore, the continuum mode dominantly describes the
long-time asymptotic behavior of the perturbation for the stable system. By performing proper
analytic continuation for the dispersion relation, the normal modes’ growth rate, real frequency, and
eigenfunction are numerically obtained for both stable and unstable case$99® American
Institute of Physicg.S1070-664X99)02009-1

I. INTRODUCTION of the dispersion function for the ITG mode driven by these
magnetic drifts, in order to evaluate damping rates of stable
So far, many theoretical studies have been done on mirormal modesS-*! An interesting aspect of the toroidal mag-
croinstabilities such as ion temperature gradi¢htG) netic resonance, which is absent from the parallel transit
mode$ as a cause of anomalous transport in high temperaesonance, is that the analytic continuation for the toroidal
ture plasmas. Most linear analyses of thesemode requires a branch cut to be taken in the lower-half
microinstabilitie$~® have shown the dispersion relation only complex-frequency plane. Kurodet al*! investigated an
for the case of positive growth rates, mainly because thénitial value problem for the toroidal ITG mode in the local
anomalous transport is driven by unstable modes and partlgpproximation and found that components with complex fre-
because calculation of negative growth rates is sometimesuencies along the branch cut yield a continuum mode which
more complicated due to treatment of analytic continuatiorshows power-law decay oscillation.
in the complex-frequency plane. However, since stable The present work is an extension of that by Kuredal.
modes with negative growth rates play the role of an energyo the nonlocal case where the mode structure along the field
sink for turbulence in order to realize a steady state, theyine remains to be solved for by taking account of the parallel
would seem to affect the saturation amplitude of the turbuinhomogeneity. Here analytical continuation for the nonlocal
lence and the resultant anomalous transport. For exampleroblem is properly treated to calculate the growth rate, real
gyrofluid simulation$ produce steady-state turbulence evenfrequency, and eigenfunction for stable modes. We will find
in the collisionless limit by successfully modeling kinetic for the nonlocal case that a branch cut also appears and that
stabilizing mechanisms such as Landau damping and finita general solution of an initial value problem of the toroidal
Larmor radius(FLR) effects. Thus, in order to consider the ITG mode for the nonlocal case consists of normal modes
balance of fluctuation energy, it is useful to obtain the com-and a continuum mode which shows a different power-law
plete dispersion relation including both stable and unstabléecay from that for the local case.
modes. Also, if we can calculate both positive and negative  The rest of this work is organized as follows. In Sec. I,
growth rates, the critical condition for the marginal stability a linear electrostatic ion gyrokinetic equation and its Laplace
can be determined more accurately by interpolation. transform are presented. The ballooning representation is
In the case of parallel transit resonance, which occursised to treat the nonlocal structure of perturbations in a tor-
between waves and particles moving along field lines, it isidal system. The temporal behavior of the ballistic response
well-known how to draw a Landau contour for analytic con-in the presence of the toroidal magnetic drift is elucidated. In
tinuation of the plasma dispersion functidRor toroidal sys- ~ Sec. lll, an initial value problem for the toroidal ITG mode is
tems, the magneticVB-curvature drift modifies wave- formulated as a Laplace-transformed integral equation for
particle resonance and therefore complicates how taohe electrostatic potential perturbation. It is shown how to
analytically continue the dispersion function. Under the localanalytically continue the integral equation into the lower-half
approximation, where the inhomogeneity in the directioncomplex-frequency plane. The temporal evolution of the po-
parallel to the field line is neglected to enable us to specifitential perturbation is written as the sum of the normal
the parallel wave numbek; as an independent parameter, modes and the continuum mode, for which the long-time
several studies have been done of the analytic continuatioasymptotic behavior is determined. In Sec. IV, following the
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prescription for analytic continuation given in Sec. lll, the =dInT;/dIn ny is the ratio of the ion temperature gradient to
integral equation is numerically solved to obtain the depenthe density gradient[oDEZenw*i is the characteristic ion
dencies of the normal modes’ growth rate, real frequencyyB-curvature drift frequencyw*iz—ilw*e is the ion
and eigenfunction ony; (the ratio of the ion temperature diamagnetic drift frequencye,=L,/R is the ratio of the

gradient to the density gradignk, (the poloidal wave num-
ben, s (the magnetic shear paraméteand 6 (the balloon-

equilibrium  density  gradient scale length L,
=—(dInny/dr)~! to the major radiuR, 7,=T,./T; is the

ing angle corresponding to the minimum radial wave num—atio between the electron and ion temperatures,.
ben for both stable and unstable cases. Finally, conclusions=ck,T./(eBL,) is the electron diamagnetic drift frequency,

are given in Sec. V.

II. ION GYROKINETIC EQUATION

ky=ng/r is the poloidal wave number, andis the toroidal
mode number. In Eq$2) and(3), we have assumed a large-
aspect-ratio axisymmetric toroidal system with circular, con-
centric magnetic surfaces, and used the ballooning represen-

In this section, we first consider the Laplace transform oftation to regard the poloidal angfeas a coordinate along the
the ion gyrokinetic equation in order to include the initial magnetic field line which forms a so-call@dvering space
condition of the perturbation. Using it, the ballistic response(— o< §<o) 115

of the ions in the presence of toroidal magnetic drifts is

described.

A. Laplace transform of the gyrokinetic equation

The ion distribution function in thex(v) phase space is
divided into the equilibrium and perturbation parts fs
=ngF\y+ 6f; where ny is the equilibrium density,F,
=7 9%y 3exp-vivi) is the Maxwellian distribution
function, andv+;=(2T;/m;)*?is the thermal velocity for the
ions with massn;, temperaturd;, and electric charge. In
the magnetic fieldB, the perturbation paréf; with the per-
pendicular wave number vectiy is written as

e )
5fi: - ?(ﬁnoFM‘f‘he_lkl'p,
i

where ¢ represents the electrostatic potentjgsbXxv/Q;
(b=B/B) denotes the ion gyroradius vector, ard;

)

=eB/(m;c) is the ion gyrofrequency. Here, the first and sec-

ond terms in the right-hand side of E¢l) represent the

adiabatic and nonadiabatic parts, respectively. The velocity,| "\a|qcit

vectorv is written asv=v b+v, (e, cos{+e, siné), where
¢ is the gyrophase anak{,e,,b) are unit vectors which form

Using the Laplace transform

h(w)= f:dt h(t)e'“t, (5

Eq. (2) is rewritten as

V| J
L (0= wp)

Rq 96 h(e)

. ed _
= —I(a)—a)*T)TJo(kLP)noFM+<5fi(t=0)e'krl’>,
(6)

where(- - -) denotes the gyrophase average.

Throughout this work, following Donget al? and
Romanelli® the toroidal effect is considered only through the
poloidal-angle-dependent magnetic drift given by E8)
which causes the ballooning structure of the ITG mode. The
trapped ions and the poloidal-angle dependence of the paral-
y v are neglected here since mainly the passing
ions drive the ITG mode.

a right-handed orthogonal system at each point. The ion

nonadiabatic distribution functioh is independent of the

gyrophase and is described in the linear, collisionless, eled. Ballistic response

trostatic case by the gyrokinetic equatioit

Jd v d b he b e¢
gt Rqae 0N T G T OT) T
X Jo(k p)NoFy, v
with
2
~ 2 : o[ Vi 2
wp=wp[CosO+S(6— 6, )sinb]vr, 7+VH (3
and
v\i2 3
Wy 7= 0, | 1+ 7 V_TI _E ) (4)

whereJ, is the Bessel function of order zemgjs the safety

factor, §=(rlq)(dq/dr) is the magnetic shear parameter,
and R are the minor and major radii, respectively;

Here we consider the ballistic response to the initial per-
turbation in the presence of the toroidal resonance, which is
determined by the propagator on the left-hand side of the
gyrokinetic equation(2). A similar problem was treated al-
ready by Kimet al® and Kurodaet al! for the case of the
local approximation which specifies the parallel wave num-
berk . They showed that, under the local approximation, the
asymptotic temporal dependence of the ballistic response is
characterized byt~ *2exp(~iwyt) where w,,=—kfvF/
(4wp). In the problem considered in this work, the fluctua-
tions’ structure along the field line is not generally repre-
sented by a sinusoidal wave corresponding to a single paral-
lel wave number, which cannot be a linear eigenfunction due
to the toroidicity of the magnetic drift.

Let us consider the case in whigk=0 in order to ne-
glect the right-hand side of the gyrokinetic equati(®).
Then, the solution of Eq2) is given by
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h(6,w) tion, the radial wave numbd is directly related to the po-
loidal angle# as the covering-space coordinate by Edp),

je do’'(Rg/|v |)eiB(9,0’)h(91 t=0) for v;>0 which implies that the radial mode structure is given by the
— | ' | Fourier transform of the poloidal mode structure. The inte-

o gral parameter in Egs.(11) and(14) has the opposite sign

f do'(Rg/|v)|)e "#*h(e’ t=0) for vj<0, to thatin Ref. 2.

0 The form of Eq.(11) directly shows its inverse Laplace

(7)  transform for the density perturbation as a function of time to

with be given by
) o e—(k—k’)2/4)\
"n— 2 _ " on(t dk' ——
50.0)= | 4" Rty Lo wn(0)). ® =2 et
I-!ere, as noteq _before, only the pa_ssing ions have been con- XTo(k, k] )on(k’,t=0). (18)
sidered in deriving Eq(7). Then, using Eq(2), the Laplace ) )
transform of the ion density perturbation is written as Here,\ anda are regarded as functions bivhich are ob-
tained by replacingr with t in Egs. (13) and (14), respec-
sni(w)= | d3 J-(k. p)h tively. By using Eq.(18) with a specified initial density pro-
(@) f v Jolkp)h(w) file on(k,t=0), we can completely determine the spatio-
- - - temporal behavior of the density perturbatiém(k,t). If we
=277j devLj dvuj de'(Rg/v)) neglect the magnetic sheaﬁ;:( 0) and the# (or k) depen-
0 0 o dence ofwp in EqQ. (3) and assume that the initial perturba-
 lB(6,6")sgn(o 9')h(0’ t=0). (9) tion has the sinusoidal forrrexpkRad) with a parallel

.. . . . wave numbelk”,
Here, we assume the initial distribution to have the form

2C k2
h(6,t=0)=CpJo(k, p)Fyon(6,t=0), (10 sn(t)= ((1: )ro - (1ja)
a a
where Cy, is a constant. From the condition théh(t=0) ©
—fd VJO(kLp)h(t 0), we haveCh—llFO(b) whereb kfvit?
=k2p2/2,  p2=viI02=2c’mT;/(e°B?), (b) Xexp — —,——|én(t=0), (19

=1o(b;)exp(=b), andl, is the modlfled Bessel function of

order zero. The above form of the initial distribution is takenWhich is the same result as given by the local analysis in
in order to simplify comparison to the case of the initial Refs. 10 and 11. Her@=1+iwpt. Then, we find from Eq.
value problem including self-consistent potential fluctuations(19) that, in the presence of tHéB-curvature drift, the bal-

considered in the next section. Substituting Bd) into Eq.  listic  mode shows the power-law decay oscillation
(9), we obtain t™ 32 exp(~iwyt) [wp=—k{vFi/(4wp)] in the asymptotic
*(k*k')2/4)\ I|m|t
N - : , : L
on(w)= _hf dre'“”f dk/m— However, the sinusoidal form assumed in deriving Eqg.
Jato —c Van(l+a) (19 does not satisfy the boundary conditions

, . limg_, +..6n(0) =0 which is required by the ballooning rep-
XTo(ky kp)on(k’,t=0). (12) resentation. Thus, we consider a more appropriate initial pro-

Here, following Donget al.,” we have used variables defined file for a toroidal system, which is given in the Gaussian

by form
=Rq6-0'|/]v], (12) n(t=0)=6n(6=0, t=0)exd — (Rgd/L)?]. (20)
2 (é )2 Then, substituting Eq.20) into Eq. (18) gives
N=—|=€] 05 (13
a 2C;,
7214 on(t)=6n(6=0,t= O) ((vT,t/L)2+a) 12
T 4
a=1+i d6"wp(0"), 14
i— ,)L, wp(6") (14) o k2 od a(Rqe/L)? 21
. . %\ re(1+a) (vpt/L)2+a)’
k=sky(0—6,), k' =sky(0'—86y), (15 A
, 2 L2 We find from Eq.(21) with a=1+iwpt that the asymptotic
To(k, K )=I LKi exd — Ki+ki (16) behavior of the ballistic mode is governed by the power-law
O RLIT0 71+ a) 274(1+a))’ decay
kK2=k2+k? k|?=k2+k'?, 17) 2C,L
_ Sn(t=0)=6n(6=0,t=0) — t2 for t—oo.
where the wave numbeis,, k, , andk are normalized by i WpVTi
L with ps=+2T./m;/Q;. In the ballooning representa- (22
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Comparing this expression with the asymptotic form of Eq.

(19), the oscillation part expfiwpt) is replaced byt~ 2.

This is considered to be valid for general perturbations sat-

isfying the ballooning boundary conditions ljm...on(0)

=0. Since such perturbations are expressed as a continuous

spectrum consisting of sinusoidal wavegxp(kRaf), the
initial density perturbation is written asén(t=0)
= [dkjF(k))exp(kRagd), where F(k) is the amplitude of
the Fourier component with the parallel wave numker
[F(k)) has a Gaussian form for the case of E@)—(22)].

Recalling that the time evolution of the sinusoidal waves in

Eq. (19) shows the power-law decay oscillatiort ~32exp

(—iwpet) with wp, = —kfv%/(4wp), the asymptotic behavior
of the density perturbatioAn(t) is obtained as

5n(t)ocJ dkF(k)t32exp( —iwpt)ct 2 for t—oe.
(23

IIl. TIME EVOLUTION OF THE TOROIDAL ITG MODE

H. Sugama

Im(‘t) Cico
A
c,
3 C'L’
0 > Re(T)
C.
C-ico

FIG. 1. CurvesC, , C_, andC. in the complexr-plane. The curveC
(C_) is used as therintegral path in Eq.(25) to obtain the analytical
continuation of the kerneK, (K_) into the lower right-handleft-hand
complex w-plane defined byw;<0 and w,>0 (w,<0). The curveC..
gives ther-integral path to obtain the jumpK=K, —K_ on the branch cut
Cy, (see Fig. 2

o e—(k—k’)2/4)\

Cf +o .
- loT r_________
The ballistic mode behavior considered in the previous 1(k)= \/;J'O dre f,x dk fan(1+a)
section does not take account of a self-consistent electrostatic

field. Here, in addition to the ion gyrokinetic equation, we
use an adiabatic electron response and the quasineutral
condition to self-consistently solve an initial value problem

for the toroidal ITG mode.

A. Formulation of the toroidal ITG mode as an initial
value problem

In the presence of the electrostatic perturbatiynthe
Laplace-transformed gyrokinetic equati@ is solved under

the same approximation as in the previous subsection to give

the ion density perturbatiodn; , and we assume the electron
density perturbatiorsn, to satisfy the Boltzmann relation
one/ng=ead/T,. Then, using the quasineutrality condition
dne=4n;, we obtain an integral equation

oo dK’

(1+Te)<%(k)—f_x\/T—WK(k,k’ﬁ%(k'):l(k), (24)

where <}S=e¢>/Te is the normalized electrostatic potential
and the integral kernd{ is defined by

+o 2eiw7 ,
K(krk,):_|f (,()*ed'r\/_—e*(k*k )2/4)\
0 Van(1+a)
’ w 3 ﬂi(k—k’)z
XTolk kD[ et L=t gy
N 2n, k2 +k/ 2 kKK 1,
(1+a)|~ 2(1+a)7re (1+a)7e lg/ |’
(25
Here, the initial condition
<5fi(0,t20)eikgl’>:CfJO(klp)FMﬁn(gltzo) (26)

with Cs= — 7o+ (1+ 75)/T'o(b;), is used to write the right-
hand side of Eq(24) as

XTo(k, k| )on(k’,t=0)

Which has the same right-hand side as @d).

Equation(24) is in the form of a Fredholm integral equa-
tion of the second kind and its solution can be formally
written in terms of the resolvent kern®l (k, k') [see Eq.
(62) in Ref. 16 for the resolvent kernehs

(27)

p(k)=(1+7) " I(k)+J'jmdk’M(k,k’)l(k’)

=(L1)(K), (28)

where £ denotes the inversion operator.

Then, the time evolution of the electrostatic potential is
given by the inverse Laplace transform é{k,w) in Eq.
(28) as

”kt—fd““k —iot 29
d)( !)_ Lz(ﬁ( !w)e ’ ( )
whereL is a contour which lies above all of the singular
points of ¢(w) in the complexw-plane. In order to elucidate
the asymptotic behavior of the perturbation in the limit
—oo, we need to know how to choose a contauand how
to analytically continue the functions ef in Egs.(25) and
(27), which is considered next.

B. Analytic continuation in the complex-frequency
plane

We see that the-integral in Eq.(25) does not converge
for w;=y=Im(w)<0. Here, we find how to evaluate the
analytic continuation of the kern& into the regionw;<0.
We regard the integral valuabteas complex-valued and we
change the integral path from the positive realxis to those
in the complexr-plane as shown in Fig. 1. In Fig. 1, the
curvesC, andC_ both start from the originr=0 and are
tangential to the real-axis at r=0. The curveC, ap-
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———®
——=-—-==—Tj
-
A\

Cbr

branch cut

FIG. 2. The integration contour in the complexw-plane for evaluating the
inverse Laplace transform E¢R9). The dominant contributions to the inte-
gral are made by poles,, and a branch cuty, .

proachesr=c+ic (c: a positive real constantsatisfying
Re(r)>0 and Im(r)>0, while the curveC_ approaches

=c—iw, satisfying Reg)>0 and Im()<0. Let us define a
new kernelK ;. by Eq.(25), using the curveC , for the path

Damping of toroidal ion temperature gradient modes 3531

lytic continuation usind ;, andK _ . Then, we observe that,

as a function ofw, the inversion operatof(w) in Eq. (28)

has these eigenvalues as singular points or poles an@that
can also be regarded as a branch cut for the analytic continu-
ation of L(w) andl(w).

C. Normal modes and continuum mode

Now, we take the integration contolr for evaluating
the inverse Laplace transform in E9) as shown in Fig. 2.
Then, fort>0, ¢(t) is written as the sum of the contribu-
tions from the poles and the branch cut

(1) = dp()+ Ppr(1). (32

Here, the pole contribution, which are from the normal
modes, is given by

of the r-integral. We should note that, when continuously
changing the original path along the positive reedxis to
the curveC, , any singular points of the integrand in the
complex r-plane are crossed. We also note that, if we con-
sider the integral along a curve connecting the end points ofvhere Rel(£I) (k,w,)] denotes the residue of()(k,w) at

bo(k,t)=—i> e 't Reg(L1)(k,w,)], (32

these two pathg=c+i~ and r= +o0, it contributes noth-
ing. Thus, we find that, as functions @f K andK . have the
same value on the quarter plane defined by dheRe(w)
>0 andw;>0. By noting that the new kern& . is a well-
defined analytic function of» in the right-hand half-plane
w,>0, we conclude thaK , gives the analytic continuation

a polew= w,. The eigenvalueor complex-valued normal-
mode frequencigsw, in Eq. (32) are numerically calculated
in the next section including the case of negative growth
rates.

The contribution from the branch cut, which is called a
continuum mode, is written as

of K into the lower right-hand quarter-plane defined by the

»,>0 andw;<0. In a similar way, we can use the cur@e

to define a kerneK _ which gives the analytic continuation
of K into the lower left-hand quarter-plane defined by the

0, <0 andw;<0.

Now, we observe thak, andK_ defined in this way
approach different values as approaches a branch oG,
which is defined as a straight line from=0 to w=—iw
(see Fig. 2 The jump on the branch cut is written as

K,—K_=AK, (30
whereAK is given by Eq(25) with the 7-integral performed
along the pathfC.. connectingr=c+i~ andr=c—iw (see
Fig. 2. In a similar way toK . , K_, andAK, we can define
., 1_,andAl by usingC, , C_, andC.. as ther-integral
paths in Eq.(27), respectively.

The complex-valued eigenvalues, (n=1,2,--) are
defined as the’s, which allow nontrivial solutiong)(w) of

. do .
d)br(k,t)=fc Ee_'“’t[(£+l+)(k,w)

br

—(L-1)(kw)], (33

where the subscripts (—) for £ andl represent their val-
ues on the branch cut defined by the limit of the analytical
continuation in the right-handleft-hand lower-half plane
for w,— +0 (w,— —0). The asymptotic behavior @y, (t)

for t— + o is dominantly determined by the behavior of the
integrand of Eq(33) in the limit w;— —0. Forw;— —0, the
jumpsAL=L,—L_andAl=l,—1_ become so small that
we have

(Ll (Ko=) — (L] )(Ko=iw)]
~[L(w=0)A1](K,0=iw)

the homogeneous version of the integral equati®$ ob- +[AL(w=iw)l](k,w=0) for w;——0. (39

tained by putting the right-hand side to zero. It is well known

that the real and imaginary parts of these eigenvalues d‘?ﬂere,Aﬁ(wziwi) is written as

scribe the real frequencies and growth rates of so-called nor-

mal modes, respectively. The same homogeneous integral . )
AL(w=iw)=L(w=0)AK(0w=iw;)L(w=0), (35

equation was numerically solved by Doagal. for the cases
of positive growth rate$.As shown later by numerical ex-
amples, we can calculate these eigenvalues not only for posivhere the operatoA (w=iw;) is defined for an arbitrary
tive growth rates but also for negative ones with proper anafunction g(k) by
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[AK(o=iw)g](k)

+oo dk’
- \/_AK(kk ,w=lw)g(k")
3 \| Vg
:zmwiml_zm) G
S€nw, e

+o i 0 -1
xﬁm dk ((0_ 0,)L,d49 wp( 8 )) g(k”)

for w;——0. (36)

We also have

V7eq

AI(k,wZiwi)22\/;|wi|in

S€nwy e
+o0 i 0 -1
Xf_m dk’((a_ g)ﬁ,/deﬁ“’Dw”))
XM for w;——0. (37)
No
From Egs.(33)—(37), we obtain
-2
Bor(k,0)= T Cq £(w=0)
+o0 i 0 -1
X f_m dk’( e F)L/da%ﬂ&”))

X|C

f _577i

on(k ,'[=0)_i(1 3 )

No

X[L(w=0)11(K',0=0)

for t—+«. (38

H. Sugama

mode for the stable case in which all normal modes decay
faster than the continuum mode, although the power law
=t~ 2 of the decay for the continuum mode is different from
t~3%e 1ot in the local case.

It should be remarked here that we can also make differ-
ent branch cuts in the-plane from the one considered here.
Different branch cuts make differences in the definitions of
¢p(t) and ¢y, (t) because of changes in the complex-
frequency regions where the analytic continuatiork@tv),

I (w), andL(w) are defined. However, the total perturbation
d(t) = ¢p(1) + ¢y, (t) and its asymptotic behavior given by
Eq. (39) for the stable case are independent of the way the
branch cut is made. In our choice of the branch cut along the
negative imaginary axis ofv, the integrand in Eq(33)
quickly decays along the integral path, so that the continuum
mode part of the total perturbation is likely to be smaller than
that obtained by some other choice of the branch cut. There-
fore, for the stable case, the normal mode part defined in our
case is likely to decay slower than in other cases.

Kuroda, et al!! showed a numerical example of tempo-
ral evolution of the ITG mode for the local stable case, in
which the continuum mode is perceived only after the nor-
mal modes, which are dominant in the early stage, are well
damped. So if large collisional effects are included, they may
prevent the continuum mode from being clearly seen.

IV. NUMERICAL SOLUTION FOR STABLE
AND UNSTABLE NORMAL MODES

In this section, the homogeneous version of the integral
equation(24) is numerically solved to obtain real frequen-
cies, growth rates, and eigenfunctions of the normal modes.
In order to treat the case of negative growth rates, we follow
the prescription shown in the previous section to evaluate the
analytic continuation of the integral kernel as a function of
. For the numerical results shown here, we actually calcu-
late the kernel by using the integral paths in the complex
7-plane defined by

(1+i|w|s)s for w,>0

N (1-i|w|s)s for w,<0, 39

Noting that &n;/ny=8n./ny=¢ and comparing Eq.
(38) with Eq. (22), we see that, for the initial value problem wheres (0=s<x) is a real parameter. These integral paths
for the toroidal ITG mode, the potential and density pertur-work for the analytic continuation as well &, andC_,
bations derived from the branch cut integration show thedescribed in the previous section.
same form of asymptotic behaviert ~2 as the density per- Figures 3a) and(b) show the numerically obtained nor-
turbation for the ballistic mode without interaction with the malized growth rate ykyps/w,. and real frequency
potential.[When £=1, AL=0, wp=const, and the initial @rKeps/w,e Of the toroidal ITG mode, respectively, as a
density perturbation profile in E420) are used, the ballistic function of the normalized poloidal wave numbejps for
mode result in Eq(22) is reproduced from Eq38).] This =1, €,=0.2, 7,=2, s=1, 6,=0, andq=1, 2. Here the
power-law decay is difficult to describe using the gyro-fluid normallzatlon unit frequencyn, o/(Kgps) = VTe/2MJ/L,, is
model, since it approximates the dispersion function by dandependent ok,. We see that the growth rate and real
rational function ofw which never requires any branch cut frequency are smoothly continued into the stable regions
for its analytic continuatior! where the growth rate is negative, which shows that our pro-

From Egs.(31), (32), and(38), we arrive at the conclu- cedure for analytic continuation works properly. Stable re-
sion, which is similar to the result of the local analySishat  gions are found for both small and large poloidal wave num-
the long-time asymptotic behavior of the potential and denbers, which was also observed in the calculations using the
sity perturbations for the toroidal ITG mode are determinedocal approximation. For all curves shown in Fighg the
by the normal mode with the largest positive growth rate forreal frequency is negative, which corresponds to the direc-
the unstable case, while it is dominated by the continuuntion of the ion diamagnetic rotation. The eigenfunctions
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FIG. 3. (@ Normalized growth rateyk,ps/w, . and (b) real frequency
wKgps! 0, o as a function okps for 7.=1, €,=0.2, =2, 5=1, 6,=0,
and g=1, 2. (c) Eigenfunctions¢(6) for k,ps=0.3, 0.8, 1.6 andy=2

with other parameters being the same a&jrand (b). The real and imagi- FIG. 4. (3) Normalized growth ratey/w, , and (b) real frequencyw, /o, .

nary parts of the eigenfunction are shown by the solid and dotted lines, . -
respectively. as a function ofy; for 7,.=1, ¢,=0.2, kyps=0.75,s=1, 6,=0, andq

=1, 2.(c) Eigenfunctionsp(6) for »;=1.1, 3 andq=2 with other param-
eters being the same as (@ and(b). The real and imaginary parts of the
eigenfunction are shown by the solid and dotted lines, respectively.

¢(6) for kyps=0.3, 0.8, 1.6 andg=2 are shown in Fig.

3(c), where the other parameters are the same as in Ras. 3

and(b). Here, the real and imaginary parts of the eigenfuncclearly identify the critical values ofy, where the growth

tion are shown by the solid and dotted lines, respectivelyrate vanishes. The eigenfunctiodg6) for »=1.1, 3 and

For smaller poloidal wave numbers, the eigenfunction beq=2 are shown in Fig. &), where the other parameters are

comes wider and more oscillatory along the field line. the same as in Figs.(@ and (b). For ;=1.1, the growth
Figures 4a) and (b) show the normalized growth rate rate is negative(but close to marginal stabilifyand the

Yl w, e and real frequency, / w,  of the toroidal ITG mode,  eigenfunction is slightly wider and more oscillatory than the

respectively, as a function of; for 7e=1, €,=0.2, kyps  unstable eigenfunction fop;=3.

=0.75,5=1, 6,=0, andq=1, 2. Since we are able to cal- The effects of negative magnetic shear on ITG modes

culate both positive and negative growth rates, we camave been theoretically investigated by several authdtin
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FIG. 5. (a) Normalized growth rate/ w, . and real frequency, /w, . as a
function of s for 7,=1, €,=0.2, 1,=2, kyps=0.75, 6,=0, andq=1. (b) FIG. 6. (a) Normalized growth rate// w, , and real frequency, /w, as a

Eigenfunctionsé(6) for 5= = 0.8 with other parameters being the same as function of 6, for 7,=1, ,=0.2, =2, 5= 1, kyps=0.75, andq=2. (b)

in (). The real and imaginary parts of the eigenfunction are shown by theEigenfunctions(6) for 6,=0, 0.45r with other parameters being the
solid and dotted lines, respectively. same as irfa). The real and imaginary parts of the eigenfunction are shown

by the solid and dotted lines, respectively.

relation. to improvement c;f2 core plasma confine.ment ob- Up to this point, we have examined only the cases with
served in large tokamak8-?2However, the r'e.sults in these 6,=0, in which the mode structures are symmetrigiand
works only showed the dependence of positive growth rateg . ,¢4jized around the outermost in the torus. However, in
on the magnetic shear. In Fig(e, the normalized growth o1 14 treat the ballooning-type mode structures in rotating
ratey/ o, . and real frequency, /w, ¢ as a function os for  torpjdal system&®2®it is important to take into account ef-
7e=1, €,=0.2, =2, kyps=0.75,6,=0, andg=1. In this  fects ofg,+0. Figure a) shows the normalized growth rate
case, the growth rate has a peaksat0.4. Comparing the y/w, . and real frequency,/w, . as a function ofg, for
growth rates at the same absolute valsg the negative 7,=1, e,=0.2, 7,=2, S=1, kyps=0.75, andq=2. In this
shears<0 gives smaller growth rates than the positive sheacase, the toroidal ITG mode is stabilized f@y> m/2 where
s>0 within the ranggs|<1.7, which is the same tendency the growth rate is slightly negative and the real frequency
as found in other work¥*® However, the critical values of changes little. Results for negativig are not shown in Fig.

s, which give y=0, have almost the same absolute valueG(a) since the growth rate and real frequency are even func-

- - . tions of 6. The eigenfunctiongs(6) for 6,=0, 0.45r are

sl ~1.7._We_ shoulq note _th?t validity of the ballooning rep- shown in Fig. §b) where other parameters are the same as in
resentation is lost in Ehe limg— 0 although the growth rate Fig. 6(a). The symmetry property of the eigenfunction for
and real frequency fos=0 is plotted in Fig. %a). The eigen- g, =0 is broken for6, = 0.45x. Since a significant part of the
functions ¢(6) for s==0.8 are shown in Fig.(®) where eigenfunction for6, = 0.45r is contained in the good curva-
the other parameters are the same as in F&. B/e see that ture regiond> /2 (6— 6,>0.057), the growth rate forg,

the imaginary parts of the eigenfunctions for the positive and=0.45r is much reduced from that fat,=0. It is observed
negative shear cases have different signs, which implies thahat, as#é, increases, the eigenfunction changes its shape
the phases of these eigenfunctions change differently alongontinuously from the symmetric function éffor 6,=0 to

the field line. the antisymmetric function of— 7 for 6,= . The growth
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rate for a slowly rotating system is given by tAgaverage maks with the negative magnetic shear and sheared
(27) " 1$d 6, y(6).2>2° For the case in Fig. (6), the rotation?’~2> However, more elaborate investigation of the
0-averaged growth rate is about 40% of the growth rate fol TB formation is done by considering simultaneously several

6,=0. other effects, which are not included in this work, such as
negative shear stabilization of the trapped-electron mode and
V. CONCLUSIONS stabilization of the ITG mode due to the Shafranov shift

resulting from the increase of the safety factor in the core

In this work, the temporal evolution of the toroidal ITG ) .
Jegion for the negative shear c&Se.

mode has been studied by examining its damping behavi
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