Metadata, citation and similar papers at core.ac.uk

Provided by National Institute for Fusion Science (NIFS-Repository)

Convective particle transport arising from poloidal inhomogeneity
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In tokamak high-confinement modes (H modes), a large poloidal flow exists within an edge
transport barrier, and the electrostatic potential and density profiles can be steep both in the radial
and poloidal directions. The two-dimensional structures of the electrostatic potential, density, and
flow velocity near the edge of a tokamak plasma are investigated. The analysis is carried out with
the momentum conservation law using the shock ordering. For the case with a strong radial electric
field (H-mode case), a particle flux is induced from asymmetry of the poloidal electric field in the
transport barrier. This convective transport is found to depend weakly on collisionality, and changes
its direction in accordance with the direction of the radial electric field, the toroidal magnetic field,
and the plasma current. The divergence of a particle flux is a source of temporal variation of the
density, and there are negative divergence regions both in the inward and outward flux cases. Thus
this convective particle flux is a new candidate for the cause of the rapid establishment of the density
pedestal after the onset of low to high confinement mode (L/H) transition. © 2005 American

Institute of Physics. [DOI: 10.1063/1.2034347]

I. INTRODUCTION

Toroidal plasmas have nonlinear response, which allows
a variety of structures to be formed.' In particular, the for-
mation of transport barriers in high-confinement mode (H
mode) toroidal plasmas2 has been the focus of numerous
researches. Key mechanisms to understand the H-mode tran-
sition include bifurcation of the electric field** and the asso-
ciated suppression of turbulence by electric-field
structures.”® Thus significant attention has been devoted to
studying the steep radial electric-field structure in the low to
high confinement mode (L/H) transition physics.7

The previous H-mode studies have been mainly carried
out to clarify the detailed structural formation mechanisms in
the radial direction. For example, the nonlinear structural
formation mechanism of the radial electric field has been
studied with biased limiter experiments in which an exter-
nally driven H-mode transition was induced.*” An externally
imposed voltage changes the radial electric-field structure in
the same way as in spontaneous H modes. This forced tran-
sition is characterized by a sudden change of the radial
electric-field structure from a flat one to a peaked one. The-
oretical studies have clarified the formation mechanism of
this solitary radial electric-field structure.'™! The radial
electric-field structure is calculated from the charge conser-
vation law,

J 1
—E.=- (Jvisc+']r_‘]ext)? (1)
ot o€

where E, is the radial electric field, J; is the current driven
by shear viscosity, J, is the local current, J., includes the
current driven into the electrode by the external circuit and
ion orbit loss current, etc., g, is the vacuum susceptibility,
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and & | is the dielectric constant of a magnetized plasma. The
nonlinearity of the local current has a major effect on struc-
tural bifurcation of the radial electric field. The radial
electric-field structure has a large gradient, which is typical
in H modes. The nonlinearity in the relationship between the
radial electric field and the radial current has been examined
explicitly in other toroidal plasma experiments.12

Although significant progress has been made in clarify-
ing the radial electric-field structure, several fundamental is-
sues still remain. For instance, the existence of a poloidal
shock structure associated with a large poloidal flow has not
been clarified. The poloidal shock is a steady density or po-
tential jump in the poloidal direction. In H modes, a large
radial electric field in a transport barrier makes a large E
X B flow pointing in the poloidal direction. The poloidal
Mach number M,=E,/(v;B,) is large enough to exceed
unity in the H mode, where v,=V2T;/m; is the thermal ve-
locity of ions, T; is the ion temperature, m; is the ion mass,
and B, is the poloidal magnetic field. In theoretical studies,
in which only the poloidal variation was taken and the radial
structure was neglected, it was predicted that the poloidal
shock can appear in H-mode plasmas.'3’l4 In Ref. 13 the
poloidal shock structure in a single magnetic-flux surface is
derived from the momentum balance equation. The flow is
compressible with a supersonic poloidal flow, so the convec-
tive derivative term becomes effective in forming the shock
structure. The shock position depends on M, so as the po-
loidal flow increases, the shock position changes correspond-
ingly. The maximum gradient in the poloidal direction is
given at the shock position. It can be explained that the po-
loidal shock is formed in the case when the subsonic and
supersonic states are both exist, and the shock appears at the
boundary between these rcizgions.15

The existence of a steep structure both in the radial and
poloidal directions suggests the importance of two dimen-
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sionality in H modes. Analysis of two-dimensional velocity
and density profiles has been carried out in Ref. 16, in which
only the low-order Fourier components were taken into ac-
count. Poloidal shock in the two-dimensional structure has
been under consideration.”> Some experiments have indi-
cated poloidal asyrnmetry.”’18

It is well known that turbulent diffusivity decreases rap-
idly after transition. """ However, this reduced diffusion
makes the time required to reach a steady state much longer
than observed, which contradicts to the observation of the
rapid establishment of the density profile pedestal after the
onset of L/H transition.”> One possible cause of the rapid
establishment of the pedestal is the increase of a particle
convective flux.?' There are many theories to explain the
inward pinch,zzf26 but its origin has yet to be unresolved. A
large poloidal electric field is localized at the shock position,
which generates a convective EXB flow in the radial
direction." This convective transport is a candidate for the
cause of the rapid establishment of the pedestal, because it
increases right after the onset of L/H transition.

In this paper, we study the two-dimensional structure of
the electrostatic potential, density, and flow velocity near the
edge of a tokamak plasma. A set of equations, which de-
scribes the transition to the steep radial electric-field struc-
ture as well as the poloidal inhomogeneity, is derived by
considering the nonlinearity in bulk-ion viscosity and
(turbulence-driven) shear viscosity. By introducing an order-
ing (shock 0rderingl3), the coupled nonlinear partial differ-
ential equations are divided into two parts. The first is an
ordinary differential equation that governs the steep radial
structure of the radial electric field (or poloidal flow). The
bifurcation and transition of the poloidally averaged part of
the radial electric field are obtained from this equation. The
second is a nonlinear partial differential equation that gov-
erns the poloidal asymmetry of the flow (including the po-
loidal shock). In the latter equation, the radial structure of the
strong radial electric field is already given by the former
equation. Thus the theoretical framework that describes the
bifurcation of the radial structure as well as poloidal inho-
mogeneity is obtained. It is emphasized that the validity of
the L/H transition theory, which has been based upon the
one-dimensional analyses, is confirmed by this two-
dimensional analysis. The two-dimensional structure gener-
ates the particle flux in the radial direction, whose magnitude
is not constant in space. Thus the divergence of this convec-
tive flux induces temporal variation of the density, inducing
the edge pedestal rapidly after the onset of L/H transition.

The paper is organized as follows. Derivation of the
model equations is described in Sec. II. In Sec. III, solutions
of two-dimensional structures are described, corresponding
to the onset of the L/H transition. The flux-surface-averaged
convective flux by the EX B flow pointing in the radial di-
rection is calculated to estimate the effect of the two-
dimensional structure in Sec. I'V. Effect of collision and di-
rection of the convective flux with the inversion of the sign
of plasma parameters are examined in Secs. V and VI, re-
spectively. Its effect on the formation of the edge transport
barrier is discussed in Sec. VIL
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Il. MODEL EQUATION

A. Geometry and momentum balance
for the two-dimensional problem

To evaluate the two-dimensional structure in tokamak
edge plasma, the flux-surface-averaged equations are inap-
propriate. We consider a large aspect ratio tokamak with a
circular cross section, and the coordinates (r, 6,() are used
(r: radius; 6: poloidal angle; {: toroidal angle). Poloidal
variations of the density and the electrostatic potential are
considered, but that of the temperature is neglected. Elec-
trons are isothermal, ions are adiabatic, and n;=n,=n is as-
sumed, where n; and n, are the ion and electron densities,
respectively. The derivation of the model equation follows
Ref. 13, but the radial flow and shear viscosity are taken into
account here.”’ By these terms, the radial and poloidal struc-
tures are coupled with each other. The structures are gov-
erned by the momentum balance equation

d -
ml»nd—tV,- =JXB-V(p;i+p.) = (V- T)pux

- (V : ﬁi)shear’ (2)

where V; is the flow velocity, J is the plasma current, p; and
p. are the ion and electron pressures. Pressure p=nT, and
constant temperature T is assumed. The viscosity 77; is di-
vided into two terms: bulk viscosity given by a neoclassical
process,28 and shear viscosity given by an anomalous
process.1 The viscosity of electrons is neglected because it is
smaller by a factor on the order of \e”mg/ m;. The perpendicu-
lar flow is given by the E X B drift here, and the flow velocity
is written as

1o
rRB? 96
EXB KB,
V=V||+—2= —=L s (3)
B n
KB 1 o®
n Bp or

where @ is the electrostatic potential,

V
K="2, )
BP

corresponding to the poloidal flow, and
I=R’B-V¢(. (5)

The toroidal symmetry is utilized in this description. The
parallel component and averaged poloidal component of the
momentum balance, Eq. (2), are given to be

nl b 1(1{3)2 B, d 1(1{3)2
—_ ) —_— = — + —_ = —
KB“rR 90 or| 2\ n r 90| 2\ n
LB v 1
B*rR 96 dr| RB,B; or

kBB o[ 10
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where () denotes the flux-surface average. The radial flow is
taken into account, so the d®/d6 terms are involved in the
left side of Egs. (6) and (7). Using the viscosity tensor 7r;

=(p”—pi)(l;l;—f73), where (py—p ) is the pressure aniso-

tropy, b is the unit vector parallel to the magnetic field, and v’

is the unit tensor, the bulk viscosity term can be written as

2B ( ) ( )B 153
3, Pi—PL Pi—PL Broo

(8)

The first term of Eq. (8) is dominant, so only this term is kept
in Eq. (6) hereafter. In contrast, the surface average is taken
in Eq. (7), in which the second term of Eq. (8) remains. The
pressure anisotropy, deduced from the drift kinetic equation
with mass flow velocity, is 2

BV Tpu ==L

2wl K B(alB 29 ) (9)
Pi—PL= N8IV o70n 390 nnj.

The integral 1, is

([ Lol 32\ ik
et [Caseer [ anf 12 2P
TJo - 22 ) U+ (yNx)
y=—, (11)

E B ~v,B
U=G _r V_E> (,r ’_’B> , 12
' {77"‘( B+ B / W (12)

vr is the characteristic collision frequency defined in Ref. 30,
and G, is a geometric factor, taken to be G,=1 in this paper.
The shear viscosity is given by the second perpendicular de-
rivative of the flow velocity, and is here simply given to be

(B V. %i)shea.r= - minlU‘B : VLZV’ (13)

where u is a shear viscosity coefficient. The coefficient u
depends on the radial electric field and has spatial variation,
but we consider it to be constant in space for simplicity. This
is because we are focusing on the structural formation
mechanism from the nonlinearity of viscosity terms. The
structural formation mechanism from turbulent induction
will be treated elsewhere. The Boltzmann relation
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eAD

(14)

n=nexp
is adopted here to determine variables, where f and Af rep-
resent the spatial average and perturbed parts of quantity f,
respectively. The variables that must be determined from
Eqgs. (6), (7), and (14) are K, @, and n, which have the radial
and poloidal variations. A variable

x = In(n/n) (15)

is introduced to represent density variation. From the Boltz-
mann relation, Eq. (14), x is directly related to the potential
perturbation.

B. Ordering and iterative process for solving
equations

In this paper, we are mainly concerned with the case in
which the poloidal Mach number M,~ 1, and a steep struc-
ture in the poloidal direction is formed in this case, so the
shock ordering, which is

x=0(e"?), (16)

is adopted where ¢ is the inverse aspect ratio. The calculation
is carried out only near the edge in a large aspect ratio toka-
mak, so € is taken to be small. A condition

VIV, <1 (17)

is satisfied, even if a strong poloidal shock exists. This con-
dition is confirmed, a posteriori, by the derived structures.
Condition V,/V,<1 makes the model equation simpler. The
continuous equation in a steady state

div(nV) =0 (18)
shows K is a flux-surface variable. Expanding Eq. (6) with ,

and taking up to O(e), the following model equation is ob-
tained:

,By 2 Px

—/M"B az{M exp(—x) - E}+—DeXp( )()72
d I
+(1-mHX 1 2aX
T 90

({D M@{zﬂi—yﬂwr—w +E) - (M, +E)]}

B,
X cos 49—2Mp2 sin 0), (19)
where
KB,
M, =—-, 20
b I/_ll)n'Cr ( )
n M
- i 21
K rv,,-C ( )
M?> 5
A=—"F+ 5 (22)
2 36C,
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5 7,
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— (25)
" v,BoB,C,R dr’

If flux surface average of the toroidal flow is zero, Eq. (3)
gives

od KB.B
— =2 (26)
or n

and substituting Eq. (26) into Eq. (25) gives
E~M,. (27)

This is the case with a strong toroidal damping, and M, is
proportional to the radial electric field in this case. The
model equation (19) is simplified to be

,By 2 Fx
—wB— {M [exp(=x) = 1]} + DeXP( )()m92
J x>
+(1=M )X fop X
90
B PM
:,3( D- 0{2#—22 +4r—M —ZM]
B,, d
Xcos 0 — 2Mp2 sin 0). (28)

In this paper, structural formation mechanism with a large
poloidal flow is a much paid attention, so the strong toroidal
damping condition is taken hereafter.

Now Egs. (7), (14), and (28) determine the two-
dimensional structure. This set of equations is solved as fol-
lows. A profile of M, is obtained by solving Eq. (7) indepen-
dently from Eq. (28). Equation (7) is the same as the
equation used for obtaining a radial profile of the radial elec-
tric field in the previous H-mode transition models.**!" Then
M, (including the radial profile) is put into Eq. (28), and the
two-dimensional structure of y is obtained. Finally, the radial
velocity is deduced.

Using these model equations, analysis is carried out in
the region near the plasma edge, r=(a—d) ~ a, where r=a is
the position of the last closed flux surface. We consider the
case in which the strong radial electric field is self-organized
in the middle region of this domain (such as in the edge
barrier or biased region), and chosen boundary condition is
x=0 at r=(a—d) and a. This is an idealization, considering
that no perturbation exists outside of this region.

Equation (28) includes characteristic structures both in
the radial and poloidal directions. These structures are
coupled with the shear viscosity. Properties of the character-
istic structures explained with the one-dimensional structure
problem in the radial direction'® are derived from setting u
=0.
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(d)

8]
T

(b)

(a)
-5 -4 -3 -2, -1 0
7 -aflem]

FIG. 1. Solitary radial structures of the radial electric field (translated into
M,) in electrode biasing driven H mode. The positions r—a=~5 and 0 cm
are where the electrode and the limiter are placed, respectively. Increase of
the maximum of M, from plot (a) to (d) simulates the electrode driven L- to
H-mode transition as in Fig. 2.

lll. TWO-DIMENSIONAL STRUCTURE
ON L/H TRANSITION

At the onset of L/H transition, the radial electric-field
structure changes from homogeneous one to peaked one. A
solitary M, profile is shown in Fig. 1. This solitary profile is
a solution of Eq. (1) with electrode biasing, which induces
externally driven current.'’ This profile is typical in H mode
driven by electrode biasing, having an electric field with a
large magnitude and a large gradient as in spontaneously
established H mode. A positive radial electric-field profile is
also observed in the H-mode edge barrier with electron cy-
clotron heating.*' Equation (28) is solved with this M » pro-
file to obtain two-dimensional structures of the electrostatic
potential in H mode.

In L mode, the radial electric field is weak and the profile
is rather flat. Figure 2(a) shows a y profile, which is the
logarithm of the density perturbation, when M,=0.33 and
w=1.0 m?/s. The potential perturbation is set to zero at the
boundary r—a=0, =5 cm. The calculations are performed us-
ing the following parameters: R=1.75 m, a=0.46 m, B,
=235T, T,=40 eV, and Ip=200 kA. This profile shows
gentle variation both in the radial and poloidal directions.
The value M,=0.33 is used as that for the state just before
the L/H transition. Weak but constant radial electric field
exists, so the potential difference between the boundaries is
about 130 V in this case. The ratio A®/® is about 6% at the
maximum of the potential perturbation.

For the H mode, Figs. 2(b)-2(d) show the y profiles in
accordance with the change of the M, profile shown in Fig.
1. The region where M), has a large value is localized in the
middle of the shear region, so the density perturbation be-
comes large in this region. The magnitude of the perturbation
increases as the magnitude of M, increases.

Figures 3(a) and 3(b) show the profiles of the poloidal
electric field calculated from Figs. 2(a) and 2(d), respec-
tively, using Boltzmann relation, Eq. (14). A localized large
poloidal electric field exists near the shock positions with
large M), in the H mode. In addition, the magnitude of M,
varies in the radial direction, so the poloidal position of the
shock varies in the radial direction accordingly.

Shear viscosity w controls the strength of the coupling
between the poloidal shock and the radial solitary structure.
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FIG. 2. Two-dimensional structures of the logarithm of the density pertur-
bation. The M, profiles are changed from spatially constant one (a) to
peaked one (d), corresponding to those shown in Fig. 1.

If the radial coupling is weak, the strong shock is formed in
every flux surface except near the boundaries. When the
shear viscosity is very strong, no strong shock appears. In the
intermediate case when the shear viscosity term and the po-
loidal derivative term are comparative, a structure with rather
weak poloidal variation (weaken shock structure) is formed,
and the maximum magnitude of that structure is inversely
proportional to u. Experimentally w is estimated to be
around 10° m?/s from transport analysis on compact helical
system>> (CHS) or from the peak position of the radial elec-
tric field in electrode biasing H mode on Tokamak Experi-
ment for Technology Oriented Research (TEXTOR).*?

Phys. Plasmas 12, 090905 (2005)

[Vim]
0

1
8
6
4
2
0

FIG. 3. Two-dimensional structures of the poloidal electric field with (a) the
weak homogeneous E, (L mode) and (b) the strong inhomogeneous E, (elec-
trode biasing driven H mode). These are obtained from Figs. 2(a) and 2(d),
respectively.

Therefore, the plasmas in experimental devices are expected
to be in the intermediate region. We use w=1 m?/s in this
calculation.

Comparison between the strong inhomogeneous E, case
and the weak homogeneous E, case clarifies the formation of
the localized steep two-dimensional structure. The strong E,
case has an E, profile with a peak in the middle of the cal-
culated region, although the weak E, case has a spatially
constant profile. The strong E, case has a large potential
perturbation (the maximum value 6®,,,,=50 V in this case),
and a large localized poloidal electric field in which the po-
loidal flow shear is strong (the maximum value E,
=63 V/m. This large poloidal electric field generates a large
EXB flow pointing in the radial direction (the maximum
value V, ..=28 m/s. In the weak E, case, the values are
A, =4V, E, ,x=9 V/m, and V, =4 m/s, respec-
tively, which are one order smaller than in the strong E, case.
We conclude that the two-dimensional structure of the edge
transport barrier exists and influences the plasma flow, for
the plasma parameters that are relevant to the H-mode con-
finement.

IV. CONVECTIVE PARTICLE FLUX

Self-generation of the two-dimensional structure with
the large shear E X B flow has great impact on the formation
of the density pedestal in the transport barrier. Increase of
particle transport on L/H transition is shown in this section.

To estimate the effect from the two-dimensional struc-
tural formation, we calculate the flux-surface-averaged flux
in the radial direction as
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FIG. 4. Radial profiles of the flux-surface-averaged particle flux in the case
of the weak homogeneous and strong inhomogeneous radial electric fields.

E n T, Jd eAD
i
WV =\ )= SreB, aa[eXp T,

X (1 + ¢ cos 0)%do (29)

by using the two-dimensional solution obtained in Sec. III.
The region with a large radial flow is localized, and the flow
changes its direction at each poloidal position corresponding
to the sign of the poloidal electric field, as shown in Fig. 3.
The flux-surface-averaged flux indicates the net particle
transport between different flux surfaces. Figure 4 represents
the radial profiles of the flux-surface-averaged radial flux in
the strong and weak E, case. The radial flux has a negative
value, so it points inward to the plasma center in this case. In
the strong E, case, not only the large magnitude of the po-
loidal flow but also the gradient and curvature of the poloidal
flow increase the radial convective velocity. This enhance-
ment of the velocity is derived from the form of the shear
viscosity term in Eq. (13) that combines the poloidal asym-
metry of magnetic field B with the gradient and curvature of
the flow velocity. Figure 4 shows that the radial flux has
maximum in the radial position where poloidal flow shear is
larger.

The analysis of the two-dimensional structure reveals the
existence of the inward particle pinch flow arising from po-
loidal asymmetry in tokamaks. This finding has a large im-
pact on the transport. Figure 5 shows the relationship be-
tween the maximum of M), and the particle pinch velocity. A
moderate inward pinch velocity V.~ 1 m/s exists even in the
weak E, case (like the L mode). This velocity is equivalent to
that observed in experiments. In the strong E, case, which is

0 |
0.3 0.9 1.5 2.1
Max(M p)

FIG. 5. Relationship between the maximum of M, and the particle pinch
velocity. Increase of the maximum of M, corresponds to increase of the
peak height of M, as shown in Fig. 1.
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FIG. 6. (a) M, dependence on coefficient D and (b) averaged convective
velocity dependence on shear viscosity coefficient u with the M, profile
given in Fig. 1(d). The cases with collision frequency y=0.3-1.0 are plotted
to show the effect of collisionality.

relevant to the H mode or biased electrode experiments, a
larger radial flow (inward pinch) is induced. The M, profiles
used to calculate Fig. 5 are the same as those shown in Fig.
1, and the increase in the maximum of M, from 0.3 to 2.0
corresponds to the transition of the E, structure from flat one
to peaked (solitary) one. The increase of the maximum of M,
leads to an increase of the inward convective particle flux.

V. EFFECT OF COLLISION

Collisionality is the important factor to describe the
plasma condition near the edge region. We discuss the effect
of collision on the two-dimensional structure in A mode in
this section. Hard transition to the large E, state is taken
place in the plateau regime,4 so the collision frequency in the
plateau regime is considered here.

The transitions shown in the previous sections are for the
case with y=0.5, where collision frequency y is defined in
Eq. (11), and y=1.0 gives the boundary collision frequency
between the plateau and Pfirsch-Schliiter regime. The colli-
sion frequency affects the two-dimensional structure through
the function I, defined by Eq. (10), which represents the
radial electric-field dependency of the pressure anisotropy.
The coefficient D in Eq. (28) includes /,, and determines the
steepness and position of the shock. Figure 6(a) shows the
M,, dependence of coefficient D. The profile of coefficient D
has a peak at M,,~ 1.8 when the collision frequency is small,
and the peak becomes smaller and broader as the collision
frequency increases. Figure 6(b) shows the radial convective
velocity dependency on the collisionality when the M, pro-
file is given as in Fig. 1(d). The absolute value of the con-
vective velocity decreases as the collision frequency in-
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creases with small u(u<0.1 m?/s), but for the realistic case
when .~ 1 m?/s, collisionality does not affect the convec-
tive velocity. The steepness of the shock changes in accor-
dance with collisionality, but it affects little on the radial
particle flux. This is because the poloidal position of the
shock is influenced little by the value of D. The large con-
vective flow in this regime is derived from the deviation of
the peak position of the density and potential from that of
1/B that has cos @ dependence. In other words, the phase
difference between the density and the magnetic field gives
the averaged flux. Therefore, the velocity V, is influenced
little if the poloidal position of shock does not change. The
case with u~1 m?/s is intermediate for shock formation.
The insensitiveness of the poloidal position of the shock on
D is owing to the large flow shear and curvature. With large
flow shear and curvature, the *M,/dr* term and the dM ,/ or
term are dominant, and D is negligible in the right-hand side
of Eq. (28), so the collisionality does not have significant
effect to change the position of the shock. Of course, the
collisionality affects the radial electric-field transition. The
transition to solitary solutions becomes harder to take place
in the collisional case than in the collisionless case,34 so this
has a secondary effect for the two-dimensional structural for-
mation.

VI. DIRECTION OF THE CONVECTIVE PARTICLE
FLUX

There are some components that change the direction of
the convective particle flux. Those are the poloidal Mach
number M, (radial electric field), the toroidal magnetic field,
and the plasma current. In the previous sections, the cases
with the positive radial electric field are discussed. When the
radial electric field is negative as in spontaneous H modes,
the shock changes its direction, so the convective velocity is
inverted to direct outward.

The model equation (28) has two kinds of terms that
show different response for inversion of the toroidal mag-
netic field and the plasma current. The shear viscosity terms
that include u do not change the direction of the convective
velocity by the inversion of the toroidal magnetic field and
the plasma current. On the contrary, the other terms change
the direction by the inversion. In L and H modes, the shear
viscosity and shock term are dominant, respectively, so in H
mode the convective velocity tends to change its direction by
the inversion of the toroidal magnetic field and the plasma
current, but in L mode it does not. Taking account of these
three components, in spontaneous H mode with a negative
radial electric field, when the toroidal magnetic field and the
plasma current point to the same and different directions, the
convective velocity directs outward and inward, respectively.

VIl. PEDESTAL FORMATION IN THE EDGE
TRANSPORT BARRIER

The generation of the convective particle flux has a large
impact on the pedestal formation after the onset of the L/H
transition. The time evolution of the density is described by
the particle conservation equation
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%:—V(nV—DaVn)+S, (30)
where D, is a transport coefficient and S is a particle source.
On the L/H transition, the suppression of turbulence and the
reduction of diffusive transport occur in the transport barrier.
The reduction of the diffusion coefficient explains the steep-
ening of the H-mode pedestal in a final steady state, but the
time constant of the pedestal formation is difficult to explain.
The order estimation using Eq. (30) shows that the necessary
time for reaching the final steep gradient in the region with
the width & is given by 7=6/D, with reduced D, in the H
mode. It takes a longer time to form the pedestal (7=25 ms
when 6=5 cm and D,=0.1 m?/s). It is known, however, the
H-mode pedestal can be formed in a much shorter time 7
<10 ms.”’

Our analysis shows that abrupt change of the convective
transport occurs simultaneously with the abrupt change of
the M, profile in the transport barrier region on the L/H
transition. That is, if the convective velocity increases
abruptly, the pedestal gradient increases, without delay, lin-
early in time, and the time constant of establishing the ped-
estal is shorten to be 7=48/V, (7=5 ms when §=5 cm and
V.=10 m/s). Thus, the sudden increase of the convective
flux is a new candidate for the cause of the rapid H-mode
pedestal formation.

The first term of the right-hand side of Eq. (30) is the
divergence of the particle convective flux. It must be pointed
out that the divergence of the flux is important because it
leads the density to change in a short time. The convective
transport arising from the two-dimensional structure directs
either inward or outward, depending on the sign of the elec-
tric field and the magnetic field. Nevertheless, both cases
have the positive and negative gradient regions in their radial
flux profiles. The pedestal starts to grow in the region of the
negative gradient dV,./dr<0, where the density rapidly in-
creases. The positions of the negative gradient differ between
the positive and negative convective flux cases. That is, our
model predicts that the sign of the radial electric field makes
difference in the position where the density begins to rise
right after the onset of the L/H transition. Note that the con-
vective transport enforces particle redistribution to form the
density pedestal in the shear region both in the positive and
negative radial electric field cases. Of course, the particle
source and the boundary condition are also important to de-
termine the profile in the steady state. What is concluded
from our analysis is that the convective transport generated
from the two-dimensional structure induces the rapid forma-
tion of the density pedestal in H-mode plasmas. The self-
consistent calculation of the long-time evolution of the bar-
rier after the transition requires the solution of the transport
equation together with Egs. (6) and (7), and is left for the
future studies.

Viil. SUMMARY

In summary, multidimensionality was introduced into
the H-mode barrier physics in tokamaks. The radial steep
structure in H mode and the poloidal shock structure with the
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large poloidal flow were taken into account in a self-
sustained system. The model equations with shear viscosity
were derived. The one-dimensional model that has been used
to study the L/H transition condition’ is validated by this
two-dimensional analysis. The two-dimensional structures
can be calculated by giving M), profiles. This iterative pro-
cess gives good approximation. The radial solitary structure
of the strong radial electric field was found to be associated
with the poloidal shock structure for the parameters that are
relevant to H-mode plasmas. The radial convective flux with
a magnitude of O(1) m/s exists and increases in the H-mode
transport barrier. The collisionality has little effect on the
convective transport in the experimental condition. The di-
rection of the convective flux can be changed with the inver-
sion of the radial electric field, the toroidal magnetic field,
and the plasma current. Sudden increase of derivative of the
convective transport at the onset of the transition was pre-
dicted by this theory. This provides a new explanation of the
rapid H-mode pedestal formation.

There are few measurements of the poloidal structure. In
continuous current tokamak (CCT), the poloidal density pro-
file was measured in electrode biasing H mode."® In this
paper, it is also suggested that the positions where the density
begins to rise on the onset of the L/H transition differ in
accordance with the direction of the radial electric field, the
toroidal magnetic field, and the plasma current. To the best of
knowledge of the authors, there has been no systematic ex-
perimental approach to identify the ramp-up speed of the
density pedestal with a detailed structure inside the H-mode
transport barrier, including the precise determination of the
initial location where the edge pedestal starts to grow. To test
our theoretical results experimentally, detailed measurements
of the density or the electrostatic potential with high tempo-
ral and spatial resolutions are necessary. Identification of
asymmetry (up down or in out) will help to clarify the effect
of two dimensionality.15 It is well known that asymmetry in
tokamaks affects the H-mode transition, such as the differ-
ence of power threshold for L/H transition with x-point
topologies,35 and of energy confinement™® and edge localized
mode (ELM) behavior’’ with the direction of neutral beam
injection. Developing the study of multiple-dimensional ef-
fects in tokamaks will give new understandings of transition
physics in magnetic confined plasmas.
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